
[3] New Integral Transform: Shehu Transform a
Generalization of Sumudu and Laplace
Transform for Solving Differential Equations.
2019. International Journal of Analysis and
Applications. https://doi.org/10.28924/2291-
8639-17-2019-167.
[4] Alomari, A.K., Muhammed I. Syam, N.R.
Anakira, and A.F. Jameel. 2020. Homotopy
Sumudu Transform Method for Solving
Applications in Physics. Results in Physics 18
(September): 103265.
https://doi.org/10.1016/j.rinp.2020.103265.
[5] Elzaki, Tarig M. 2011. The New Integral
Transform ELzaki Transform, 9.
[6] Patel, Krima. 2020. Application of the Elzaki
transform Iterative Method for the
Fokker-Planck Equation, 16.
[7] Khan, Zafar, and Waqar Khan. 2008.
N-Transform Properties and Application. NUST
Journal of Engineering Sciences 1 (January):
12733.
[8] Aboodh, Khalid Suliman. 2013. The New
Integral Transform Aboodh Transform, 11.
[9] Ojeda, Nelson, and Luis Romero. 2016. A New
α
-
Integral Laplace Transform 5 (September): 5962.
https://doi.org/10.15520/ajcem.2016.vol5.iss5.59.pp59-
62.
[10] Tuan, N. M. 2023. A Study of Applied
Reduced Differential Transform Method Using
Volterra Integral Equations in Solving Partial
Differential Equations. EQUATIONS, 3, 93103.
https://doi.org/10.37394/232021.2023.3.11
[11] Mahgoub, Mohand M Abdelrahim. 2017. The
New Integral Transform Mohand Transform, 8.
[12] Mohand M. Abdelrahim Mahgoub. 2019. The
New Integral Transform Sawi Transform, 8.
[13] Sedeeg Abdelilah Kamal H. 2016. The New
Integral Transform Kamal Transform, 8.
[14] Gray, H. L., and T. A. Atchison. 1968. The
Generalized G-Transform. Mathematics of
Computation 22 (103): 595.
https://doi.org/10.2307/2004536.
[15] Gray, H. L., and T. A. Atchison. 1967.
Nonlinear Transformations Related to the
Evaluation of Improper Integrals. I. SIAM
Journal on Numerical Analysis 4 (3): 36371.
https://doi.org/10.1137/0704032.
[16] Gray H. L., and W. R. Schucany. 1969. Some
Limiting Cases of the G-Transformation.
Mathematics of Computation 23 (108): 849.
https://doi.org/10.2307/2004973.
[17] Kilbas, Anatoly A. 2004. H-Transforms:
Theory and Applications. Boca Raton: CRC
Press. https://doi.org/10.1201/9780203487372.
[18] Mathai, A.M., Ram Kishore Saxena, and Hans
J. Haubold. 2010. The H-Function. New York,
NY: Springer New York.
https://doi.org/10.1007/978-1-4419-0916-9.
[19] Jafari, Hossein. 2021. A New General Integral
Transform for Solving Integral Equations.
Journal of Advanced Research, 6.
[20] Miller, K. S., & Ross, B. 1993. An Introduction
to the Fractional Calculus and Fractional
Differential Equations, p.308.
[21] I. Podlubny. 1999. Fractional Differential
Equations. Academic Press.
[22] Kilbas, A. A., Srivastava, H. M., & Trujillo, J.
J. 2006. Theory and applications of fractional
differential equations (1st ed). Elsevier.
[23] Asmar, Nakhlé H., and Loukas Grafakos. 2018.
Complex Analysis with Applications.
Undergraduate Texts in Mathematics. Cham:
Springer International Publishing.
https://doi.org/10.1007/978-3-319-94063-2.
[24] Brown, James Ward, and Ruel V. Churchill.
2009. Complex Variables and Applications. 8th
ed. Brown and Churchill Series. Boston:
McGraw-Hill Higher Education.
[25] Churchill Ruel V., and James Ward Brown.
2014. Complex Variables and Applications.
Ninth Edition. Brown and Churchill Series. New
York, NY: McGraw-Hill Education, P.233-297.
[26] Deniz, Furkan Nur, Baris Baykant Alagoz,
Nusret Tan, and Murat Koseoglu. 2020.
Revisiting Four Approximation Methods for
Fractional Order Transfer Function
Implementations: Stability Preservation, Time
and Frequency Response Matching Analyses.
Annual Reviews in Control 49: 23957.
https://doi.org/10.1016/j.arcontrol.2020.03.003.
[27] S., D., and A. N. Khovanskii. 1964. The
Application of Continued Fractions and Their
Generalizations to Problems in Approximation
Theory. Mathematics of Computation 18 (87):
511. https://doi.org/10.2307/2003784.
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.6
Nguyen Minh Tuan, Sanoe Koonprasert,
Phayung Meesad