
Mathematical Modeling based on Neural Network Learning for Object

Recognition in Automated Systems

EKATERINA GOSPODINOVAa, DIMITAR NENOV

Department of Electronics, Automation and Information Technologies
Technical University of Sofia

Sliven,
BULGARIA

aORCiD 0000-0001-9083-7135

Abstract: - This paper aims to identify efficient methods of mathematically modeling an automated physical
system using a neural network. Based on the Levenberg-Marquardt method, we built a feed-forward neural
network with the capabilities of a graphics accelerator. The model also sums up and suggests a new neural
network training algorithm with Bayes regularization, Nguyen-Widrow initialization, and the early stopping
and control method. This greatly expands the efficiency of solving problems where knowledge of an
automation system is usable.

Key-Words: - mathematical modeling, neural network, automated object, algorithm, Levenberg-Marquardt,
CUD).

Received: May 27, 2024. Revised: October 29, 2024. Accepted: November 29, 2024. Published: December 31, 2024.

1 Introduction
The relevance of the work is due to the need to
develop programs for the management of automation
systems. Human involvement in their management is
impossible or impractical. These systems include
various computer vision systems, television guidance
systems, aircraft control systems, and others. Their
effectiveness depends on the knowledge they
possess. In addition to being purely empirical, this
knowledge also serves as a heuristic, a set of rules
and recommendations applicable to specific
situations within a particular subject area. The main
criterion for development is autonomy in decision-
making. In other words, the system can only utilize
data gathered from the environment and pre-
programmed rules and algorithms. Developing these
software systems necessitates the resolution of a
class of problems previously handled directly by a
human expert. This includes the object recognition
task. We understand the object as an incomplete
reflection of the natural world's properties. The
reflection gives information about the problem. We
can solve the recognition problem by assigning the
initial data to a specific class, which involves
establishing the object, [1], [2], [3], [4], [5]. These
problems possess the following characteristics: the
impossibility of an algorithmic solution (due to the
poor formalization of the tasks themselves or the
high cost of computer time); inconsistency,

incompleteness, and potential inaccuracy of the
source data; large volumes of data; dynamically
changing data composition; and the decision-making
process, [6], [7], [8], [9].

Programming is not necessary for an automated
system to solve such problems; instead, it requires
training. Radio engineering, radar, and hydroacoustic
systems successfully use the significantly developed
statistical signal detection method against
background interference. Optical and optoelectronic
networks have also utilized these methods. However,
we must still create the theory of fully receiving
optical signals against substantial interference and
make decisions about them, [10], [11], [12], [13].
Neural networks are a mathematical model of the
functioning of biological neural networks—a
structure of nerve cells of a living organism. As in
biology, the essential element of an artificial neural
network is a neuron, [14], [15], [16]. Interconnected
neurons form layers, the number of which can vary
depending on the complexity of the neural network
and the tasks it solves. Neural networks can
generalize, making accurate decisions on previously
unpresented inputs. Neural networks, with their large
number of heuristic algorithms for learning and their
resistance to various fluctuations of the input data,
are the preferred approach for solving certain
problems.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 427 Volume 19, 2024

This work aims to develop efficient methods for
object recognition using neural networks and a
program that implements them. To achieve this, we
must build a neural network and a practical
algorithm for its training. A software package based
on the constructed neural network is also necessary.
We should use parallel computing algorithms,
leveraging the capabilities of graphics accelerators,
to process high-dimensional input data and
accelerate the software's work.

The authors chose the Levenberg-Marquardt
method to solve the problem. Its basis is the classic
Levenberg-Marquardt model, improved by using the
following approaches: We employ Bayesian
hyperparameters in the regularization process and
initialize the neural network parameters using the
Nguyen-Withrow method. The early stopping
method prevents the neural network from losing its
generalization. The enhanced approach led to the
creation of a parallel learning algorithm, leveraging
the computational power of a graphics accelerator,
[17], [18].

2 Ease Model and Methods for Object

Recognition Use
The source of images, in many cases, are the results
of optical scanning of objects in a scattering medium
(for example, in water). Such a scan will result in
noisy images of objects. Therefore, the solution to
the problem of recognizing such images can be
divided into four stages:
1. Formation of a set of reference images;
2. Development and implementation of an algorithm

for object recognition;
3. Adapting the algorithm to real input data;
4. Evaluation of the developed algorithm's

suitability for solving the problem; the algorithm
should recognize noisy images with a high
probability.
We will consider discrete images represented as

a rectangular matrix of pixels.
A=aij, i=1,…,M, j=1,…,N, aij=0,…,255, [19],

[20], [21].
There are two spaces: the feature space C and

the topic space T. The spatial elements of C are n-
dimensional vectors that are feature sets of different
images. The elements of the topic space T are the
images themselves. Thus, object recognition will be
the task of constructing a classification mapping K
of the feature space of the object image C. In the
topic space C→ T. In this work, the classifier
mapping utilizes a feedforward neural network. Let
us introduce the feedforward neural network. In the

quad (σ, θ, T, L), σ is the activation function of the
neuron, θ=(θ1,…,θS)T are the neural network
parameters, T=(Xi, Di), i=() is the training
set, Xi is the vector of input data, Di is the desired
network output, L is the set of neural network layers
and neuron connection rules. Each subsequent layer
is connected to each neuron from the previous one.
The formula can calculate the output of each neuron:

, (1)

Similar to the human brain, a neural network can

acquire knowledge through the use of a training set.
The formula calculates the root mean square error,
which included training error per epoch:

 (2)
where is the j-th component of the network output at
the i-th iteration, is the j-th component of the i-th
desired output, [22].

Within the mathematical model of object

recognition, neural network training is error
minimization. The training set refers to the collection
of feature vectors whose images are known. We refer
to a set as a test set, which aims to evaluate the
constructed mapping. A trained neural network will
then solve the recognition problem by either finding
the corresponding images for each set of features or
determining that such images do not exist, [23], [24].

The Fourier transform can filter the image in the
frequency domain to reduce the distortions caused by
various noises. The following formula expresses
image filtering using the Fourier transform:

 (3)
where If is the image after filtering, I is the original
image, F is the forward Fourier transform, F-1 is the
inverse Fourier transform, and H is a specified filter.

Three filters are implemented, [24]:
 Gaussianfilterforlowfrequencies:

H(u,v)= , (4)
 Gaussianfilterforhighfrequencies:

H(u,v)= , (5)
 Laplaceinthefrequencydomain:

-(, (6)

The Levenberg-Marquardt method was proposed

in [24] and [25] as a method for finding the
minimum of a nonlinear function. Let there be a
sample - a set of pairs Di={xi, yi}, i,…,N of a free
variable x∈X∈Rm and a dependent variable y∈R,
and a given function Y(θ, x), θ∈Θ⊂Rn which is
continuously differentiable in the domain ΘxX. It is

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 428 Volume 19, 2024

required to find such a vector θ of weights that
provides a local minimum of the error function:

 (7)

Thevector F(θ)=[y1-Y(θ, xi),…,yn-Y(θ, xN)T is a

residualvector, andthen ||F((θ)|| istheremainder, and
ED=1/2 (|F((θ)|)2. Then, according to (2), a linear
approximation can be used to evaluate the increasing
function θ+Δθ.

Y= (8)

where J is the Jacobian matrix for the function
Y(θ,x). Such an estimate is valid only in the case
when the discrepancy ||F(θ)|| is small enough, i.e., at
a point closeenough to the minimum. According to
[10], the equation must be solved in order to find:

 (9)

The matrix J may turn out to be intrinsically
degenerate; therefore, Marquard in [9] suggests
introducing the regularization parameter λ≥0:

, (10)
where I is the identity matrix. Also, to keep the
gradient JTF(θ) from having too much of an effect on
the step of the method when looking for the
minimum, it is suggested in [10] to swap out the
identity matrix for the diagonal of the Hessian
matrix:

 (11)

In this paper, an algorithm based on the

Levenberg-Marquardt method is used to train such a
neural network. For example in [25], [26] and [27]
this method has been applied to neural network
training. According to [28], [29] the neural network
can represent the input information as a vector
function of the vector argument, refining the
mathematical model of object recognition.

Y=Y(X, θ), (12)
where X=(x1,…,xn) are inputs, θ=(θ1,…,θs) are
network weights, Y=(y1,…,yp) are network outputs.
We can now express the network error for one epoch
using the following formula:

 (13)

The variable dij represents the desired output of

the jth output neuron for the ith element of the
training set. Let E=(e11,...,e1p,eN1,...,eNp)T be the
residual vector for the neural network. Then:

F(0)=ETE (14)
As demonstrated above, one should look for a

solution to the following equation to increase the
weights of the neural network:

 (15)

This work implemented the training of a neural
network consisting of three layers: input (n neurons),
hidden layer (m neurons), and output (p neurons).
Each layer contains a neuron known as a threshold or
deviation neuron, whose output, in contrast to a
normal neuron, consistently equals one. For a neural
network with one hidden layer, formula (1) takes the
form:

Y=Y(X, , (16)
where W(1) is the weight matrix of the neurons in the
hidden layer, W(2) is the weight matrix of the output
layer, B(1) are the weights of the threshold neurons in
the hidden layer, and B(2) are the weights of the
threshold neurons in the output layer. The elements
of the Jacobi matrix will then take on the following
form:

 (17)

where is the input of the k-th hidden neural layer
and σ' is the derivative of the activation function.

In [30], [31], [32], we obtained a similar form of
the Jacobian matrix's elements.

If θr has a hidden layer neuron weight, θr≡
then:

(18)

where is the output of the kth neuron from the
hidden layer and σ' is the derivative value of the
activation point function. If θr has a neuron weight of
the output layer, θr≡ then

 (19)

If θr has a hidden layer neuron weight,

then

 (20)

If θr has a neuron weight of the output layer,

, then

(21)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 429 Volume 19, 2024

We obtained a similar form of the Jacobian
matrix's elements in [33], [34], [35], [36].

3 The Neural Network Training

 Algorithm Utilizes the Levenberg-

 Marquardt Method
Thus, the neural network training algorithm based on
the Levenberg-Marquardt method will look like this:
Calculate the network error for one epoch using
formula (13);

2. Calculate the elements of the Jacobian matrix
using formulas (18-21);

3. Solve equation (15) and calculate the network
error for the newly obtained network weights.
Proceed to step 5 if the error decreases, and proceed
to step 4 otherwise.

4. Return to the previous values of the network
weights and increase the tuning parameter (typically
increased by a factor of 10). Go to step 3.

5. Accept the obtained network weight values,
reduce the parameter value (typically by ten times),
and transition to a new learning epoch.

This algorithm has significant drawbacks:

1. The algorithm performs poorly when the
training set contains items that significantly differ
from the general population;

2. The algorithm is very sensitive to the choice of
initial weights;

3. When working with large neural networks, the
algorithm consumes a lot of memory, and the need to
invert large matrices at each step complicates the
computational process.

In [37], [38], a method to eliminate the

algorithm's first drawback is proposed and further
developed in [39], [40]. The essence of the method
proposed in these works is the transition from the
search for the minimum point of the root mean
square error calculated by formula (13) to the search
for the minimum of the function expressed by the
formula:

F(Y)=αEθ=βED, (22)
where ED is the network error, Eθ is the sum of
squares of the network weights, and α and β are the
hyperparameters. We use the modified Nguyen-
Widrow method, as proposed in [40], [41], [42],
[43], [44] to eliminate the second drawback, which
involves initializing and transforming the network
weights. We first initialize and uniformly distribute
all random values of the grid in the segment [-1, 1].
Each weight is then normalized. The weights are
transformed:

, (23)

where m and p are the number of neurons in the
current and previous layers, respectively.

The selection of stopping criteria and evaluation

of their effectiveness are crucial to neural network
training. To avoid losses in the neural network and
reduce the number of training epochs, we applied the
early stopping method. This work formulates the
following stopping criteria:

When an error in the test set Eva(t) decreases to a
specific value, we should halt the training.

We select a test set based on the error in the
percentage of correctly recognized items. We can
then express the stopping criterion using the
following formula:

Eva(t) (24)

4 The Results of the Neural Network

 Training
This work uses NVIDIA's CUDA technology to
perform graphics accelerator calculations. The top-
level GPU computational model is an N1xN2xN3
dimensionalgrid. Each block, in turn, consists of
many threads that directly perform calculations. One
block's threads combine to form a three-dimensional
array with dimensions M1xM2xM3. We organize
the strands into groups known as bases. There are six
types of memory in CUDA. Memory types differ in
speed, data availability, and types of data stored.
Papers [45], [46], [47], [48], [49], [50] and [51]
compare the performance of CUDA and the well-
known implementation of the MPI standard,
OpenMP. We conducted a test that simulated an
evolutionary particle system. The test showed that
GPU performance with CUDA was about 13%
higher than CPU performance with OpenMP. For
this purpose, we built a neural network, the input
layer of which contains 64 neurons, the hidden layer
of 6–24 neurons, and the output layer of 6 neurons.
Let the ISet objects be of the same size. Each object
has an image belonging to an SSet topic space.
Various deformations such as rotation, stretching,
and compression do not alter the image of the object.
We took a set of 26 Latin letters and 10 numbers
written in the standard Arial font. We positioned the
objects in the center. Let us have a training set TSet,
each element of which represents a pair (I, S), where
I∈ISet, S∈SSet. It is necessary for each object in
the set ISet to find a corresponding object in the set
SSet using the set TSet. The input layer of the neural

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 430 Volume 19, 2024

network contains 64 neurons; the hidden layer
contains 6–24 neurons; and the output layer contains
6 neurons. We view the output vector as a
representation of a number in a binary number
system. To test the neural network, we created a test
set, or VSet, consisting of 36000 elements. For each
benchmark, we included 100 images, each with 10
different variations. We will assume that the neural
network recognizes an element from the training or
test set if its root mean square error does not exceed
0.3. We did four kinds of calculations to figure out
the best settings for a neural network to solve the
problem: we compared the results of testing a neural
network trained with different training epochs,
different early stopping thresholds, and different
numbers of hidden layer neurons. We also compared
the performance of different neural network sizes
with the best settings when using the GPU and when
using only the CPU. During each training session,
the neural network that underwent the least number
of epochs yielded the best results. Comparison A
demonstrated that training a sample of benchmarks
without noise and with a noise level of 20% yields
the best results. As a result of comparison B, the
most preferred threshold value for early stopping is
92%. Comparison C confirmed that minimizing the
number of neurons in the hidden layer does not
improve recognition quality. A neural network with
9 neurons in the hidden layer demonstrated the best
results. The neural network with the most preferred
parameters is able to recognize noisy images with a
noise level of up to 38% and an error of no more
than 10%, as well as with a noise level of up to 45%
and an error of no more than 20%. The benefits are
shown using comparison D in Table 1 and Figure 1
and Figure 2 in Appendix. A neural network with a
variable number of hidden layer neurons—from 6 to
24—trains on average in 3 steps, with the total
training time measured in seconds.

This means that as the size of the neural network
increases, the acceleration factor increases
significantly when using a graphics accelerator.
Acceleration of learning neural networks achieved in
this work surpasses similar results of other authors.

We created a software package to solve the
image recognition problem. It consists of three main
modules: a module for filtering the object images, a
module for extracting the features of the object
image, and the main module—creating and training
the neural network. The first module filters the
loaded image using a library that allows transferring
Fourier transform calculations to the graphics
accelerator, which significantly speeds up
computations. The module for object image feature
extraction receives the results, processes the images,

and extracts the original data as text files. The
module receives the features, builds a neural
network, and loads training input data from the set
files. Next, the module initializes the weights and
tuning parameters. Each training epoch begins with
the neural network presenting all elements of the
training set, calculating errors and parts of the
Jacobian matrices. After calculating the initial target
value, the algorithm based on the Levenberg-
Marquardt method starts working. The modules
utilize the inverse matrix to solve equation (15), as
recalculating the Bayesian hyperparameters requires
calculating the sum of the diagonal elements of a
matrix inverse of the approximated Hessian matrix.
To find the inverse matrix, we use our own
implementation of the inversion algorithm by
decomposing the original matrix and using the
capabilities of the graphics accelerator. We have
tested the software package on several known
classification problems.

1. Classification of the characteristics of

photovoltaic panels;
2. Classification of sarcoma formations;
3. Classification of viruses causing hepatitis.

Testing has shown that the software is capable of

solving many problems efficiently and significantly
outperforms classical back-propagation neural
networks.

5 Conclusion
This The main result of this work were the
construction of a direct error propagation neural
network, trained by an improved algorithm based on
the Levenberg-Marquardt method. We conducted the
tests using the built-forward neural network and the
capabilities of a graphics accelerator. We have
defined the software package's most preferred
parameters for solving object recognition tasks. We
have successfully solved the practical task of
recognizing noisy images with fairly good results. In
the future, we plan to further develop the software
package and conduct more tests on various objects to
enhance its quality in various fields of science and
technology.

Acknowledgment:

The author would like to thank the Research and
Development Sector at the Technical University of
Sofia for the financial support.
References:

[1] T. J. Andersen and B. M. Wilamowski, “A
Modified Regression Algorithm for Fast One

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 431 Volume 19, 2024

Layer Neural Network Training", World

Congress of Neural Networks, Washington,
USA, Vol. pp. 687-690, 2015.

[2] A. Amir, M. Bagher and A. Hoseinabadi,
“Modified Levenberg-Marquardt Method for
Neural Networks Training”, World Academy

of Science, Engineering and Technology,

Suratgar, Vol. 6, pp.46-48, 2015.
[3] J. Bilski, “Local Levenberg-Marquardt

algorithm for learning feedforwad neural
networks”, Journal of Artificial Intelligence

and Soft Computing Research, Vol 10.4,
pp.299-316, 2020.

[4] D. Foresee and M. Hagan, “Gauss-Newton
approximation to Bayesian learning”, Neural
Networks, International Conference,

Oklahoma City, Vol. 3, pp. 1930-1935, 2017.
[5] M. Hagan and M. Menhaj, “Training

feedforward networks with the Marquardt
algorithm”, IEEE Transactions on Neural

Networks, Vol. 5, pp. 989-993, 2014.
[6] R. Jesús, “Stability analysis of the modified

Levenberg–Marquardt algorithm for the
artificial neural network training”, IEEE

transactions on neural networks and learning

systems, Vol 32.8, pp. 3510-3524, 2020.
[7] J. Kinson, L. Kevin, P. Priddy, P. Keller and

B. David, “Fogel Minimum number of hidden
neurons does not necessarily provide the best
generalization”, Applications and Science of

Computational Intelligence III, Vol. 4055, pp.
11-17, 2022,.

[8] Levenberg and Kenneth, “A Method for the
Solution of Certain Non-Linear Problems in
Least Squares”, The Quarterly of Applied

Mathematics, Vol. 2, pp. 164–168.
[9] Marquardt and Donald, An Algorithm for

Least-Squares Estimation of Nonlinear
Parameters, 2013, SIAM Journal on Applied

Mathematics, Vol. 11, pp. 431–441, 2014,.
[10] M. Kastrati and B. Marenglen, “A State-of-

the-art Survey of Advanced Optimization
Methods, Machine Learning”, Conference:

4th International Conference on Recent

Trends and Applications in Computer Science

and Information Technology, Msida, Malta,
2021.

[11] S. Liang, S. Ruoyu and R. Srikant, “Revisiting
landscape analysis in deep neural networks:
Eliminating decreasing paths to infinity”,
SIAM Journal on Optimization, Vol. 32.4, pp.
2797-2827, 2022.

[12] Bu Zhiqi, Xu Shiyun Xu and Kan Chen, “A
dynamical view on optimization algorithms of
overparameterized neural networks”,

International conference on artificial

intelligence and statistics, PMLR, A Virtual

Conference, 2021.
[13] Li Zhou, “Weak and strong convergence

analysis of Elman neural networks via weight
decay regularization”, Optimization,

Vol.72.9, pp. 2287-2309, 2023.
[14] Liu Wei, “Improved GWO and its application

in parameter optimization of Elman neural
network”, Plosone, Vol 18.7, pp. 288, 2023.

[15] D. MacKay, “Practical Bayesian framework
for backpropagation networks”, Neural

Computation, Vol. 4, pp. 448-472, 2022.
[16] M. Mashor and S. Sulaiman, “Recognition of

Noisy Numerals using Neural Network”,
International Journal of the computer, the

internet and management, Vol. 9, pp. 158-
164, 2021.

[17] A. Pavelka and A.Prochazka, “Algorithms for
initialization of neural network weights”,
Konference MATLAB, Vol. 2, pp. 453–459,
2014.

[18] René Vidal, Zhu Zhihui and Haeffele
Benjamin, “Optimization landscape of neural
networks”, Mathematical Aspects of Deep

Learning, Vol. 1, pp. 200, 2022.
[19] X. Sierra-Canto, F. Madera-Ramirez and V.

Cetina, “Parallel Training of a Back-
Propagation Neural Network Using CUDA”,
IEEE Computer Society, Vol. 1, pp. 307-312,
2020.

[20] Chandrani Singh, A Mathematical Disposition
of Optimization Techniques for Neural
Networks, Era of Artificial Intelligence, CRC,
2023, pp. 121-144.

[21] B. Wilamowski, Computing Gradient Vector
and Jacobian Matrix in Arbitrarily Connected
Neural Networks, IEEE Transactions On

Industrial Electronics, Vol. 55, 2018, pp.
3784-3790.

[22] B. Wilamowski, Y. Chen and A. Malinowski,
“Efficient Algorithm for Training Neural
Networks with one Hidden Layer”, Dept. of

EE, Wyoming University, IJCNN '99, Vol. 3,
pp. 1725-1728, 2021.

[23] Xu Jinhua, Ho Daniel and Y. Zheng, “A
Constructive Algorithm for Feedforward
Neural Networks”, Inst. of Syst. Sci., East

China Normal University, Control

Conference, Vol. 1, pp. 659 – 664, 2022.
[24] Yan Zhiqi, “Adaptive Levenberg–Marquardt

algorithm: A new optimization strategy for
Levenberg–Marquardt neural networks”,
Mathematics,Vol 9.17, pp. 2176, 2021,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 432 Volume 19, 2024

[25] Geraldo de Araújo Moura, “Neural network
using the Levenberg–Marquardt algorithm for
optimal real-time operation of water
distribution systems”, Urban Water Journal,

Vol. 15.7, pp.692-699, 2018.
[26] JarosławBilski, “Fast computational approach

to the Levenberg-Marquardt algorithm for
training feedforward neural networks”,
Journal of Artificial Intelligence and Soft

Computing Research, Vol. 13.2, pp. 45-61,
2023.

[27] Jarosłav Bilski, “Local Levenberg-Marquardt
algorithm for learning feedforwad neural
networks”, Journal of Artificial Intelligence

and Soft Computing Research, Vol. 10.4, pp.
299-316, 2020.

[28] J. Honghoon, P. Anjin and J. Keechul,
“Canberra Neural Network Implementation
Using CUDA and OpenMP”, DICTA,

Computing: Techniques and Applications,

Vol. 1, pp. 155–161, 2023.
[29] N. Nehra, S. Pardeep and K. Divya,

“Artificial neural networks: a comprehensive

review”, Handbook of machine learning for
computational optimizatio, pp. 203-22, 2021.

[30] G. Lan, “Lectures on optimization methods

for machine learning”, H. Milton Stewart
School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta,
GA, 2019.

[31] S. Sra and S. J. Wright, “Optimization for

machine learning”, Mit Press, Paris, France,
2012.

[32] S. Sun, Z. Cao, H. Zhu and J. Zhao, “A
survey of optimization methods from a
machine learning perspective”, IEEE

Transactions on Cybernetics, vol. 50, no. 8,
pp. 3668–3681, 2020.

[33] P. Domingos, “A few useful things to
know about machine learning”,
Communications of the ACM, vol. 55, no. 10,
pp. 78–87, 2012.

[34] A. L. Samuel, “Some studies in machine
learning using the game of checkers”, IBM

Journal of research and development, vol. 3,
no. 3, pp. 210–229, 1959.

[35] I. Kononenko and M. Kukar, “Machine

learning and data mining”, Horwood
Publishing, 2007, DOI:
10.1533/9780857099440.

[36] J. Hu, B. Jiang, L. Lin, Z. Wen and Y. Yuan,
“Structured quasinewton methods for
optimization with orthogonality constraints”,
SIAM Journal on Scientific Computing, vol.
41, pp. 2239–2269, 2019.

[37] J. Pajarinen, H. L. Thai, R. Akrour, J. Peters
and G. Neumann, “Compatible natural
gradient policy search”, Machine Learning,

Vol. 108, pp. 1443-1446, 2019.
[38] F. Roosta-Khorasani and M. W. Mahoney,

“Sub-sampled Newton methods II: local

convergence rates”, arXiv preprint
arXiv:1601.04738, 2016.

[39] P. Xu, J. Yang, F. Roosta-Khorasani, C. R´e,
and M. W. Mahoney, “Subsampled Newton

methods with non-uniform sampling”,

Advances in Neural Information Processing
Systems, pp. 3000–3008, 2016.

[40] R. Bollapragada, R. H. Byrd, and J. Nocedal,
“Exact and inexact subsampled newton
methods for optimization”, IMA Journal of

Numerical Analysis, vol. 1, pp. 1–34, 2018.
[41] L. M. Rios and N. V. Sahinidis, “Derivative-

free optimization: a review of algorithms and
comparison of software implementations”,
Journal of Global Optimization, vol. 56, pp.
1247–1293, 2013.

[42] A. S. Berahas, R. H. Byrd and J. Nocedal,
“Derivative-free optimization of noisy
functions via quasi-newton methods”, SIAM

Journal on Optimization, vol. 29, pp. 965–
993, 2019.

[43] J. Mattner, S. Lange and M. Riedmiller,
“Learn to swing up and balance a real pole
based on raw visual input data”, International

Conference on Neural, pp. 126–133, 2012.
[44] V. Mnih, K. Kavukcuoglu, D. Silver, A.

Graves, I. Antonoglou, D. “Wierstra and M.

Riedmiller, Playing Atari with deep

reinforcement learning”, arXiv preprint
arXiv:1312.5602, 2013.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. A.
Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland and G.
Ostrovski, “Human-level control through

deep reinforcement learning”, Nature, vol.
518, pp. 529–533, 2015.

[46] Y. Bengio, “Learning deep architectures for

AI, Foundations and Trends in Machine

Learning”, vol. 2, pp. 1–127, 2009.
[47] S. S. Mousavi, M. Schukat and E. Howley,

“Deep reinforcement learning: an overview”,
SAI Intelligent Systems Conference, pp. 426–
440, 2016.

[48] J. Schmidhuber, “Evolutionary principles in

self-referential learning”, Ph.D. dissertation,
Technische Universitat M unchen, Munchen,
Germany, 1987.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 433 Volume 19, 2024

[49] T. Schaul and J. Schmidhuber,
“Metalearning”, Scholarpedia, vol. 5, pp. 46–
50, 2010.

[50] E. Gospodinova, I. Torlakov, “Information

Processing with Stability Point Modeling in

Cohen–Grossberg Neural Networks”, Axiom,
Vol.12, Issue 12(7), pp. 612, July 2023.

[51] E. Gospodinova, “Analysis and Development
of an Algorithm to increase the Energy
Efficiency of Electrical Street Lighting
Systems Using an Artificial Neural Network”,
6th European Conference on Electrical

Engineering and Computer Science, ELECS

pp. 145–150, Bern, Switzerland, 2022.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 434 Volume 19, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

APPENDIX

Table 1. Comparison between CPU and graphics accelerator

Quantity of hidden neurons 6 9 12 15 18 21 24
CPU 74,4 531,96 1056,9 2237,22 4573,8 9381,54 19802,58
Graphics accelerator 8,752 25.63 49,92 65,76 49,92 142,56 179,82

A) CPU B) Graphics accelerator

Fig. 1: Evolution of the network state

Fig. 2: Test results with neural network training

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.46 Ekaterina Gospodinova, Dimitar Nenov

E-ISSN: 2224-2856 435 Volume 19, 2024

