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Abstract: - In this paper, we will show and discuss the Steenrod operators and their applications within the 
framework of the dihedral homology of 𝒜-infinity algebras. Steenrod operations have proved to be important 
tools in developing the study of homological elements and various homological theories, such as the Adams 
spectral sequence and the Sullivan conjecture, as they were first introduced in algebraic topology. These 
operators have proven to be invaluable in advancing our understanding of topological and algebraic structures.  
Therefore, we focus on the generalization of these methods for more general applications, particularly with 
projective homogeneous varieties over 𝛼-characteristic fields. We begin by defining Steenrod operators in 
dihedral homology of 𝒜-infinity algebras, and we will explain the complex relations between these algebraic 
structures and the homology theory-derived operations.  
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1   Introduction 
The Steenrod operations were at first presented in 
the algebraic topology over the late 1930's. This 
operation is performed on the topological spaces' 
modulo 𝛼 homology.  

These operations have been used to verify 
several conclusions in the algebraic topology. Later, 
they employed in new ways, for as when discussing 
the Sullivan conjecture or the Adams spectral 
sequence. The operations were soon used in the 
study of projective homogeneous types in algebraic 
geometry. Although Steenrod operations modulo𝛼, 
which operate over fields of characteristic 𝛼, do not 
yet exist, this is due to several factors. As a 
consequence, given the specific values of a 
characteristic of the basic field, several significant 
concerns surrounding projective homogeneous 
varieties remain unanswered. For example, some of 
the most complex quadratic form theorems are 
undefined when the base domain of characteristic is 
two. 

The Steenrod operations constructions aimed at 
Chow groups modulo the major number 𝛼 
designated in [1], [2]. Like Steenrod's initial 
construction, they all include taking into the action 
how a cyclic group of order 𝛼 affects the result of 
 𝛼  replicas of a particular scheme. Specifically on a 
square of the particular projective homogeneous 

variation, the Steenrod operations are employed as a 
means of generating new algebraic cycles and 
offering motives decomposition of this variation. 
According to the Rost nilpotence theorem, the 
identical conclusion was obtained using merely 
reduced Steenrod operations. 

Algebraic topology generally aims to offer 
algebraic techniques to extricate topological spaces. 
One such diagram that turns out to be very exciting 
is the infinity homology 𝐻•(𝑉,𝒜) for a space 𝑉. In 
this case, we obtain an additional infinity algebras 
structure not immediately offered by homology 
groups, and we can compute this algebra more 
easily than we can with homotopy groups. 

Furthermore, it goes out that if we select the 
constant 𝒜∞-algebras ℳ to be one of infinite fields 
with the form 𝐹𝛼, for a prime 𝛼, we have even 
additional structure. In this instance, Steenrod 
presented the stable homology operations, which are 
natural transformations 𝜓:𝐻𝑛(−, 𝐹𝛼) → 𝐻𝑚(−, 𝐹𝛼) 
with specific properties that it turns out combine to 
produce an infinity algebras. 

Without ever taking into account topological 
spaces, it is possible to study the Steenrod algebra, 
as it is known. A further restriction on the existence 
and behavior of such spaces is imposed by the fact 
that homology operations with these abilities can be 
explicitly created for any topological space. 
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The aim of [2] has examined how generalized 
the Steenrod operations can be constructed in 
relation to multiplicative spectral sequences. [3], [4] 
have been used to study Adams operations in 
Hochschild, cyclic homology of the de-Rham 
algebra, and allowed loop spaces.  

We study Adams operations on the 𝒜∞-
algebras by the rational coefficients are developed 
and proved to descend to the universal relating to 
their group law oriented cohomology theories. We 
introduce and study some basic statements of the 
dihedral homology theory of 𝒜∞-algebras, and we 
define Adams and Steenrod operators in algebras. 
The main study of this paper is the form of the 
Adam`s and Steenrod`s of the dihedral homology of 
an 𝒜∞-algebras. We introduce the Steenrod 
operator in dihedral homology on 𝒜∞-algebras. 
 
 
2 The Dihedral Homology of 𝓐∞-

 Algebras 
𝒜∞-algebras is one of several branches of algebras, 
and it has certain unique properties. It is described 
as a graded algebra with graded maps, which 
satisfies some conditions. Stasheff introduced 
infinity algebras in the 1960's and provides the 
properties of topological algebras. Its homological 
theory was also studied in (2013) by Alaa. H., Y. 
Gouda. In view of this, we will show some previous 
studies of some definitions, theorems and algebraic 
properties of 𝒜∞-algebras and its homological 
properties by using the references, [5], [6].  
 

2.1  Definition, [7] 
By considering a differential module (𝒞, 𝛿) such 
as 𝛿: 𝒞𝓅 → 𝒞𝓅−1, then we can define a simplicial 
faces as 𝜕𝚤: 𝒞𝓅 → 𝒞𝓅−1, 0 ≤ 𝚤 ≤ 𝑛, where 𝜕𝚤𝜕𝑗 =
𝜕𝑗−1𝜕𝚤, 𝚤 < 𝑗, additionally 𝜕𝚤 refers to be the (𝒞, 𝛿)-
simplicial faces. Let the permutation 𝜎 of a 
symmetrical group 𝛴𝓆 of 𝓆-elements of 
permutations,  in which  its  components  are  
(𝜎 (𝚤1), … , 𝜎 (𝚤𝓆)) that operates on (𝚤1, … , 𝚤𝓆) where 
𝚤1 < ⋯ < 𝚤𝓆,  then (𝜎 (𝚤1)̂, … , 𝜎 (𝚤𝓆 )̂) write as: 

𝜎 (𝚤𝓀)̂ = 𝜎 (𝚤𝓀) − 𝛾(𝜎 (𝚤𝓀)),   1 ≤ 𝓀 ≤ 𝓆, 
while, 𝛾(𝜎 (𝚤𝓀)) is a number of 
(𝜎 (𝚤1), … , 𝜎 (𝚤𝓀), … , 𝜎 (𝚤𝓆)). 
 
As of right now, the differential module (𝒞, 𝛿) with 
the family map: 
 �̃� = 𝜕(𝚤1,…,𝚤𝓆): 𝒞𝓅 → 𝒞𝓅−𝓆 , ı ≤ 𝓆 ≤ 𝓅, 0 ≤ 𝚤1 <

⋯ < 𝚤𝓆 ≤ 𝓅, 𝚤1, … , 𝚤𝓆 ∈ ℤ, can be used to define 
the ℱ∞-module (𝒞, 𝛿, �̃�), which satisfy that: 

𝛿 (𝜕(𝚤1,…,𝚤𝓆)) =

∑ ∑ (−1)1+𝑠𝑖𝑔𝑛(𝜎)𝜕(𝜎 (𝚤1)̂ ,…,𝜎 (𝚤ℓ)̂ )𝜕(𝜎 (𝚤ℓ+1)̂ ,…,𝜎 (𝚤𝓆)
̂ )𝐼𝜎𝜎∈𝛴𝓆 .   (1) 

 

Since Iσ indicates the permutations of 
(𝜎 (𝚤1)̂, … , 𝜎 (𝚤𝓆 )̂) such as: 
𝜎 (𝚤1)̂ < ⋯ < 𝜎 (𝚤ℓ)̂ < 𝜎 (𝚤ℓ+1)̂ < ⋯ < 𝜎 (𝚤𝓆)

̂ . 
 
Then, �̃� = 𝜕(𝚤1,…,𝚤𝓆) is the ℱ∞-differential of (𝒞, 𝛿) is 
the ∞-simplicial of faces of ℱ∞-module. 
 
Therefore, let 𝓆 = 1, then 𝛿(𝜕(𝚤1)) = 0, 𝚤1 ≥ 0, 
let 𝓆 = 2, then:  
𝛿(𝜕(𝚤1,𝚤2)) = 𝜕(𝚤2−1)𝜕(𝚤1) − 𝜕(𝚤1)𝜕(𝚤2), 𝚤1 < 𝚤2, 
let 𝓆 = 3, then:  
𝛿(𝜕(𝚤1,𝚤2,𝚤3)) = −𝜕(𝚤1)𝜕(𝚤2,𝚤3) − 𝜕(𝚤1,𝚤2)𝜕(𝚤3)

− 𝜕(𝚤3−2)𝜕(𝚤1,𝚤2) − 𝜕(𝚤2−1,𝚤3−1)𝜕(𝚤1)
+ 𝜕(𝚤2−1)𝜕(𝚤1,𝚤3)
+ 𝜕(𝚤1,𝚤3−1)𝜕(𝚤2),    𝚤1 < 𝚤2 < 𝚤3, 

 
We can define a module of cyclic differential 

(𝒞, 𝛿, 𝓉) by using define of differential module 
(𝒞, 𝛿) and the map 𝓉 = {𝓉𝓅: 𝒞𝓅 → 𝒞𝓅}, ∀𝓅 ≥ 0,
𝓉𝓅
𝓅+1

= 𝐼𝒞𝓅 , 𝛿𝓉𝓅 = 𝓉𝓅𝛿. 

 
Similarly, we can get a module of dihedral 
differential (𝒞, 𝛿, 𝓉, 𝓇) by define the map: 
𝓇 = {𝓇𝓅: 𝒞𝓅 → 𝒞𝓅}, ∀𝓅 ≥ 0, 𝓇𝓅

2 = 𝐼𝒞𝓅 , 
 
Then we have: 

𝓇𝓅𝓉𝓅 = 𝓉𝓅
−1𝓇𝓅,       𝛿𝓇𝓅 = 𝓇𝓅𝛿. 

 
For the cyclic and the dihedral modules, we have: 

𝜕𝚤𝓉𝓅 = 𝓉𝓅−1𝜕𝚤−1,     0 < 𝚤 ≤ 𝓅 

𝜕0𝓉𝓅 = 𝜕𝓅,         𝜕𝚤𝓇𝓅 = 𝓇𝓅−1𝜕𝚤−1,         0 ≤ 𝚤 ≤ 𝓅. 

 
Then, the 𝒟ℱ∞-module (𝒞, 𝛿, 𝓉, 𝓇, �̃�) can be 

identified as the dihedral module, such that it is 
through ∞-simplicial of faces, subsequently 
(𝒞, 𝛿, 𝓉, 𝓇) denotes a module of dihedral differential 
and fulfils that: 
∂(ı1,…,ı𝓆)𝓉𝓅 =

{
𝓉𝓅−𝓆 ∂(ı1−1,…,ı𝓆−1),                ı1 > 0

(−1)𝓆−1 ∂(ı2−1,…,ı𝓆−1,𝓅),        ı1 = 0
  ,               (2)   

 
𝜕(𝚤1,…,𝚤𝓆)𝓇𝓅 = (−1)

𝓆(𝓆−1)

2 𝓇𝓅−𝓆𝜕(𝓅−𝚤𝓆 ,…,𝓅−𝚤1), 𝚤1 = 0 .       (3) 
 

2.2 Definition, [5] 
Assume that  ℳ = {ℳ𝓅}, ∀𝓅 ∈ ℤ , 𝓅 > 0 , is a 
unital 𝒜∞-algebra where the 𝒜∞-algebra 
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(ℳ, 𝛿, 𝜑𝓅) be any differential module (ℳ, 𝛿), 
as  𝛿:ℳ⋆ →ℳ⋆−1, prepared through a family of 
functions {𝜑𝓅: (ℳ⊗(𝓅+2))⋆ →ℳ⋆+𝓅},  fulfilling 
the preceding relations for each integer 𝓅 > 1, 
since  𝛿(𝜑𝓅−1) = 𝛿𝜑𝓅−1 + (−1)𝓅𝜑𝓅−1𝛿, 
𝛿(𝜑𝓅−1) =

∑ ∑ (−1)𝑠(𝓅−𝓆)+𝓅+1𝜋𝓆−1 (1⊗ …⊗ 1⏟      
𝑠−1

⊗
𝓆+1
𝑠=1

𝓅−1
𝓆=1

𝜑𝓅−𝓆−1⊗1⊗…⊗ 1⏟      
𝓆−𝑠−1

),                                          (4)  

 
For example, the relations (4) have the following 
forms: 

 for 𝓅 = 1 : then  𝛿(𝜑0) = 0,   
 for 𝓅 = 2:   
 𝛿(𝜑1) = 𝜑0(𝜑0⊗1) − 𝜑0(1⊗ 𝜑0), 
 for 𝓅 = 3:  
𝛿(𝜑2) = 𝜑0(𝜑1⊗1+ 1⊗𝜑1) − 𝜑1(𝜑0

⊗1⊗2 − 1⊗𝜑0⊗1+ 1⊗2

⊗𝜑0). 
 

Since (ℳ, δ, φ𝓅) is the 𝒜∞-algebra and given 
by auto-morphism ⋆∶ ℳ𝓅 →ℳ𝓅, the involutive 
𝒜∞-algebra also can be identifying as the complex 
(ℳ, 𝛿, 𝜑𝓅,⋆):ℳ𝓅 →ℳ𝓅 such as  ∀𝓂 ∈ ℳ, ⋆

(𝓂) = 𝓂⋆ and the conditions are fulfilled as 
follows: 

 (𝓂⋆)⋆ =𝓂,          𝛿(𝓂⋆) = 𝛿(𝓂)∗, 
𝜑𝑛(𝓂0⊗𝓂1⊗…⊗𝓂𝓅⊗𝓂𝓅+1)

⋆

= (−1)𝜉𝜑𝓅(𝓂𝓅+1
∗ ⊗𝓂𝓅

∗ ⊗…

⊗𝓂1
∗ ⊗𝓂0

∗ ). 
 

Such that  𝜉 = 𝓅(𝓅−1)

2
+ ∑ |𝓂𝚤||𝓂𝑗|0≤𝚤<𝑗≤𝓅 ,

𝓅 ≥ 0. Therefore, a module of a dihedral 
differential remains the complex ( ℳ 𝜚 (ℳ), 𝓉, 𝓇, 𝛿), 
such as 𝜚 = ±1, also 
𝓉𝓅(𝓂0⊗…⊗𝓂𝓅) = (−1)

𝛽𝓂𝓅⊗𝓂0⊗

𝓂1⊗…⊗𝓂𝓅−1, 

𝓇𝓅(𝓂0⊗…⊗𝓂𝓅) = 𝜚(−1)
𝛾𝓂0

∗ ⊗𝓂𝓅
∗ ⊗

𝓂𝓅−1
∗ ⊗…⊗𝓂1

∗ , 

𝛿(𝓂0⊗…⊗𝓂𝓅) = ∑ (−1)𝜇𝓂0⊗…⊗
𝓅
𝚤=0

𝓂𝚤−1⊗𝛿𝓂𝚤⊗…⊗𝓂𝓅. 
 

2.3  Theorem, [5]  
The dihedral module (𝒟ℱ∞-module) is defined as 
( ℳ 
𝜚 (ℳ), 𝓉, 𝓇, 𝛿), if (ℳ, 𝛿, 𝜑𝓅 ,⋆) seems to be the 

involutive 𝒜∞-algebra.  
 

 

 

2.4 Definition, [5] 
For the field 𝒦 of a characteristic zero, the one-
dimensional vector spaces of degrees −1 and 1 with 
0-differential, respectively, are denoted by the 
notations 𝛴𝒦 and 𝛴−1𝒦. The free formalized 
augment differential of the graded associative 
algebra denoted by  �̂�𝒱 , which is produced by 
𝒱 and given by: 

�̂�𝒱 =∏𝒱⊗𝓅
∞

𝓅=0

= 𝒦 × 𝒱 × (𝒱 ⊗𝒱) × …  . 

 
Over �̂�≥𝚤𝒱, we refer to the sub-algebra with element 
orders equal to or greater than  𝚤. 
 

2.5  Definition, [6] 
Suppose that (ℳ,𝒬) and (𝒩, 𝒬′) are 𝒜∞-algebras. 
Then the  𝒜∞-morphism of 𝒜∞–algebras are a 
map 𝑓 of associative algebras: 

𝑓: �̂�≥1∑
−1𝒩∗ → �̂�≥1∑

−1ℳ⋆, 
such that 𝒬 ∘ 𝑓 = 𝑓 ∘ 𝒬′ and f preserves the 
involution: 𝑓(𝓂⋆) = 𝑓(𝓂)⋆. 
 

2.6  Definition, [6] 

If the space of derivations 𝐷𝑒𝑟(�̂�≥1∑−1ℳ∗) for 
the 𝒜∞-algebra (ℳ,𝒬), then the differential graded 
vector space ℳ is the Hochschild homology 
complex ℋℋ∎(ℳ,ℳ) of ℳ with coefficients in 
itself: 
𝒞ℋ∎(ℳ,ℳ) = ∑

−1𝐷𝑒𝑟(�̂�≥1∑
−1ℳ⋆).           (5) 

 

2.7  Definition, [5] 
Let  (ℳ,𝒬)  be the involutive 𝒜∞-algebras. So the 
cyclic homology of  𝒜∞-algebras ℋ𝒞∎(ℳ) is a 
differential graded vector space 𝒞𝒞∎(ℳ), which is 
represented by: 

𝒞𝒞∎(ℳ) = ∑∏  ∞
𝚤=1  [(∑

−1ℳ⋆)⊗𝚤]𝒵𝚤,           (6) 
 
Such as, 𝒵𝚤 is the cyclic group of order 𝚤.  
 

2.8  Definition, [8] 
By considering ℳ is 𝒜∞-algebras (ℳ, 𝛿, 𝜑𝑛), then 
the cyclic differential module (𝒞(ℳ), 𝓉, 𝛿) is 
denoted by: 
𝒞(ℳ) = {𝒞(ℳ)𝑠,𝑛},

𝑠𝑖𝑛𝑐𝑒 𝒞(ℳ)𝑠,𝑛 = (ℳ
⊗(𝑛+2))

𝑠
,

∀𝑛, 𝑠 ≥ 0, 
𝓉𝑛(𝓂0⊗…⊗𝓂𝑠)

= (−1)|𝓂𝑛|(|𝓂0 |+⋯+|𝓂𝑠−1| 𝓂𝑛

⊗𝓂0 ⊗…⊗𝓂𝑠−1, 
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𝛿𝑛(𝓂0⊗…⊗𝓂𝑠)

= ∑(−1)|𝓂0 |+⋯+|𝓂𝑘−1| 𝓂0 ⊗…

𝑛

𝑘=0

⊗𝓂𝑘−1⊗𝛿𝓂𝑘⊗𝓂𝑘+1⊗𝓂𝑛, 
such |𝓂| =∗ means that, 𝓂 ∈ℳ∗. Also, suppose 
that the family of maps: 
𝒷′ = {𝒷(𝑘1,…,𝑘𝑠): 𝒞(ℳ)𝑛,𝑝 → 𝒞(ℳ)𝑛−𝑠,𝑝+𝑠−1},

0 ≤ 𝑘1 < ⋯ < 𝑘𝑠 < 𝑛,
𝑛, 𝑝 ≥ 0, 

denoted by:  
𝒷(𝑘1,…,𝑘𝑠)

=

{
 
 
 

 
 
 
(−1)𝑠(𝑝−1)1⊗𝑗⊗𝜑𝑠−1⊗1⊗(𝑛−𝑠−𝑗),                                                                            

                        𝑖𝑓 0 ≤ 𝑗 ≤ 𝑛 − 𝑠, (𝑘1, … , 𝑘𝑠) = (𝑗, 𝑗 + 1, … , 𝑗 + 𝑠 − 1)
 

(−1)𝑞(𝑠−1)𝒷(0,1,…,𝑠−1)𝓉𝑛
𝑞
, 𝑖𝑓 1 ≤ 𝑞 ≤ 𝑠,                                                                 

                              𝑎𝑛𝑑 (𝑘1, … , 𝑘𝑠) = (0,1,… , 𝑠 − 𝑞 − 1, 𝑛 − 𝑞 + 1, 𝑛 − 𝑞 + 2,… , 𝑛)
 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                          

 

 
The quadruple (𝒞(ℳ), 𝓉, 𝜕, 𝒷′ ) is the cyclic 

modules of ∞-simplicial sides, for each 𝒜∞-
algebras (ℳ, 𝛿, 𝜑𝑛).   

Also, we can define a cyclic homology ℋ𝒞(ℳ) 
of 𝒜∞-algebra by the cyclic homology ℋ𝒞(𝒞(ℳ)) 
of the cyclic modules of ∞-simplicial sides 
(𝒞(ℳ), 𝓉, ∂, 𝒷′).  
ℋ𝒞(ℳ) = (𝑇𝑜𝑡𝒞(𝒞(ℳ))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐷) , 𝐷 = 𝐷1 + 𝐷2,   (7)  
 

Consequently, the cyclic homology ℋ𝒞(ℳ) of 
𝒜∞-algebra is the homology of the chain complex 
  ℋ𝒞(ℳ) = (𝑇𝑜𝑡𝒞(𝒞(ℳ))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐷) , 𝐷 = 𝐷1 + 𝐷2, 
associated with the chain 
bicomplex  (𝒞(𝒞(ℳ)̅̅ ̅̅ ̅̅ ̅̅ ), 𝐷1, 𝐷2).  

Note that if an 𝒜∞-algebra is a differential 
associative algebra (ℳ, 𝛿, 𝜑𝑛) , where 𝜑0 = 𝜑 
and 𝜑𝑛 = 0 , 𝑛 > 0, then the chain 
bicomplex (𝒞(𝒞(ℳ)̅̅ ̅̅ ̅̅ ̅̅ ), 𝐷1, 𝐷2) coincides with the 
Tsygan chain bicomplex for the differential 
associative algebra  (ℳ, 𝛿, 𝜑𝑛). 
 
2.9  Definition, [6] 
For a graded vector space ℳ be with an involution. 
Then the dihedral group of order 2𝓅 symbolized 
by  𝒟𝓅, since 𝒟𝓅 = [𝓇, 𝓈|𝓇𝓅 = 𝓈2 = 1, 𝓈𝓇𝓈−1 =
𝓇−1] . Then there are the following two actions of 
𝒟𝓅 on ℳ⊗𝓅  ,   ∀𝓂𝚤 ∈ ℳ. 
 
1- The dihedral action can be described as: 
𝑟(𝓂1⊗𝓂2⊗…⊗𝓂𝓅) = (−1)

𝜀𝓂𝓅⊗𝓂1⊗

⋯⊗𝓂𝓅−1 , 
𝑠(𝓂1⊗𝓂2⊗…⊗𝓂𝓅) = (𝓂1⊗𝓂2⊗…⊗

𝓂𝓅)
⋆. 

 

2- The skew-dihedral action can be described as: 
𝑟(𝓂1⊗𝓂2⊗…⊗𝓂𝓅) = (−1)

𝜀𝓂𝓅⊗𝓂1⊗

⋯⊗𝓂𝓅−1, 

𝑠(𝓂1⊗𝓂2⊗…⊗𝓂𝓅) = −(𝓂1⊗𝓂2⊗

…⊗𝓂𝓅)
⋆
. 

 

 

3   Problem Solution 
Through this section, we discuss and study the 
Steenrod’s operator for the dihedral homology of 
𝒜∞-algebras. By using [9], [10] and [11] let us 
assume that 𝒦 be the field with characteristic zero, 
where ℳ is the commutative 𝒦-infinity algebras. 
Suppose that [𝒟𝑝] is a dihedral category, then 
𝒦[𝒟𝑝] is an 𝒜∞-algebras related with [𝒟𝑝] over 𝒦 

[1], [4], [7]. Also, 𝒜𝒟 
𝜀  is describing on the 𝒦[𝒟𝑝]-

module, the construction of the commutative 
𝒦[𝒟𝑝]-algebra as determined by: 
(ℳ⊗𝑛)𝐷 
𝜀

    ∆    
→   (ℳ⊗𝑛⊗ℳ) 

𝜀
   𝑓   
→  (ℳ⊗𝑛)𝐷 

𝜀 ⊗ (ℳ)𝐷 
𝜀      (8) 

 
where ∆ is the homomorphism of 𝒦[𝒟𝑝], and 𝑓 is 
defined by: 
𝑓((𝓂0⊗𝓃0) ⊗ (𝓂1⊗𝓃1) ⊗ …⊗ (𝓂𝑠⊗𝓃𝑠))

= (𝓂0⊗𝓂1⊗…⊗𝓂𝑠)
⊗ (𝓃0⊗𝓃1⊗…⊗𝓃𝑠). 

 
Assume that 𝑓 ∘ ∆= ∆𝒟 

𝜀  provides the 
commutative multiplication in ℳ𝒟 

𝜀 . We indicate 
that ∆𝒟 𝜀  is the 𝒦[𝒟𝑝]-homomorphism known on the 
𝒜∞-algebras 𝒦[𝒟𝑝], the multiplication 𝒦[𝒟𝑝]
       
→ 𝒦[𝒟𝑝] ⊗𝓀 𝒦[𝒟𝑝], like that 𝜅

      
→ 𝜅 ⊗ 𝜅, 𝜅 ∈

𝒦[𝒟𝑝]. 
As ( ℳ𝒟  

𝜀 ⊗𝓀 ℳ𝒟 
𝜀  )is ( 𝒦[𝒟𝑝] ⊗𝑘 𝒦[𝒟𝑝]) 

module, then through the multiplication on 
( ℳ𝒟  
𝜀 ⊗

𝓀
 ℳ𝒟 
𝜀 ) one can describe 𝒦[𝒟𝑝]-module 

construction and 𝒦[𝒟𝑝]-module homomorphism 𝑓, 
subsequently:  
𝑓 (𝜅((𝓂0⊗𝓃0)⊗ (𝓂1⊗𝓃1)⊗ …

⊗ (𝓂𝑠⊗𝓃𝑠)))  

= 𝜅(𝓂0⊗𝓂1⊗…⊗𝓂𝑠)
⊗ 𝜅(𝓃0⊗𝓃1⊗…⊗𝓃𝑠)       
= 𝜅((𝓂0⊗𝓂1⊗…⊗𝓂𝑠)

⊗ (𝓃0⊗𝓃1⊗…⊗𝓃𝑠))     

= 𝜅𝑓((𝓂0⊗𝓃0) ⊗ (𝓂1⊗𝓃1)

⊗…⊗ (𝓂𝑠⊗𝓃𝑠)),        
 , 𝜅 ∈ 𝒦[𝒟𝑝]                 (9) 
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Therefore, the morphism ∆𝒟 
𝜀  is the 𝒦[𝒟𝑝]-

module homomorphism. Then the dihedral 
homology 𝐸𝑥𝑡𝒦[𝒟𝑝]

𝑚 ( ℳ𝒟 
𝜀 , (𝒦𝒟)⋆) can be 

determined by applying the normalized bar 
construction 𝛽(ℒ), [3]. By assuming that ℒ be the 
triples( ℳ𝒟 

𝜀 ,𝒦[𝒟𝑝],𝒦𝒟), (𝒦[𝒟𝑝],𝒦[𝒟𝑝],𝒦𝒟), 
and also let 𝒥𝒦[𝒟𝑝] be the kernel identity 𝓀
      
→  𝒦[𝒟𝑝].  

We establish the identity of the normalized bar 
structure 𝛽(ℒ) with the 𝓀-module: 𝛽(ℒ) =

ℳ𝒟 
𝜀 ⊗𝒦[𝒟𝑝 ] 𝒯(𝒥𝒦[𝒟𝑝])  ⊗𝒦[𝒟𝑝 ]𝒦𝒟, where 
𝒯(𝒥𝒦[𝒟𝑝]) be the algebraic tensor of 𝒥𝒦[𝒟𝑝]. 
Obviously the 𝒦-module 𝛽(ℒ) can be graded. Then 
the elements of 𝒦-module 𝛽(ℒ) is possible to write: 
𝓂[𝜐1, 𝜐2, … , 𝜐𝑠]𝓀 ∈ 𝛽(ℒ)𝑠, 𝓂 ∈ ℳ 

𝜀 , 𝜐𝑖 ∈
𝒦[𝒟𝑝] , 𝓀 ∈ 𝒦𝒟. 
 
The differential 𝛿: 𝛽(ℒ)𝑠

       
→ 𝛽(ℒ)𝑠−1 and the 

argument 𝑓: 𝛽(ℒ)
       
→ ℳ𝒟 

𝜀  ⊗𝒦[𝒟𝑝 ]𝒦𝒟 written as: 
𝛿[𝓂[𝜐1|𝜐2… |𝜐𝑠]𝓀]
= 𝓂𝜐1[𝜐2|𝜐3| … |𝓀

+∑(−1)𝑖𝓂[𝜐1|… |𝜐𝑖−1|𝜐𝑖𝜐𝑖+1|𝜐𝑖+2| … |𝜐𝑠]𝓀

𝑠−1

𝑖=1

+ (−1)𝑠𝓂[𝜐1|… |𝜐𝑠−1𝜐𝑠]𝓀.                                   (10) 
 
and  𝑓[𝜐1| … |𝜐𝑠]𝓀 = 0,     𝑓(𝓂[]𝓀) = 0.   
 
Also, the maps 𝛿 and 𝑓 can be defined for 𝜁 in the 
similar way. 
 
As a reminder, the differential 𝛿 for ℒ seems to be 
the left 𝒦[𝒟𝑝]-module homomorphism, with  𝛿𝑆 +
𝑆𝛿 = 1 − 𝜎𝑓, where 𝜎 is the homomorphism as: 
𝜎:𝒦𝒟

        
→  𝛽(𝜁)  , and  𝑆: 𝛽(𝜁)𝑠

        
→  𝛽(𝜁)𝑠+1, 

is assumed by the forms: 
  𝜎(𝓀) = []𝓀 ⊗ [],      𝑆(𝜐[𝜐1| … |𝜐𝑠]𝓀) = 𝜐[𝜐1| … |𝜐𝑠]𝓀.  
 
Obviously, in the complex 𝛽(ℓ)𝑠
        
→  ℳ𝒟 

𝜀
⊗

𝒦[𝒟𝑝]
𝛽(𝜁), there is the differential 

𝛿 = 1⊗
𝒦[𝒟𝑝]

𝛿. 

 
From [9], we have the next: 

𝐻𝑜𝑚𝒦[𝒟𝑝](𝛽(𝜁), ( ℳ𝒟 
𝜀 ))⋆ = (𝛽(𝜁))⋆

= 𝐻𝑜𝑚𝒦[𝒟𝑝](𝛽( ℳ𝒟 
𝜀 ),𝒦[𝒟𝑝], (𝒦𝒟)⋆) 

 
Then,  
ℋ𝒟𝑚(𝒜) 𝜀
 = 𝐸𝑥𝑡𝒦[𝒟𝑝]

𝑚 ( ℳ𝒟 
𝜀  , (𝒦𝒟)⋆) =

ℋ𝑚𝛽(ℒ)⋆).                                                          (11) 

 
Assume the triples ℒ =

(( ℳ𝒟 
𝜀 ),𝒦[𝒟𝑝],𝒦𝒟)and 𝜁 =

(( ℳ̂𝒟 
𝜀 ), �̂�[𝒟𝑝], �̂�𝒟)  and ruminate the 

product  𝛤: 𝛽(ℒ ⊗ 𝜁)
        
→  𝛽(ℒ) ⊗ 𝛽(𝜁).  

Describe on 𝛽(ℒ) such that a construction of 
associative algebra through multiplication  
∆̃= 𝛤𝛽 ( ∆𝒟 

𝜀  , ∆𝒦[𝒟𝑝] , ∆𝒦𝒟) : 𝛽(ℒ)
        
→ 𝛽(ℒ) ⊗ 𝛽(ℒ) and 

on a complex (𝛽(ℒ))⋆ the next multiplication: 
(𝛽(ℒ))⋆⊗ (𝛽(ℒ))⋆

    
→ (𝛽(ℒ) ⊗ 𝛽(ℒ))

⋆

 (∆̃)⋆  
→   (𝛽(ℒ))⋆.  (12) 

 
The following lemma is simply confirmed by 

applying the standard methods of the homological 
𝒜∞-algebras. 
 
3.1  Lemma  
By assuming that 𝜂 is a subgroup of a symmetrical 
group 𝜉𝓇 and ℰ seems to be the 𝒦[𝜂]-free resolution 
𝒦[𝜂]-module 𝒦 such ℰ0 = 𝒦[𝜂] through 𝓋0 the 
generator of  𝒦[𝑚], since  [ℰ ⊗ 𝛽(ℒ)]𝑠 =
∑ ℰ𝑖⊗𝛽𝑗(ℒ)𝑖+𝑗=𝑠 , the module ℰ ⊗ 𝛽(ℒ) is 
graded. 

Then the graded 𝒦[𝑚]complexes exist with the 
next conditions of the homomorphism Λ: ℰ ⊗ 𝛽(ℒ)
        
→  𝛽(ℒ)⊗𝓇 such as:  
(i)  𝛬(ℯ ⊗ 𝒷) = 0,   𝒷 ∈ 𝛽(ℒ)0  and  ℯ ∈ ℰ𝑖 , 𝑖 > 0. 
(ii) 𝛬(𝓋0⊗𝒷) = ∆̃⊗𝓇(𝒷), 𝑖𝑓 𝒷 ∈
𝛽(ℒ),   ∆̃⊗𝓇: 𝛽(ℒ)

         
→  𝛽(ℒ)⊗𝓇. 

(iii) The map 𝛬 for 𝛽(ℒ) is the homomorphism of 
the left  𝒦[𝒟𝑝]-module, as  𝒦[𝒟𝑝] works on ℰ
⊗ 𝛽(ℒ) through the relation  𝒦(ℯ ⊗ 𝒷)ℯ ⊗𝓀𝒷.  
(iv)  𝛬(ℯ𝑖⊗𝛽(ℒ)𝑠) = 0 When  𝑖 > (𝓇 − 1). 
 

Additionally, each pair of homomorphisms with 
similar properties has  𝒦[𝜂]-homotopy. Now, give 
the 𝒦[𝒟𝑝]-homomorphism Ω the following 
definition: 
Ω: ℰ ⊗ (𝛽(ℒ)⋆)

⊗𝓇
         
→  𝛽(ℒ)⋆, since;  

Ω(ℯ ⊗ 𝓍)(ℓ) = 𝔅(𝓍)𝛬(ℯ ⊗ ℓ), ℯ ∈ ℰ, 𝓍 ∈
(𝛽(ℒ)⋆)

⊗𝓇𝑎𝑛𝑑 ℓ ∈ 𝛽(ℒ). 
𝔅: (𝛽(ℒ)⋆)

⊗𝓇
         
→  (𝛽(ℒ)⊗𝓇)⋆, is a homomorphism 

that is trivial.  
 

Proof:  Now, the operator in ℋ(𝛽(ℒ)⋆) will be 
defined. In lemma (3.1), considering  𝒦 = 𝒵/𝒫. 
Assume that ℰ has the normal 𝒦(𝒵/𝒫)-free 
resolution. Here, the free 𝒦(𝒵/𝒫) -module using 
the generator 𝓋𝑖, denoted as ℰ𝑖 for 𝑖 ≥ 0. Assuming 
that the graded  ℰ𝑖 = ℰ−𝑖 remains the free 𝒦(𝒵/𝒫)-
module using the generator 𝓋−𝑖.  
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Letting 𝒶 ∈ ℋ𝓆(𝛽(ℒ)⋆ and define the 
homomorphism: 𝔑𝑖:ℋ𝓆(𝛽(ℒ)⋆)

         
→  ℋ𝓅𝓆−𝑖(𝛽(ℒ)⋆ 

as 𝔑𝑖(𝒶) = Ω⋆(𝓋−𝑖⊗𝒶𝓅), 𝑖 ≥ 0.  
 
Now, The Steenrod operator 𝒫𝑖 defined with the 
operator ℛ𝑖, as follows: 

1) If 𝓅 = 2 then,  𝓅𝑠(𝒶) = 𝔑𝑞−𝑠(𝓍) ∈

ℋ𝓆+𝑠(𝛽(ℒ)⋆), since 𝔑𝑖 = 0 if  𝑖 < 0. 
2) If 𝓅 > 2 then, 

𝓅𝑠(𝒶) = (−1)
𝑠𝛾(−𝓆)𝔑(𝓆−2𝑠)(𝓅−1)(𝒶) ∈

ℋ𝓆+2𝑠(𝓅−1)(𝛽(ℒ)⋆), 
𝔅𝓅𝑠(𝒶) = (−1)

𝑠𝛾(−𝓆)𝔑(𝓆−2𝑠)(𝓅−1)−1(𝒶) ∈

ℋ𝓆+2𝑠(𝓅−1)+1(𝛽(ℒ)⋆),    
where 𝔑𝑖 = 0 and ℓ = 0 𝑜𝑟1 and 
𝛾(−𝓆) = (−1)𝒿(𝓂𝐼)ℒ,𝓂 =

𝓅−1

2
  if  𝓆 = 2ℐ − ℓ 

, 𝑖 < 0. 
 

3.2  Theorem  
Given that  𝒦 = 𝒵/𝒫 and ℳ is the commutative 
𝒦-infinity algebras, so the next homomorphisms 
"Steenrod map" defined for the dihedral homology 
group ℋ𝒟(ℳ)𝜀 

   as: 
(i) 𝒫𝑖: ℋ𝒟𝑠(ℳ)𝜀 

 → ℋ𝒟𝑠+𝑖(ℳ)𝜀 
 , if 𝓅 = 2,  

(ii) 𝒫𝑖: ℋ𝒟𝑠(ℳ)𝜀 
 → ℋ𝒟𝑠+2𝑖(𝓅−1)(ℳ)𝜀 

 , and 
𝔅𝒫𝑖: ℋ𝒟𝑠(ℳ)𝜀 

 → ℋ𝒟𝑠+𝑖+2𝑖(𝓅−1)(ℳ)𝜀 
  if 

𝓅 > 2. 
 
The following characteristics apply to the 
operators 𝒫𝑖 and 𝔅𝒫𝑖 : 

1) {   
𝒫𝑖| ℋ𝒟𝑠(ℳ)𝜀 

 = 0, 𝑖𝑓 𝓅 = 2, 𝑖 > 𝑠,

𝒫𝑖| ℋ𝒟𝑠(ℳ)𝜀 
 = 0, 𝑖𝑓 𝓅 > 2, 2𝑖 > 𝑠,

𝔅𝒫𝑖| ℋ𝒟𝑠(ℳ)𝜀 
 = 0, 𝑖𝑓 𝓅 > 2, 2𝑖 ≥ 𝑠,

 

2)  𝒫𝑖(𝒶) = 𝒶𝓅, 𝑖𝑓 𝓅 = 2, 𝑖 = 𝑠, 𝑜𝑟 𝓅 >
2 𝑎𝑛𝑑 2𝑖 = 𝑠, 

3)  𝒫𝒿 = ∑𝒫𝑖⊗𝒫𝒿−𝑖 and  𝔅𝒫𝒿 = ∑𝔅
𝒫𝒿−𝑖 +𝒫𝑖⊗𝒫𝒿−𝑖. 

4)  The next relations of Adam are satisfied by the 
operators 𝒫𝑖 and 𝔅𝒫𝑖: 
 (a) If 𝓎 < 𝑝𝑏 and 𝓅 ≥ 2, we have:  
𝔅𝛾𝒫𝓎𝒫𝒷∑(−1)𝓎+𝑖(𝓎 − 𝓅𝑖 , (𝓅 − 1)𝒷 − 𝓎 + 𝑖

𝑖

− 1).𝔅𝛾𝒫𝓎+𝒷−𝑖𝒫𝑖 
 
Since 𝛾 = 0 𝑜𝑟 1 𝑓𝑜𝑟 𝓅 = 2, also 𝛾 = 1 𝑓𝑜𝑟 𝓅 > 2 
and for any two integers 𝑖 and 𝒿, there exist: 

(𝑖, 𝒿) = [

(𝑖, 𝒿)!

𝑖!, 𝒿!
,      𝑖𝑓     𝑖 ≥ 0 , 𝒿 ≥ 0,

    0          𝑖𝑓     𝑖 < 0 , 𝒿 < 0,

                        

(b) If  𝓎 < 𝑝𝑏, 𝑝 = 2 𝑎𝑛𝑑 𝛾 = 0 𝑜𝑟 1 , then: 

𝔅𝛾𝒫𝓎𝒫𝒷 = (1 − 𝛾)∑(−1)𝓎+𝑖(𝓎

𝑖

− 𝓅𝑖 , (𝓅 − 1)𝒷 − 𝓎 + 𝑖
− 1).𝔅𝒫𝓎+𝒷−𝑖𝒫𝑖

−∑(−1)𝓎+𝑖(𝓎 − 𝓅𝑖
𝑖

− 1, (𝓅 − 1)𝒷 − 𝓎
+ 𝑖).𝔅𝛾𝒫𝓎+𝒷−𝑖𝔅𝒫𝑖. 

 
By noted that, the operators 𝔅0𝒫𝑠 and 
𝔅1𝒫𝑠 represent, respectively, 𝒫𝑠 and  𝔅𝒫𝑠. 
Proof: By assuming that the triple ℭ = (ℛ,ℳ,𝒯), 
when ℳ is the commutative 𝒜∞-algebras for 𝒦 =
𝒵/𝒫, such  𝒯 and ℛ are the left and the right 
commutative ℳ-algebras, respectively. Because of 
the explanation above and taking into consideration 
the triple ℒ = (( ℳ𝒟 

𝜀 ),𝒦[𝒟𝑝],𝒦𝒟), we get that 
𝒦[𝒟𝑝] is the commutative 𝒜∞-algebras over 𝒦 =

𝒵/𝒫, ℳ𝒟 
𝜀  and 𝒦𝒟, respectively, the left and right 

commutative 𝒦[𝒟𝑝]-algebras and 
hence ℋ((𝛽(ℒ)⋆) = ℋ𝒟(ℳ)𝜀 

 . 
 
 
4  Conclusion 
In our paper, we introduced and studied another 
definition for the Steenrod operator for dihedral 
homology of 𝒜∞-algebras. It is shown by applying 
a tensor product of the group of symmetry-free 
resolution, besides the normal 𝒜∞-algebras 
resolution by the dihedral group and does sporadic 
Steenrod operation computations and obtains a little 
approximation. 
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