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Abstract: - This paper presents a model-based predictive control for an intermittently aerated bioreactor of a 

medium-sized wastewater treatment plant. The main objective of the proposed method is to develop an 

intermittent aeration sequencing control strategy to minimize the aeration system energy consumption, with a 

subscription to the EU effluent standards and the plant operating constraints. A multilayer control system with 

two levels is implemented. The optimization level uses a model predictive control algorithm to determine the 

optimal value for the aeration fraction of the aeration cycle. The lower layer provides a feedback control loop 

of the bioreactor dissolved oxygen and secures intermittent aeration sequencing. The obtained aeration 

sequence guarantees that the effluent fulfills the requirements following regulatory standards for wastewater 

discharged. The control system demonstrates good performances for both setpoint tracking and disturbance 

rejection. Important energy savings are also obtained when comparing the developed control strategy to 

traditional control systems based on a pre-determined aeration sequence. 
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1  Introduction 
According to the United Nations, it is expected that 

by the year 2050, six billion people will experience 

clean water scarcity, [1]. Droughts and floods 

brought on by climate change will worsen, further 

disrupting the water supply and resulting in 

contaminating events that might worsen public 

health and disrupt human society. Maintaining a 

clean and safe environment and promoting 

community health depend heavily on the efficient 

treatment and management of municipal and 

industrial wastewater. It is crucial that wastewater 

treatment plants (WWTPs) meet the standards for 

the quality of the water they discharge into the 

environment, [2], [3]  

The biological treatment, which is part of most 

WWTPs, uses the activated sludge process (ASP) as 

its primary technology. The ASP provides high-

level reliability, flexibility, cost-effectiveness, and 

capacity to achieve high-quality treated wastewater. 

However, the activated sludge process is 

particularly extremely complex, nonlinear, difficult 

to control, and requires a great consumption of 

energy. The development of accurate models for 

control algorithm design has been the subject of 

several studies, [4], [5]. Recent studies have also 

focused on developing various control methods as 

well as predictive [6], [7], [8], fuzzy [9], adaptive 

[10], [11], or fractional order PID control [12], [13]. 

Regretfully, this results in significant energy usage. 

Thus, optimizing energy efficiency is one of the key 

objectives for the WWTP, [14], [15], [16]. 

The recently increased interest in intermittent 

aeration systems relatively into a conventional 

multi-zone scheme is adopted by worldwide 

researchers due to its excellent efficiency in 

nitrogen removal and notable diminution of 

consumed energy, especially regarding medium and 

small size wastewater treatment plants. Alternating 

aeration systems are based on the same 

configuration as conventional activated sludge 

processes, using a single bioreactor, whereas 

nitrification and denitrification are obtained 

alternatively, the two phases being separated 

chronologically and not spatially. A salient 

characteristic of the alternating aeration-activated 

sludge process is its remarkable control potential 

which makes it appropriate for automatic control 

and improvement of operating costs. However, 

despite their widespread use, a large number of 
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alternating aeration-activated sludge processes are 

still operated based on a pre-established air-on/air-

off sequence, where the period of each phase 

remains unchanged, [17]. More efficiency of the 

alternating approach can be obtained by specifying 

switching on and switching off conditions based on 

the online measurements from the process. The 

proposed control strategies based on pH 

measurements [18], [19], online oxygen 

requirements (OR) estimation [20], effluent 

ammonium concentration measurements [18], [21], 

and oxidation-reduction potential (ORP) [22] as 

online control variables, can flexibly control the air-

on/air off phases durations. To prevent extended air-

on or air-off phase durations, completing strategies 

have been proposed. Maximum and minimum limit 

values were settled [21] for both aeration total cycle 

time and aeration fraction. Maximum dissolved 

oxygen concentration value, limits of air-on and air-

off phase durations, and minimum oxidation-

reduction potential value were settled to improve the 

aeration process management, [22].  

Optimization and advanced control strategies 

are being developed to improve conventional 

resources in terms of both effectiveness and 

efficiency. An interesting approach is to determine 

air-on/air-off phase durations minimizing the energy 

consumed while preserving the effluent constraints 

by using dynamic optimization, [23], [24], [25]. An 

alternative method to improve the alternating 

aeration-activated sludge process performances 

taking into account the abovementioned problems is 

to use a receding horizon model based predictive 

control (MBPC) technique, [26], [27]. 

The purpose of this paper is to develop and 

evaluate the benefits of a hierarchical control 

system, with a higher layer implementing the 

optimization strategy and a lower layer containing 

the process level control loops and alternating 

aeration/non-aeration sequencing system. The main 

contribution of the hierarchical control strategy 

proposed in this paper is the possibility of exploiting 

the benefits of predictive control to improve process 

performance. The MBPC aeration strategy 

accomplished by the higher layer guarantees that the 

WWTP fulfills the effluent requirements and 

achieves significant energy savings. MBPC 

techniques have good disturbance rejection 

capabilities and are robust against unknown and 

variable time delays. 

The paper has the following structure: the next 

section describes the design of a municipal 

wastewater treatment plant and the mathematical 

model of the ASP process. Section III presents the 

optimization strategies and the predictive control 

algorithm. Simulation results are presented and 

analyzed in Section IV and the last section outlines 

the conclusions. 

 

 

2 Plant Description and Simulation 

 Platform 
 

2.1 Plant Structure 
The wastewater treatment plant considered in this 

study is a municipal WWTP (max. flow - 4500 

m3/day), designed for 20 000 population-equivalent. 

A plant for wastewater treatment usually includes 

three sections: the primary treatment, used to reduce 

large pollutants and suspended solids, a secondary 

stage which uses biological processes to further 

purify wastewater and tertiary treatment, used to 

improve the effluent quality.  

Biological treatment is the most important 

process used in wastewater treatment plants. The 

frequently used procedure for biological treatment is 

activated sludge technology. This work focuses on 

the biological treatment stage shown in Figure 1. 

The biological treatment section is designed as two 

tanks disposed of as circular rings. The secondary 

settler provides the inner ring, while the bioreactor 

tank is represented by the outer cylindrical tank.  

 
Fig. 1: Biological treatment process schematic 

configuration 

 

The bioreactor aeration is controlled alternately 

for nitrification and denitrification by turning the 

blowers on and off. The bioreactor utilizes 

submersible mixers in order to maintain perfect 

mixing of its contents during the anaerobic phase. 

The blowers, which have a maximum aeration flow 

Qmax = 1380 m3/h and can operate at varying 

airflows, provide the necessary aeration flow to the 

biological treatment tank. In the secondary settler, 

following the bioreactor, the clean water from the 

settler's top will overflow into the effluent pumping 

station. The settled sludge is returned to the 

bioreactor by recirculation. The bioreactor volume 

is 3242 m3 while the secondary settler has a 2048 m3 

volume. Usually, the aeration system is controlled 

based on a predetermined air-on/air-off duration 

with a total aeration cycle duration of 4 hours. 
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2.2 Mathematical Model and Simulation 

 Platform 

The Benchmark Simulation Model no. 1 (BSM1) 

[5], a well-known simulation platform, developed to 

evaluate different control methods, was used to 

simulate the biological treatment process. The 

BSM1 plant layout is composed of a group of 

anoxic reactors, aerobic reactors, and a secondary 

settler. The dynamic model describing the biological 

treatment process is based on two models: (i) for the 

simulation of bioreactors, the Activated Sludge 

Model No 1 (ASM1) [4], and (ii) for the simulation 

of the transfer between the various layers from the 

settler, the double exponential settling velocity 

model. Ten layers are used to model the settler. The 

modeled plant is designed to extract nitrogen from 

wastewater by means of nitrification as well as 

denitrification processes. Denitrification occurs in 

the anoxic tanks, whereas nitrification occurs in the 

aerobic tanks. 

The BSM1 simulation platform mentioned 

before has been modified to accurately describe the 

dynamic of the activated sludge process for the 

WWTP considered in this work. Therefore, the 

internal recirculation and several bioreactors were 

eliminated from the standard BSM1 model. 

However, the model retains the biological reactor 

tank, alternatively operated with anoxic and aerated 

phases, chronologically alternated, the secondary 

settler and the primary recirculation.  

 
 

Fig. 2: Modified Benchmark Simulation Model 1 

 

To develop the bioprocess model, the Activated 

Sludge Model no. 1 has been used. Eight basic 

processes and thirteen state variables are used to 

describe the biological behavior of the bioreactor. 

The state variables are divided into carbon-based 

components, nitrogen-based components, dissolved 

oxygen concentration, and alkalinity. The latter does 

not affect the other processes of the model and is 

only used as an indicator. Figure 2 presents the 

block diagram for the Simulink model that was 

derived from BSM1. To accurately represent the 

real plant characteristics, the model stoichiometric 

parameters as well as the model kinetic parameters 

and model initialization parameters are adjusted in 

accordance with the model calibration described in 

[28]. 

Several changes were made for the modeling of 

the blowers and aeration system to be as close as 

possible to the actual process. To control the 

bioreactor dissolved oxygen concentration, the 

transfer coefficient KLa is used in BSM1. However, 

since the real plant cannot use this variable, a new 

block is designed to transform the aeration flow rate 

(which is later utilized as the manipulated input of 

the bioreactor) into KLa.  

To maintain the bioreactor's alternating phases 

for nitrification and denitrification, the blowers, 

controlled by the intermittent aeration sequencing 

system operate by switching ON-OFF. A PID 

controller at the process level is employed to control 

the dissolved oxygen concentration (DO) in the 

bioreactor at the setpoint value during the aerobic 

phase. 

 

 

3 Optimization Strategy and Control 

 Algorithm  
 

3.1 Optimization Strategy 
Only one bioreactor, in which the aerobic and 

anoxic phases alternate by having to start and stop 

the blowers, is required for the WWTPs which use 

intermittent aeration processes. By arranging the 

two phases in chronological order, nitrification and 

denitrification occur within a period known as the 

aeration cycle. As a result, the aeration cycle (TA = 

the total time of the aeration cycle) consists of an 

aeration time (TAN = air-on interval for 

nitrification) during which nitrification is permitted 

to continue, and an anoxic time (TAD = air-off 

interval for denitrification) during which 

denitrification occurs (TA = TAN + TAD). 

Additionally, the aeration duty  cycle, or aeration 

fraction f, is added and may be calculated as f = 

TAN / TA. 

 The ratio between the total aeration cycle time 

and the hydraulic detention time of the bioreactor is 

determined using a particular parameter called the 

cycle time ratio (CTR). 
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An important characteristic of the alternating 

aeration method is its control flexibility, making it 

appropriate for the optimization of operational costs. 

The control method developed in this work 

seeks to optimize the process operation and improve 

the control system’s performance. 

To decrease pollution by discharging in the 

effluent, the optimization system uses a predictive 

algorithm to control the alternate aeration system 

operation. However, an analysis of the energy 

consumption distribution at the WWTP level 

indicates that the aeration system's energy 

consumption accounts for almost 60% of the total 

energy consumed. 

This implies that implementing the developed 

control method may help the process become more 

energy efficient. Figure 3 (Appendix) describes the 

control system as a two-level hierarchical structure: 

the level of the local process control loops and the 

optimization level which uses a model-based 

predictive control (MBPC) method to generate the 

control of sequencing aeration/non-aeration system. 

At the process control level, a local control loop 

using a Proportional-Integral-Derivative (PID) 

control algorithm and the aeration sequencing 

system with a variable aeration fraction are 

implemented. The local control loop performs a 

fixed setpoint control of the bioreactor dissolved 

oxygen concentration at a fixed reference value 

(DOref) set by the operator and an aeration fraction 

value quantified by the optimization level.   

The predictive control algorithm is designed for 

one input variable, the total effluent nitrogen 

concentration for which the reference value must be 

specified. The predictive control algorithm has one 

output variable, the coefficient of the aeration 

fraction, f . 

 

3.2 GPC Algorithm  
Different predictive control techniques were 

proposed. However, all MBPC algorithms compute 

the control actions vector using optimization of 

some cost functions. The Generalized Predictive 

Controller (GPC) is one of the most important 

design methods of Model-Based Predictive Control. 

The standard GPC design uses a linear model of the 

process, CARIMA - Controlled Auto-Regressive 

Integrated Moving-Average, and a quadratic cost 

index for the control law synthesis, using an 

incremental approach (the actual value of control 

output increment - Δu- is computed). This 

incremental realization provides offset-free 

operation in closed-loop systems. 

The biological treatment process is the most 

energy-consuming process in the WWTP. An 

important approach in designing the optimization 

level proposed control strategy is the 

reparameterization of the cost function in the 

predictive algorithm to consider the energy 

consumed for the aeration process. This could use 

the fluctuation in the operating conditions of the 

plant to achieve important energy savings. Since the 

aeration fraction is the manipulated variable 

determined by the predictive algorithm, to minimize 

the algorithm output and not its variations the 

reparametrized cost index of the control algorithm 

must contain the output u, rather of the output 

increment Δu. A positional implementation of the 

predictive algorithm, based on a positional form of 

the GPC cost function will be obtained. 

Consider the following modified cost function: 







1

0

2
2
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2 )()]()([
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Nj
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where: 

- yr –represents the future setpoint sequence, 

- N1 - the minimum prediction horizon,  

- N2 - the maximum prediction horizon,  

- Nu - the control horizon,  

- ρ - the control output weighting coefficient.  

 

 In this paper the cost function presented in (1) 

and the CARIMA linear process model are 

considered: 

𝐴 (𝑞−1) ⋅ 𝑦 (𝑡) = 𝐵(𝑞−1) ⋅ 𝑢(𝑡 − 𝑘) + 𝐶(𝑞−1)𝑒(𝑡)   
(2) 

 

Thus, the minimization of the cost function (1) 

when the controller output is replaced by u(t) = u(t-

1) + Δu(t) where u(t-1) is known (u (t-1) = u') 

results to: 

 f(Gu = uuuu + )y-(y)y-(y=J
T

r

T

r
)'()'(

)'()'( uuuu+)y-e+F+(Gu)y-e+
T

r

T

r
      

(3) 

with y, u, f and e vectors of form: 

𝑦 = [𝑦(𝑡 + 1), . . . , 𝑦(𝑡 + 𝑁)]𝑇 ,     N x 1 

𝑢 = [𝑢(𝑡), … , 𝑢(𝑡 + 𝑁 − 1)]𝑇 ,     𝑁 x 1                (4) 

 

𝑓 = [𝑓(𝑡 + 1),… , 𝑓(𝑡 + 𝑁)]𝑇 ,     N x 1 

𝑒 = [𝐸1(𝑞
−1) ⋅ 𝑒(𝑡 + 1), … , 𝐸𝑁(𝑞−1)𝑒(𝑡 + 𝑁)]𝑇 , 

                                                                               N x 1 
and 

𝑓(𝑡 + 1) = [𝐺1(𝑞
−1) − 𝑔0] ⋅ 𝑢(𝑡) + 𝐹1𝑦(𝑡) 

𝑓(𝑡 + 2) = [𝐺2(𝑞
−1) − 𝑞−1𝑔1 − 𝑔0] ⋅ 𝑢(𝑡 + 1)

+ 𝐹2(𝑞
−1)𝑦(𝑡) 

…. 
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𝑓(𝑡 + 𝑁) = [𝐺𝑁(𝑞−1) − 𝑞−(𝑁−1)𝑔𝑁−1−. . . −𝑔0]

⋅ 𝑢(𝑡 + 𝑁 − 1) + 𝐹𝑁(𝑞−1) ⋅ 𝑦(𝑡) 
The polynomial Gj can be determined from a 

Diophantine equation: 

𝐺𝑗(𝑞
−1) = 𝐸𝑗(𝑞

−1) ⋅ 𝐵(𝑞−1)     (5) 

 

1 = 𝐸𝑗(𝑞
−1) ⋅ 𝐴(𝑞−1) + 𝑞−𝑗 ⋅ 𝐹𝑗(𝑞

−1)     (6) 

 

where j represents the prediction interval, N1=0 and 

N=N2 . 

 

Taking in to account the derivative of the cost 

function regarding to Δu: 





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       ]')( Iu)y-(fG+uI+GG2E[=
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this is zero for: 

𝛥𝑢 = (𝐺𝑇 ⋅ 𝐺 + 𝜌 ⋅ 𝐼)−1 ⋅ [𝐺𝑇(𝑦𝑟 − 𝑓) − 𝜌 ⋅ 𝐼 ⋅ 𝑢′]      
(7) 

 

where G is a lower triangular matrix of dimension N  

x N : 

𝐺 =

[
 
 
 
 

𝑔0 0 0 . . . 0
𝑔1 𝑔0 0 . . . 0
𝑔2 𝑔1 𝑔0 . . . 0
. . . . . . . . . . . . . . .

𝑔𝑁−1 𝑔𝑁−2 𝑔𝑁−3 . . . 𝑔0]
 
 
 
 

          (8) 

 

For the controller output vector Δu, only the 

first element Δu (t) have to be computed since it is 

the increment of the controller output at time t: 

𝛥𝑢(𝑡) = 𝛼𝑇(𝑦𝑟 − 𝑓) − 𝛽𝑇𝑢′  (9) 

 

were  

- αT=[α1...αN] express the first row of the 

matrix (G TG+ρI) 1 G T;  

-  βT = [β1 ,... βNu] express the first row of the 

matrix (GTG + ρI)-1ρI. 

 

Note that the Diophantine equation and 

determination of Ej and Gj polynomials has the same 

expression as that for the GPC algorithm in 

incremental form, and the equation for the controller 

output has a different form given by the equation 

(9). 

 

 

4   Results  
For this work, the process model and the control 

strategies proposed are implemented in MATLAB 

Simulink. The considered values of the 

stoichiometric and kinetic parameters are those 

determined after calibrating the model in [30]: 𝑌𝐴= 

0.24, 𝑌𝐻= 0.7, 𝑓𝑃= 0.08, 𝑖𝑋𝐵= 0.086, 𝑖𝑋𝑃= 0.06, 

𝜇𝐻= 4.0, 𝐾𝑆= 20.0, 𝐾𝑂,𝐻= 0.20, 𝐾𝑁𝑂= 0.50, 𝑏𝐻= 

0.3, 𝜂𝑔= 0.8, 𝜂ℎ= 0.4, 𝑘ℎ= 1.7, 𝐾𝑋= 0.017, 𝜇𝐴= 

0.475, 𝐾𝑁𝐻= 1.0, 𝑏𝐴= 0.05, 𝐾𝑂,𝐴= 0.4, 𝑘𝑎= 0.054. 

 

For the steady-state conditions, daily average 

values were considered for the inputs related to the 

influent (flow, concentrations, alkalinity). These 

values are: SI=30, SS=50, XI=35 XS=146, XB,H=20.1, 

XB,A=0, XP=0, SO=0, SNO=1.5, SNH=26, SND=7.3, 

XND=11, SALK=7, Q=65. All the values are 

represented in g COD/m3, only the flow is 

represented as m3/h and SALK , the pH of the influent 

is represented in mol/m3. 

The aeration flow rate W is controlled by a PID 

controller to obtain a dissolved oxygen 

concentration of 1.5 mg COD/l in the bioreactor at a 

value of 0.5 of the aeration fraction f. 

Total effluent nitrogen (Ntot,e) was calculated with 

the following formula: 

𝑁𝑡𝑜𝑡,𝑒 = 𝑆𝑁𝐻,𝑒 + 𝑆𝑁𝑂,𝑒+𝑆𝑁𝐷,𝑒 +𝑋𝑁𝐷,𝑒 + 𝑖𝑋𝐵 ∙∙
 (𝑋𝐵,𝐻,𝑒 + 𝑋𝐵,𝐴,𝑒)+𝑖𝑋𝑃 ∙ (𝑋𝑃,𝑒 + 𝑋𝐼,𝑒)         (10) 

 

To handle with the EU WWTP effluent 

regulations on organic and nitrogen concentrations, 

maximum residual concentrations are imposed. The 

standards in terms of chemical oxygen demand 

(COD) and biochemical oxygen demand (BOD5) 

are given by: CODe,max = 125 mg /l, BOD5 e,max = 25 

mg /l 

The limit value for total nitrogen is 15 mg/l for 

WWTP with a capacity between 10 000 and 100 

000 persons equivalent. In this work a limit value of 

10 mg/l is assumed, aiming to make the plant more 

robust: Ntot,e,max = 10 mg/l 

The maximum of the residual concentrations 

fixed for both COD and BOD5 concentrations are 

easily satisfied for the WWTP considered in this 

paper, as a main part of the biodegradable organic 

matter is consumed during the denitrification stages. 

It was checked, and these requirements were 

fulfilled in all the presented simulations. Based on 

these considerations, only the constraints on Ntot,e,max 

were considered in the optimization problem 

It is considered that the total aeration cycle time 

of 0.2 days is an optimal value for this parameter.  

The process output variable is set to Ntot,e . The 

Ntot,e setpoint was fixed at 9 mg/l. For the GPC 

predictive control algorithm, the following values of 

design parameters are used: N=10, Nu=1, ρ(j)=0.1 

and the sampling time Ts= 0.2 day. 
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To test the performance of the proposed control 

strategies, changes in the influent flow rate and the 

concentration of the pollutants (disturbance 

rejection) were considered.  

 

 
Fig. 4: Changes in the influent flowrate and 

pollutant concentration  

 

The performances regarding the disturbance 

rejection, are presented in Figure 5 and Figure 6. 

Changes in the influent flow rate and pollutant 

concentration according to the profile presented in 

Figure 4 were considered.  

The effluent nitrogen concentrations 

performances regarding the disturbance rejection, 

are presented in Figure 5. It can be observed that 

there are no issues with disturbance rejection in the 

closed-loop system. The maximum limit set for total 

nitrogen (𝑁𝑡𝑜𝑡,𝑒,𝑚𝑎𝑥) is not exceeded during the 

experiment. It can also be observed that during the 

experiment, the total ammonium nitrogen 

concentrations in the effluent (𝑆𝑁𝐻,𝑒) do not exceed 

the maximum limit of 2 mg/l considered in this 

work. 

The manipulated process input (aeration 

fraction) presented in Figure 6 operates within its 

constraint limits (0.25 - 0.75).  

 

 

Fig. 5: Disturbance rejection – effluent nitrogen 

concentrations 

 

 
Fig. 6: Disturbance rejection - manipulated process 

input. 

 

Taking into consideration the aeration flow, the 

blower efficiency, and the discharge pressure, 

electrical energy consumption over a period of 30 

days was determined. Thus, implementing the 

optimization system, an improvement in the process 

efficiency was confirmed, with energy consumption 

decreasing by 9.2%.   

 

 

5   Conclusion 
In this paper, a predictive model-based control 

strategy was developed and implemented to 

optimize and control the aeration system of a 

municipal wastewater treatment plant that is 

alternatively operated by switching on and off the 

aeration. A hierarchical structure of the control 

system with two layers is designed: (i) uses a PID 

controller for the control of the bioreactor dissolved 

oxygen concentration and a sequencing system to 

provide the sequence of the aeration/non-aeration 

phases maintaining the aeration fraction coefficient 

at the value provided by the optimization level; (ii) 

the higher level uses a model predictive control 

algorithm to determine the optimal value for the 

aeration fraction of the aeration cycle. The control 

strategies developed in this work show excellent 

performance in rejecting disturbances in influent 

concentrations and flow, meeting EU effluent 

standards, as well as achieving considerable energy 

savings. Moreover, the aeration fraction is 

maintained within its constraints. 
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Fig. 3:  Hierarchical control system – Schematic Representation 
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