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Abstract: - This paper aims to identify efficient methods of mathematically modeling an automated physical 
system using a neural network. Based on the Levenberg-Marquardt method, we built a feed-forward neural 
network with the capabilities of a graphics accelerator. The model also sums up and suggests a new neural 
network training algorithm with Bayes regularization, Nguyen-Widrow initialization, and the early stopping 
and control method. This greatly expands the efficiency of solving problems where knowledge of an 
automation system is usable.  
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1   Introduction  
The relevance of the work is due to the need to 
develop programs for the management of automation 
systems. Human involvement in their management is 
impossible or impractical. These systems include 
various computer vision systems, television guidance 
systems, aircraft control systems, and others. Their 
effectiveness depends on the knowledge they 
possess. In addition to being purely empirical, this 
knowledge also serves as a heuristic, a set of rules 
and recommendations applicable to specific 
situations within a particular subject area. The main 
criterion for development is autonomy in decision-
making. In other words, the system can only utilize 
data gathered from the environment and pre-
programmed rules and algorithms. Developing these 
software systems necessitates the resolution of a 
class of problems previously handled directly by a 
human expert. This includes the object recognition 
task. We understand the object as an incomplete 
reflection of the natural world's properties. The 
reflection gives information about the problem. We 
can solve the recognition problem by assigning the 
initial data to a specific class, which involves 
establishing the object, [1], [2], [3], [4], [5]. These 
problems possess the following characteristics: the 
impossibility of an algorithmic solution (due to the 
poor formalization of the tasks themselves or the 
high cost of computer time); inconsistency, 

incompleteness, and potential inaccuracy of the 
source data; large volumes of data; dynamically 
changing data composition; and the decision-making 
process, [6], [7], [8], [9].  

Programming is not necessary for an automated 
system to solve such problems; instead, it requires 
training. Radio engineering, radar, and hydroacoustic 
systems successfully use the significantly developed 
statistical signal detection method against 
background interference. Optical and optoelectronic 
networks have also utilized these methods. However, 
we must still create the theory of fully receiving 
optical signals against substantial interference and 
make decisions about them, [10], [11], [12], [13]. 
Neural networks are a mathematical model of the 
functioning of biological neural networks—a 
structure of nerve cells of a living organism. As in 
biology, the essential element of an artificial neural 
network is a neuron, [14], [15], [16]. Interconnected 
neurons form layers, the number of which can vary 
depending on the complexity of the neural network 
and the tasks it solves. Neural networks can 
generalize, making accurate decisions on previously 
unpresented inputs. Neural networks, with their large 
number of heuristic algorithms for learning and their 
resistance to various fluctuations of the input data, 
are the preferred approach for solving certain 
problems. 
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This work aims to develop efficient methods for 
object recognition using neural networks and a 
program that implements them. To achieve this, we 
must build a neural network and a practical 
algorithm for its training. A software package based 
on the constructed neural network is also necessary. 
We should use parallel computing algorithms, 
leveraging the capabilities of graphics accelerators, 
to process high-dimensional input data and 
accelerate the software's work. 

The authors chose the Levenberg-Marquardt 
method to solve the problem. Its basis is the classic 
Levenberg-Marquardt model, improved by using the 
following approaches: We employ Bayesian 
hyperparameters in the regularization process and 
initialize the neural network parameters using the 
Nguyen-Withrow method. The early stopping 
method prevents the neural network from losing its 
generalization. The enhanced approach led to the 
creation of a parallel learning algorithm, leveraging 
the computational power of a graphics accelerator, 
[17], [18]. 

 
 

2  Ease Model and Methods for Object 

Recognition Use 
The source of images, in many cases, are the results 
of optical scanning of objects in a scattering medium 
(for example, in water). Such a scan will result in 
noisy images of objects. Therefore, the solution to 
the problem of recognizing such images can be 
divided into four stages: 
1.  Formation of a set of reference images; 
2.  Development and implementation of an algorithm 

for object recognition; 
3.  Adapting the algorithm to real input data; 
4. Evaluation of the developed algorithm's 

suitability for solving the problem; the algorithm 
should recognize noisy images with a high 
probability. 
We will consider discrete images represented as 

a rectangular matrix of pixels.  
A=aij, i=1,…,M, j=1,…,N, aij=0,…,255, [19], 

[20], [21]. 
There are two spaces: the feature space C and 

the topic space T. The spatial elements of C are n-
dimensional vectors that are feature sets of different 
images. The elements of the topic space T are the 
images themselves. Thus, object recognition will be 
the task of constructing a classification mapping K 
of the feature space of the object image C. In the 
topic space C→ T. In this work, the classifier 
mapping utilizes a feedforward neural network. Let 
us introduce the feedforward neural network. In the 

quad (σ, θ, T, L), σ is the activation function of the 
neuron, θ=(θ1,…,θS)T are the neural network 
parameters, T=(Xi, Di), i=( )  is the training 
set, Xi is the vector of input data, Di is the desired 
network output, L is the set of neural network layers 
and neuron connection rules. Each subsequent layer 
is connected to each neuron from the previous one. 
The formula can calculate the output of each neuron: 

,      (1) 
 
Similar to the human brain, a neural network can 

acquire knowledge through the use of a training set. 
The formula calculates the root mean square error, 
which  included training error per epoch: 

        (2) 
where is the j-th component of the network output at 
the i-th iteration, is the j-th component of the i-th 
desired output, [22]. 

 
Within the mathematical model of object 

recognition, neural network training is error 
minimization. The training set refers to the collection 
of feature vectors whose images are known. We refer 
to a set as a test set, which aims to evaluate the 
constructed mapping. A trained neural network will 
then solve the recognition problem by either finding 
the corresponding images for each set of features or 
determining that such images do not exist, [23], [24]. 

The Fourier transform can filter the image in the 
frequency domain to reduce the distortions caused by 
various noises. The following formula expresses 
image filtering using the Fourier transform: 

       (3) 
where If is the image after filtering, I is the original 
image, F is the forward Fourier transform, F-1 is the 
inverse Fourier transform, and H is a specified filter.  

 
Three filters are implemented, [24]: 
 Gaussianfilterforlowfrequencies: 

H(u,v)= ,     (4) 
 Gaussianfilterforhighfrequencies:   

H(u,v)= ,     (5) 
 Laplaceinthefrequencydomain: 

-( ,        (6) 
 
The Levenberg-Marquardt method was proposed 

in [24] and [25] as a method for finding the 
minimum of a nonlinear function. Let there be a 
sample - a set of pairs Di={xi, yi}, i,…,N of a free 
variable x∈X∈Rm and a dependent variable y∈R, 
and a given function Y(θ, x), θ∈Θ⊂Rn which is 
continuously differentiable in the domain ΘxX. It is 
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required to find such a vector θ of weights that 
provides a local minimum of the error function: 

        (7) 
 
Thevector F(θ)=[y1-Y(θ, xi ),…,yn-Y(θ, xN)T is a 

residualvector, andthen ||F((θ)|| istheremainder, and 
ED=1/2 (|F((θ)|)2. Then, according to (2), a linear 
approximation can be used to evaluate the increasing 
function θ+Δθ. 

Y=         (8) 
 

where J is the Jacobian matrix for the function 
Y(θ,x). Such an estimate is valid only in the case 
when the discrepancy ||F(θ)|| is small enough, i.e., at 
a point closeenough to the minimum. According to 
[10], the equation must be solved in order to find: 

             (9) 
 

The matrix J may turn out to be intrinsically 
degenerate; therefore, Marquard in [9] suggests 
introducing the regularization parameter λ≥0: 

,                (10) 
where I is the identity matrix. Also, to keep the 
gradient JTF(θ) from having too much of an effect on 
the step of the method when looking for the 
minimum, it is suggested in [10] to swap out the 
identity matrix for the diagonal of the Hessian 
matrix: 

      (11) 
 
In this paper, an algorithm based on the 

Levenberg-Marquardt method is used to train such a 
neural network. For example in [25], [26] and [27] 
this method has been applied to neural network 
training. According to [28], [29] the neural network 
can represent the input information as a vector 
function of the vector argument, refining the 
mathematical model of object recognition. 

Y=Y(X, θ),                     (12) 
where X=(x1,…,xn) are inputs, θ=(θ1,…,θs) are 
network weights, Y=(y1,…,yp) are network outputs. 
We can now express the network error for one epoch 
using the following formula: 

   (13) 
 
The variable dij represents the desired output of 

the jth output neuron for the ith element of the 
training set. Let E=(e11,...,e1p,eN1,...,eNp)T be the 
residual vector for the neural network. Then: 

F(0)=ETE      (14) 
As demonstrated above, one should look for a 

solution to the following equation to increase the 
weights of the neural network: 

         (15) 

This work implemented the training of a neural 
network consisting of three layers: input (n neurons), 
hidden layer (m neurons), and output (p neurons). 
Each layer contains a neuron known as a threshold or 
deviation neuron, whose output, in contrast to a 
normal neuron, consistently equals one. For a neural 
network with one hidden layer, formula (1) takes the 
form: 

Y=Y(X, ,  (16) 
where W(1) is the weight matrix of the neurons in the 
hidden layer, W(2) is the weight matrix of the output 
layer, B(1) are the weights of the threshold neurons in 
the hidden layer, and B(2) are the weights of the 
threshold neurons in the output layer. The elements 
of the Jacobi matrix will then take on the following 
form: 

      (17) 

where  is the input of the k-th hidden neural layer 
and σ' is the derivative of the activation function. 

In [30], [31], [32], we obtained a similar form of 
the Jacobian matrix's elements. 

If θr has a hidden layer neuron weight, θr≡  
then: 

          
(18) 

where  is the output of the kth neuron from the 
hidden layer and σ' is the derivative value of the 
activation point function. If θr has a neuron weight of 
the output layer, θr≡  then 

      (19) 

 
If θr has a hidden layer neuron weight,  

then  

          (20) 
 
If θr has a neuron weight of the output layer, 

, then 

       

(21) 
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We obtained a similar form of the Jacobian 
matrix's elements in [33], [34], [35], [36]. 

 
 

3 The Neural Network Training 

 Algorithm Utilizes the Levenberg-

 Marquardt Method 
Thus, the neural network training algorithm based on 
the Levenberg-Marquardt method will look like this: 
Calculate the network error for one epoch using 
formula (13); 

2. Calculate the elements of the Jacobian matrix 
using formulas (18-21); 

3. Solve equation (15) and calculate the network 
error for the newly obtained network weights. 
Proceed to step 5 if the error decreases, and proceed 
to step 4 otherwise. 

4. Return to the previous values of the network 
weights and increase the tuning parameter (typically 
increased by a factor of 10). Go to step 3. 

5. Accept the obtained network weight values, 
reduce the parameter value (typically by ten times), 
and transition to a new learning epoch. 

 
This algorithm has significant drawbacks: 

1. The algorithm performs poorly when the 
training set contains items that significantly differ 
from the general population; 

2. The algorithm is very sensitive to the choice of 
initial weights; 

3. When working with large neural networks, the 
algorithm consumes a lot of memory, and the need to 
invert large matrices at each step complicates the 
computational process. 

 
In [37], [38], a method to eliminate the 

algorithm's first drawback is proposed and further 
developed in [39], [40]. The essence of the method 
proposed in these works is the transition from the 
search for the minimum point of the root mean 
square error calculated by formula (13) to the search 
for the minimum of the function expressed by the 
formula: 

F(Y)=αEθ=βED,                  (22) 
where ED is the network error, Eθ is the sum of 
squares of the network weights, and α and β are the 
hyperparameters. We use the modified Nguyen-
Widrow method, as proposed in [40], [41], [42], 
[43], [44] to eliminate the second drawback, which 
involves initializing and transforming the network 
weights. We first initialize and uniformly distribute 
all random values of the grid in the segment [-1, 1]. 
Each weight is then normalized. The weights are 
transformed: 

,                 (23) 

where m and p are the number of neurons in the 
current and previous layers, respectively. 

 
The selection of stopping criteria and evaluation 

of their effectiveness are crucial to neural network 
training. To avoid losses in the neural network and 
reduce the number of training epochs, we applied the 
early stopping method. This work formulates the 
following stopping criteria: 

When an error in the test set Eva(t) decreases to a 
specific value, we should halt the training. 

We select a test set based on the error in the 
percentage of correctly recognized items. We can 
then express the stopping criterion using the 
following formula: 

Eva(t)        (24) 
 
 
4  The Results of the Neural Network 

 Training  
This work uses NVIDIA's CUDA technology to 
perform graphics accelerator calculations. The top-
level GPU computational model is an N1xN2xN3 
dimensionalgrid. Each block, in turn, consists of 
many threads that directly perform calculations. One 
block's threads combine to form a three-dimensional 
array with dimensions M1xM2xM3. We organize 
the strands into groups known as bases. There are six 
types of memory in CUDA. Memory types differ in 
speed, data availability, and types of data stored. 
Papers [45], [46], [47], [48], [49], [50] and [51] 
compare the performance of CUDA and the well-
known implementation of the MPI standard, 
OpenMP. We conducted a test that simulated an 
evolutionary particle system. The test showed that 
GPU performance with CUDA was about 13% 
higher than CPU performance with OpenMP. For 
this purpose, we built a neural network, the input 
layer of which contains 64 neurons, the hidden layer 
of 6–24 neurons, and the output layer of 6 neurons. 
Let the ISet objects be of the same size. Each object 
has an image belonging to an SSet topic space. 
Various deformations such as rotation, stretching, 
and compression do not alter the image of the object. 
We took a set of 26 Latin letters and 10 numbers 
written in the standard Arial font. We positioned the 
objects in the center. Let us have a training set TSet, 
each element of which represents a pair (I, S), where 
I∈ISet, S∈SSet. It is necessary for each object in 
the set ISet to find a corresponding object in the set 
SSet using the set TSet. The input layer of the neural 
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network contains 64 neurons; the hidden layer 
contains 6–24 neurons; and the output layer contains 
6 neurons. We view the output vector as a 
representation of a number in a binary number 
system. To test the neural network, we created a test 
set, or VSet, consisting of 36000 elements. For each 
benchmark, we included 100 images, each with 10 
different variations. We will assume that the neural 
network recognizes an element from the training or 
test set if its root mean square error does not exceed 
0.3. We did four kinds of calculations to figure out 
the best settings for a neural network to solve the 
problem: we compared the results of testing a neural 
network trained with different training epochs, 
different early stopping thresholds, and different 
numbers of hidden layer neurons. We also compared 
the performance of different neural network sizes 
with the best settings when using the GPU and when 
using only the CPU. During each training session, 
the neural network that underwent the least number 
of epochs yielded the best results. Comparison A 
demonstrated that training a sample of benchmarks 
without noise and with a noise level of 20% yields 
the best results. As a result of comparison B, the 
most preferred threshold value for early stopping is 
92%. Comparison C confirmed that minimizing the 
number of neurons in the hidden layer does not 
improve recognition quality. A neural network with 
9 neurons in the hidden layer demonstrated the best 
results. The neural network with the most preferred 
parameters is able to recognize noisy images with a 
noise level of up to 38% and an error of no more 
than 10%, as well as with a noise level of up to 45% 
and an error of no more than 20%. The benefits are 
shown using comparison D in Table 1 and Figure 1 
and Figure 2 in Appendix. A neural network with a 
variable number of hidden layer neurons—from 6 to 
24—trains on average in 3 steps, with the total 
training time measured in seconds. 

This means that as the size of the neural network 
increases, the acceleration factor increases 
significantly when using a graphics accelerator. 
Acceleration of learning neural networks achieved in 
this work surpasses similar results of other authors. 

We created a software package to solve the 
image recognition problem. It consists of three main 
modules: a module for filtering the object images, a 
module for extracting the features of the object 
image, and the main module—creating and training 
the neural network. The first module filters the 
loaded image using a library that allows transferring 
Fourier transform calculations to the graphics 
accelerator, which significantly speeds up 
computations. The module for object image feature 
extraction receives the results, processes the images, 

and extracts the original data as text files. The 
module receives the features, builds a neural 
network, and loads training input data from the set 
files. Next, the module initializes the weights and 
tuning parameters. Each training epoch begins with 
the neural network presenting all elements of the 
training set, calculating errors and parts of the 
Jacobian matrices. After calculating the initial target 
value, the algorithm based on the Levenberg-
Marquardt method starts working. The modules 
utilize the inverse matrix to solve equation (15), as 
recalculating the Bayesian hyperparameters requires 
calculating the sum of the diagonal elements of a 
matrix inverse of the approximated Hessian matrix. 
To find the inverse matrix, we use our own 
implementation of the inversion algorithm by 
decomposing the original matrix and using the 
capabilities of the graphics accelerator. We have 
tested the software package on several known 
classification problems. 

 
1. Classification of the characteristics of 

photovoltaic panels; 
2. Classification of sarcoma formations; 
3. Classification of viruses causing hepatitis. 

 
Testing has shown that the software is capable of 

solving many problems efficiently and significantly 
outperforms classical back-propagation neural 
networks. 

 
 

5   Conclusion 
This The main result of this work were the 
construction of a direct error propagation neural 
network, trained by an improved algorithm based on 
the Levenberg-Marquardt method. We conducted the 
tests using the built-forward neural network and the 
capabilities of a graphics accelerator. We have 
defined the software package's most preferred 
parameters for solving object recognition tasks. We 
have successfully solved the practical task of 
recognizing noisy images with fairly good results. In 
the future, we plan to further develop the software 
package and conduct more tests on various objects to 
enhance its quality in various fields of science and 
technology. 
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APPENDIX 

 
Table 1. Comparison between CPU and graphics accelerator 

Quantity of hidden neurons 6 9 12 15 18 21 24 
CPU 74,4 531,96 1056,9 2237,22 4573,8 9381,54 19802,58 
Graphics accelerator 8,752 25.63 49,92 65,76 49,92 142,56 179,82 

 
 

        
 

A) CPU    B) Graphics accelerator 

Fig. 1:  Evolution of the network state 

 
 

 

                 
Fig. 2: Test results with neural network training 
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