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Abstract: - The stability of forced oscillations of a finite-length string is considered. The driving force is 
specified as a known expression containing one harmonic of the time of the string's motion. Monotonic stability 
of string oscillations is understood as a monotonic decrease in the oscillation amplitude of the modulus of the 
difference of the solutions describing forced and free oscillations observed at an arbitrary point of the string. In 
this case, the solutions of the equation of string oscillations in partial derivatives of the second order for free 
and forced oscillations are assumed to be known. The work aims to analyze three conditions for a monotonic 
change in the modulus of the difference in the amplitude of forced and free oscillations of a string on a semi-
infinite time interval: monotonicity condition, nonlinearity condition, and convergence condition. The analysis 
of the conditions for monotonic stability of string oscillations is also carried out in the example given in the 
article.  
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1   Introduction 
The mathematical problem of stability analysis of 
solutions of nonlinear dynamic systems is one of the 
most important scientific problems. The main 
approach to studying the stability of solutions of 
dynamic systems consisting of differential equations 
is the use of the second Lyapunov method, [1], [2], 
[3], [4], [5], [6]. A significant drawback of this 
classical method is the fact that the Lyapunov 
expression must be known. In this regard, the use of 
new approaches to studying the stability of 
particular solutions of dynamic systems is of 
scientific and practical interest. One of these 
approaches is the method for studying stability 
based on the idea of monotonicity of particular 
solutions of nonlinear ordinary differential 
equations. In particular, this method is described in 
the following article, [7]. A distinctive feature of 
these works is that they consider mathematical 
models in the form of ordinary differential equations 
of the first order or their systems. The scientific 
interest is the study of the issue of applying this 
method to the analysis of the stability of solutions of 
dynamic systems modeled by partial differential 
equations. 
 A significant number of works [8], [9], [10], 
[11], etc. are devoted to the study of solutions of 
several varieties of the wave equation. For example, 

in the article [8], an exact solution of the 
inhomogeneous two-speed wave equation was 
obtained and a criterion for the smoothness of its 
right-hand side was presented. Another article [9] 
presents obtaining exact solutions of the quadratic 
and cubic nonlinear (2+1)-dimensional Klein-
Gordon equation by the expressional variable 
method. This type of equation is a generalization of 
the classical one-dimensional wave equation to the 
case of two spatial and one-time variables. 

However, in the well-known works on the study 
of the classical wave equation and its solution, the 
fulfillment of the conditions of monotonic change in 
the modulus of the difference in the amplitudes of 
forced and free oscillations of a string over a semi-
infinite time interval is not considered. 

The aim of this work is to analyze the 
conditions of monotonic change of the modulus of 
the difference in the amplitude of forced and free 
oscillations of a string on a semi-infinite time 
interval. The known wave equation of oscillations is 
used as a mathematical model. This equation is a 
second-order partial differential equation. The 
following stability conditions of a particular solution 
are analyzed in the work: monotonicity conditions, 
nonlinearity conditions, and convergence 
conditions. 
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Let us consider the notation used in the work: 
l is the string length, 
a is the phase velocity, 

0u( ,t ),u( l,t )  are the boundary conditions of the 
first kind, 

0 0tu( x, ) ( x ),u ( x, ) ( x )    are the initial 
conditions, 

u( x,t )  is the solution of the linear homogeneous 
wave equation, 

 
21

n nxl    are the eigenvalues, 

n n,   are the coefficients of the Fourier series, 

pu ( x,t )  is the solution of the linear 
inhomogeneous wave equation, 

f ( t )  is a known expression with given 
properties, 

2
pr( x,t ) (u ( x,t ) u( x,t ))   is the expression 

of the modulus of the difference between the 
solutions of the inhomogeneous and homogeneous 
wave equations, 

 1

1
n

n

q( x,t ) f ( t ) ( A sin nxl )






   is the 

expression describing the envelope of the amplitude 
of the difference between forced and free 
oscillations of the string, 

w( x,t )  is the expression on the right-hand side 
of the linear inhomogeneous wave equation. 

 
 

2  Problem Statement 
Let us consider the classical homogeneous wave 
equation of string vibrations on a segment 

0x [ ,l ],  where l is the string length, which has the 
form [12], [13], [14]:  

2
tt xxu a u ,                             (1) 

where a is the phase velocity. 
 
Equation (1) describes the propagation of a 

wave along the string. This equation is considered 
under homogeneous boundary conditions of the first 
kind (both ends of the string are fixed motionless) 

0 0 0u( ,t ) ,u( l,t )                      (2) 
and under initial conditions 

0 0tu( x, ) ( x ),u ( x, ) ( x )   .           (3) 
 
Here ( x ), ( x )   are the given expressions. 

 
The classical homogeneous wave equation of 

string vibrations (1) is one of the basic equations of 
mathematical physics, [13]. It is written in the one-

dimensional case and is a linear hyperbolic 
differential equation in partial derivatives of the 
second order. In practice, this equation can describe 
small vibrations of a string or a thin membrane. In 
addition, this equation is used to describe oscillatory 
processes in continuous media or in 
electrodynamics. In this paper, this equation is 
considered in general terms, outside of specific 
technical problems. 

From a physical point of view, this equation can 
be interpreted as follows: according to this equation, 
the force (the second derivative with respect to time) 
is directly proportional to the curvature of the curve 
determined from the solution of this equation. 

It is assumed that the theoretical problem (1)-(3) 
has a solution. In this case, the consistency of the 
boundary conditions (2) and the initial conditions 
(3) is required, ensured by the simultaneous 
fulfillment of the equalities 0 0,    at the 
initial moment of time at the start and end points of 
the string. 

It is known that based on the application of the 
convergent Fourier series, it is possible to determine 
the solution to equation (1) (if conditions (2)-(3) are 
met) in the following form 

 
1

n n n

n

u( x,t ) ( sin( t ))sin  




  

  
1

n n n

n

( cos( t ))sin  




 .                     (4) 

 
Here  

21
n nxl    are the eigenvalues, 

n n, R    which are the coefficients of the series. 
Let us write the solution (4) in a compact form

 
1

n n n n

n

u( x,t ) ( A sin( t )sin )  




  .     (5) 

 
Here 2 2

n n nA    ,  
2 2 0 5.

n n n nsin( ) ( )      , 
2 2 0 5.

n n n ncos( ) ( )      . 
 
Let us introduce an external influence into 

expression (5). As a result, we obtain the following 
expression: 

 
1

1p n n n n

n

u ( x,t ) ( f ( t )) ( A sin( t )sin ).  




   (6) 

 
Similar to the solution (5), external influence (6) 

is a periodic expression of variable t and variable 
quantity n . Here the expression f ( t )  is defined 
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on the interval 0t [ , )   and has the following 
properties: 
(i) the expression f ( t )  is a non-negative, twice 
continuously differentiable, monotonically 
decreasing expression on the interval 0t [ , )  , 
(ii) the expression f ( t )  has a second derivative 
with respect to time t, which vanishes only at its 
inflection points on the interval 0t [ , )  , 
(iii) the expression f ( t )  has a horizontal asymptote 
f ( t )=0. 

 
In this case, expression (6) is a solution to the linear 
inhomogeneous wave equation 

2
tt xxu a u w( x,t )  .                     (7) 

 
The expression w( x,t )  on the right side of equation 
(7) is equal to: 

   22

1
2 1 n n n n n

n

w( x,t ) a ( f ( t )) ( A x sin( t )sin )   






  

 
1

1 n n n n n

n

( f ( t )) ( A sin( t )sin )   




    

 
1

2 n n n n n

n

f ( t ) ( A cos( t )sin )   




   

 
1

n n n n

n

f ( t ) ( A sin( t )sin ).  




   

  
Let us introduce the modulus expression of the 

difference between solutions (6) and (5) in the form 
of  2

pr ( x , t ) ( u ( x , t ) u ( x , t ) )  . At a result we 
obtain 

     
1

n n n n

n

r( x,t ) f ( t ) ( A sin( t )sin )  




  .   (8) 

 
At each specific point of the string x, the 

expression describing the envelope of the amplitude 
of the difference between forced and free vibrations 
of the string is determined by the quantity 

  1

1
n

n

q( x,t ) f ( t ) ( A sin nxl )






  .          (9) 

Here  1

1
0n

n

( A sin nxl )






 . 

 
Let us consider the following definition. 
 

Definition. Monotonic stability of the amplitude of 
string oscillations is a monotonic decrease in the 
modulus of the amplitude of the difference between 
forced, and free oscillations of the string over the 

semi-infinite time interval 0t [ , )  , in which the 
difference expressions 0r( x,t )  at t  . 

 
Let us formulate a sufficient condition for the 
monotonic stability of string vibrations. 
 

Theorem. If an expression f ( t )  of constant sign 
within a specific coordinate quarter satisfies 

conditions (i)-(iii) and the continuous derivative df

dt
 

is negative on a semi-infinite interval [0, )t   

(the expression df

dt
 reaches zero only at t  ), 

then the amplitude of the string vibrations is 
monotonically stable on the interval. 
Proof. Let a non-negative expression f ( t )  have a 

continuous expression df

dt
 on the interval 

[0, )t  . Let the first derivative of this expression 
be negative on the interval [0, )t  , i.e. the 

condition 0df

dt
  is satisfied (except for the zero 

value 0df

dt
  at t  ). We apply the 

fundamental sufficient condition for the decrease of 
a real expression of one variable. In this case, the 
expression f ( t )  of constant sign within a specific 
coordinate quarter satisfies conditions (i)–(iii) and 
this expression decreases monotonically on the 
interval [0, )t   (except for the limiting value 

0df

dt
  at t  ). In this case, the envelope 

q( x,t )  of the amplitude of the difference between 
forced and free oscillations of the string also tends 
to zero at t   for any values of x belonging to 
the string. At the same time, the modulus expression 
of the difference between solutions (6) and (5) in the 
form (8) also tends to zero, i.e. 0r( x,t )  at 
t   for any values of x belonging to the string. 
Consequently, according to the Definition, the 
amplitude of the string oscillations has the property 
of monotonous stability in the interval [0, )t  . 
The theorem is proven. 

 
Note. The presented Theorem is applicable to 

the analysis of the stability of forced oscillations of 
a string with two fixed ends, having boundary and 
initial conditions identical to conditions (2) and (3). 
In this case, the string must have the same rigidity 
along its entire length. 
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Note. The expression f ( t )  determines the 
nature of the damping of forced oscillations of the 
string relative to its free oscillations. 

Note. Different strings may correspond to 
different expressions f ( t ) , different rigidity, and 
initial tension. 

 
 

3  Analysis of Conditions of Monotonic 

Stability of Oscillations 
The analysis of monotonic stability of the amplitude 
of the difference between forced and free 
oscillations of a string consists of the analysis of 
three conditions: the condition of monotonic 
stability, the condition of nonlinearity, and the 
condition of convergence.  

Let us consider the fulfillment of these 
conditions. 

The condition of monotonicity of stability of the 

amplitude of the difference between forced and free 

oscillations of a string implies the negativity of the 

first partial derivative of the expression q( x,t )  with 

respect to time t at all points of the string at 

0t [ , )  . It has the following form: 

0q( x,t )

t





.                        (10) 

 
Taking into account expression (9), we obtain 

that condition (10) is satisfied at all points x of the 
string at 0t [ , )  . 

In this case, the amplitude of the difference 
between forced and free oscillations of the string 
decreases monotonically to zero at t  . 
Consequently, in this case, forced oscillations do not 
differ from free oscillations. Indeed, the amplitudes 
and frequencies of these oscillations are equal at 
t  . It should be noted that condition (10) is 

satisfied when the condition 0df

dt
  is fulfilled, 

which is fulfilled according to the Theorem. In this 

case, the expression df

dt
 should reach zero value 

only at t  . Thus, according to the definition, 
the amplitude of string oscillations is monotonically 
stable on this semi-infinite interval. 

The condition of nonlinearity of the amplitude of 

the difference between forced and free oscillations 

of a string assumes the absence of linear sections on 

the graph of the expression q( x,t )  as it changes 

over the interval 0t [ , )  .  

Let us determine the sign of the second partial 
derivative of the expression q( x,t )  with respect to 

time t. Since the second partial derivative of this 
expression is equal to 

 
2 2

1
2 2

1
n

n

q( x,t ) d f
( A sin nxl )

t dt











 , this partial 

derivative is nonzero at all points of the string 

(except for points where  1

1
0n

n

( A sin nxl )






 ) 

at 0t [ , )  . Indeed, the expression 

 1

1
n

n

( A sin nxl )






  can vanish only at individual 

points. Consequently, the condition of nonlinearity 
of the amplitude of the difference between forced 
and free oscillations of the string is satisfied. As 
time t increases, we find that the envelope q( x,t )  of 
the amplitude of the string oscillations for all x of 
the string (except for values satisfying the equality 

 1

1
0n

n

( A sin nxl )






 ) is a curvilinear line. 

Moreover, with an increase in time t, we obtain that 
the envelope of the string oscillation amplitude 
q( x,t )  for all points of the string is a curvilinear 
line (except for points where the equality 

 1

1
0n

n

( A sin nxl )






  is satisfied). 

The convergence condition assumes that the 

magnitude of the envelope of the amplitude of the 

difference between forced and free oscillations (9) 

reaches zero ( 0q( x,t ) ) at all points of the string 

at t  . 

Calculating the limit of expression (9) for an 
arbitrary value of x , we obtain that 0

t
lim q( x,t )


 . 

Indeed, this limit is equal to zero, since the 
expression f ( t )  has a horizontal asymptote 

0f ( t ) , and when calculating the expression 

 1

1
n

n

( A sin nxl )






  for each value x , we obtain a 

certain number. Consequently, the limit equality 
0

t
lim f ( t )


  is satisfied. Thus, the condition of 

convergence of the amplitude envelope is satisfied 
at t  . 

  
 

4 The Example of Analysis of 

 Monotonic Stability of the 

 Amplitude of String Vibrations 
Let us consider a specific mathematical model of a 
forced string with two fixed ends, having boundary 
and initial conditions identical to conditions (2) and 
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(3). Let the external influence on this string have the 
following form: 

 
1

1 t

p n n n n

n

u ( x,t ) ( e ) ( A sin( t )sin ).  






     (11) 

 
The dependence describes forced vibrations of a 

string, occurring with the amplitude that decreases 
exponentially to values 

 
1

n n n n

n

u( x,t ) ( A sin( t )sin ).  




   Here the 

damping characteristic of forced oscillations relative 
to free oscillations is equal to the expression

tf ( t ) e . 
 

Expression (11) is a solution of the equation: 
2

tt xxu a u v( x,t )  .                     (12) 
 
Here  

   22

1
2 1 t

n n n n n

n

v( x,t ) a ( e ) ( A x sin( t )sin )   






  

 
1

1 t

n n n n n

n

( e ) ( A sin( t )sin )   






    

 
1

2 t

n n n n n

n

e ( A cos( t )sin )   






   

 
1

t

n n n n

n

e ( A sin( t )sin ).  






   

 
The equation (12) is an inhomogeneous wave 

equation. Let us write the modulus expression of the 
difference between solutions (11) and (5) in the 
form  2

pr( x,t ) (u ( x,t ) u( x,t ))  . As a result, we 
obtain: 

   1 1

1

t

n n

n

r( x,t ) e ( A sin( nxl t )sin nxl )  


  



  . (13) 

 
From expression (13) it follows that at each 

specific point of the string x the envelope of the 
difference between forced and free vibrations is 
determined by the expression 

 1

1

t

n

n

q( x,t ) e ( A sin nxl )


 



  .          (14) 

 
Let us consider the fulfillment of these stability 

conditions. 
The condition of monotonicity of stability of the 

amplitude of the difference between forced and free 

oscillations is fulfilled 0q( x,t )

t





, since the first 

derivative of the expression tf ( t ) e  is negative 

0
t

tde
( e )

dt


   . 

The condition of nonlinearity of the amplitude 
of the difference between forced and free 
oscillations of the string is also fulfilled, since the 

expression  
2

1
2

1

t

n

n

q( x,t )
e ( A sin nxl )

t



 







  is 

positive at all points of the interval 0t [ , )  , 
except for individual points where the expression 

 1

1
n

n

( A sin nxl )






  can turn to zero.  

The convergence condition is also satisfied. 
Indeed, the magnitude of the envelope of the 
amplitude of the difference between forced and free 
oscillations (14) tends to zero at t  , since the 
limit equality is satisfied 0t

t
lim e


 . 

 
 

5   Conclusion 
Thus, in the considered formulation of the problem 
of forced string vibrations, all three conditions of 
monotonic stability of the modulus of the difference 
between the solutions for forced and free vibrations 
can be satisfied. In this case, the modulus of the 
difference between the solution for forced vibrations 
and the solution for free vibrations decreases 
monotonically, reaching zero at t  . In this 
case, the forced vibrations of the string become 
identical to its free vibrations. It should be noted 
that with increasing time t, the envelope of the 
amplitude of the difference between the forced and 
free vibrations of the string on the interval 

0t [ , )   is a curvilinear line. As a prospect for 
further research, further analysis of the monotonic 
stability of the difference between the solution for 
forced oscillations and the solution for free 
oscillations, described by equations of a more 
general form than the classical one-dimensional 
wave equation, is possible. 
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