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1  Introduction 
The modeling of multibody systems has represented 

a challenge to have a model that allows analyzing its 

properties for its characterization, simulation, and 

control. Multibody systems are characterized by 

being formed by more than one dimension or 

coordinate, for example, robotic systems, 

aeronautical systems, and multi-phase electrical 

systems. The bond graph methodology has been 

used to model systems in graphic form that can be 

formed by several energy domains (electrical, 

mechanical, hydraulic, thermal) and their 

representation is in a unified form because the 

transfer of power is managed.  

The first formal developments in the bond graph 

methodology can be found in [1] where bond graph 

modeling for physical systems is presented. 

Likewise, the analysis of linear systems in bond 

graphs is described. Another essential reference in 

bond graph modeling is in [2] where each element 

in the bond graph applied to linear and non-linear 

physical systems is explained in detail. The 

structural properties of a system modeled in a bond 

graph are presented in [3] here the properties of 

observability and controllability for linear systems 

are introduced in a bond graph approach. 

Multibody systems can be modeled with bond 

graphs, however, they result in extensive models 

that require in-depth knowledge of the system. 

Hence, multi-bond graphs appeared for the 

modeling of multibody systems and with the 

potential of bond graph analysis and synthesis tools. 

The essential references of multi-bond graphs are 

cited below: The elements in multi-bond graphs are 

described in [4]. Some relationships and definitions 

are found in [5]. A basic paper on the extension of 

the bond graph to a multi-bond graph is proposed in 

[6]. The modeling of mechanical systems in a 

robotics approach with multi-bond graphs is 

presented in [7]. Characteristics of the gyrators and 

junctions in multi-bond graphs are introduced in [8]. 

Some updated references in system modeling 

with multiband graphs are: The modeling of a 

prosthetic finger mechanism to control the trajectory 

and force in multi-bond graphs is proposed in [9]. 

Modeling the suspensions of a helicopter based on 

chains of kinematic joints is introduced in [10]. The 

steady-state response of alternating current circuits 

using multiband graphs is proposed in [11]. 
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Linearization of a class of non-linear systems in a 

multi-bond graphs approach is proposed in [12]. The 

movements of translation and revolution under 

actuated joints of one-hand prostheses in a 

multiband graph are introduced in [13]. The 

modeling of electrical systems with multi-bond 

graphs is proposed in [14]. 

It is important to refer to some advances in 

electrical power systems: the analysis of 

synchronous machines and renewable generation 

converters for electromechanical oscillations is 

found in [15]. The control of synchronous capacitors 

and sources with inverters applied to small signal 

network models is proposed in [16]. A power 

system built by a synchronous generator, 

photovoltaic panels, and their connection to the 

infinite bus for small signal stability analysis is 

presented in [17]. 

In this paper, modeling with multi-bond graphs 

of a basic electrical energy generation system is 

proposed. This system is built by a synchronous 

generator, a transmission line connected to the 

infinite bus. Likewise, this three-phase system 

allows the direct application of multi-bond graphs, 

the mathematical model of the system based on a 

multiport junction structure in direct relation to 

traditional schemes is proposed through a lemma. In 

order to verify that the graphic model and the 

mathematical model obtained from the system are 

correct, simulation results are shown using 20-Sim 

software. 

The contribution of this paper is to propose a 

multi-bond graph model of the electrical power 

system that has nonlinearities, being a compact 

model and that can be the basis for more complete 

systems of transmission line, loads and three phase 

electrical transformers that can be included in the 

system.  

This approach has not been presented so far 

with multi-bond graphs and the proposed lemma 

determines a versatile way to obtain the state space 

of the system considering synchronous generator, 

transmission line and connection to the infinite bus. 

Section 2 describes the traditional scheme of a 

synchronous generator connected to an infinite bus 

through a serial transmission line. Section 3 

describes the basic elements of multiband graph and 

the proposal of a lemma to obtain the mathematical 

model of the system. Section 4 presents the multi-

bond graph of the electrical power system with the 

simulation results. Finally, the conclusions are given 

in Section 5. 
 

2 Synchronous Generator Connected 

 to an INFINITE BUS 
Robust generation systems connect to transmission, 

distribution, and supply systems to loads through the 

infinite bus. A typical system of a synchronous 

generator connected to the infinite bus by means of 

a transmission line is shown in Figure 1, [18], [19], 

[20]. 

 

 
Fig. 1: Synchronous generator connected to an 

infinite bus 

 

The three-phase voltage electrical power system in 

Figure 1 is defined by: 

G l l abc
abc abc abc abc abc

di
v R i L v

dt

              (1) 

where 𝑣𝑎𝑏𝑐
𝐺  is the generator voltage; 𝑖𝑎𝑏𝑐 is the 

current supplied; 𝑣𝑎𝑏𝑐
∞  is the bus voltage, 𝑅𝑎𝑏𝑐

𝑙  and 

𝐿𝑎𝑏𝑐
𝑙  is the resistance and inductance of the 

transmission line, respectively. 

 

A tool for simplifying the analysis in electrical 

power systems is the Park transformation that 

allows eliminating the time dependence in the 

equations. This transformation translates the 

coordinates (a,b,c) to an equivalent system in 

coordinates (d,q,0). This transformation for 

voltages, currents and flux links are defined by.  

0dq abcv Pv                        (2) 

0dq abci Pi                         (3) 

0dq abcP                        (4) 

2 2
cos cos cos

3 3

2 2 2
sin sin sin

3 3 3

1 1 1

2 2 2

P

 
  

 
  

    
     

    
    

      
    

 
 
 

        (5)  

with    

2
t


    

                      (6) 

being ω is the angular frequency in rad/s and δ is the 

synchronous torque angle. 

 

Applying the Park transformation to (1) 
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0 1

0 0 0 0 0 0

%dqG l l

dq dq dq dq dq dq

di dP
v R i L P i v

dt dt

  
    

 

 (7)         

      

where 
1

0

l l

dq abcR PR P                       (8) 

 
1

0

l l

dq abcL PL P                       (9) 

 

and 

 1

0 0

0 0

0 0 0

dP
P X

dt
 




 
  
 
  

            (10) 

 

(7) with (10) reduces to 

 

 0

0 0 0 0 0 0 0

dqG l l l

dq dq dq dq dq dq dq

di
v R i L L X w i v

dt

   
 (11)             

 

 
Fig. 2: Synchronous generator 

 

Now, the model of the synchronous generator in 

coordinates (d,q,0) is shown in Figure 2 and its 

mathematical model is described by [18], [19], [20]. 

 

0

0

0 0 0

0

0

0 0

0

0 0

0

dq

G T

dq

F
F

T
G G G
dq dq dq

F F F

G

J m

di

dtL M
di

M L
dt

J
dw

dt

R i v

R i V

R w T





 
 

   
   

   
    

 
  

      
        
       

 

            (12) 

 

where 𝑣𝑑𝑞0
𝐺  are the voltages at the generator 

terminals; 𝑖𝑑𝑞0 the current generated, 𝑖𝐹 and 𝑅𝐹 the 

current and voltage in the field winding, 

respectively; ω the velocity; 𝑇𝑚 the input 

mechanical torque; 𝐿𝐹 and 𝑅𝐹 the inductance and 

resistance of the field winding, respectively; J and 

𝑅𝐽 the inertia and friction of the machine, 

respectively; 𝐿𝑑𝑞0
𝐺  and 𝑅𝑑𝑞0

𝐺  the inductance and 

resistance of the armature winding, respectively; 

𝑀 = [𝑀𝑑𝐹 0 0] the mutual inductance of the 

armature and field windings; λ𝐺 = [λ𝑞 −λ𝑑 0] 
machine flow links. 

 

 

3 Systems Modelling in Multi-Bond 

 Graphs 
Multibody systems are characterized by having 

several signals that depend on each other, so 

modeling these systems with individual signals 

results in extensive and complicated representations 

for analysis, synthesis and simulation.  

 Multi-bond graphs represent a graphical 

modeling tool for multibody systems that has the 

versatility of the analysis of bond graphs that are 

well known. When two multibody system signals 

are connected, there is always power transfer 𝑃(𝑡) 

because there is a unified frame of reference in 

multiband graph generalized power variables called 

effort vector 𝑒(𝑡) and flow vector 𝑓(𝑡) are used in 

multi-bond graph, these variables determine the 

power vector: 

     ·TP t e t f t
                      (13) 

where 

 

 

 

 

 

 

 

 

 

;    

a a

b b

c c

e t f t

e t e t f t f t

e t f t

   
   

    
   
   

 

 

In the different energy domains, the generalized 

variables are indicated in Table 1. 

 

Table. 1 Power variables 

 
 

The energy variables in multi-bond graphs are: 

momentum 𝑃(𝑡) and displacement 𝑞(𝑡), and are 

related to the power variables by: 

    p t e t dt 
                      (14) 

    p t e t dt 
                      (15) 

 

The basic element of multi-bond graph that 

determines the connection of components is the 

multi bond shown in Figure 3. Likewise, the 

application of causality is indicated, which is drawn 

by a vertical line that indicates the direction of the 

effort and the flow in the opposite direction. 
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Fig. 3: Causal multi-bond 

 

Power supply elements are (MS𝑒(𝑡), MS𝑒(𝑡)) 

multiport effort source and multiport flow source, 

respectively, shown in Figure 4. 

 

 
Fig. 4: Multiport sources 

 

The dissipative elements are shown in Figure 5 

whose constitutive functions are a function of the 

causality given by: 

   
1Re t f t    

                      (16) 

   
2

 
R

f t e t    
                      (17) 

 

 
Fig. 5: Multiport resistors 

 

The storage elements are inertias and 

capacitances. Figure 6 illustrates inertia in integral 

causality assignment where the constitutive 

relationship is: 

     1 1

I If t e t dt p t          
       (18) 

 

for a linear relationship: 

     1 1
L Lf t e t dt p t  

            (19) 

 

 
Fig. 6: Multiport inertia in integral causality 

 

If this element is in derivative causality 

assignment, the constitutive relationship is: 

 
 Id f t

e t
dt

   
                       (20) 

shown in Figure 7. 

 

The other storage element in integral causality is 

the capacitor illustrated in Figure 8. 

 

 
Fig. 7: Multiport inertia in derivative causality 

 

 
Fig. 8: Multiport capacitor in integral causality 

with the constitutive relationship: 

     1 1

C Ce t f t dt q t          
      (21)                     

 

if it is linear: 

     1 1
C Ce t f t dt q t  

            (22) 

 

In case it has derivative causality, thus element 

is shown in Figure 9. 

 

 
Fig. 9: Multiport capacitor in derivative causality 

 

with the constitutive relationship: 

 
 Cd e t

f t
dt

   
            (23) 

 

The power transfer elements from one port to 

another are defined by multiport transformers and 

gyrators shown in Figure 10. 

 

 
Fig. 10: Multiport transformers and gyrators 

 

The multiport transformer (𝑇𝐹) has the 

constitutive relationship: 
1

1 2

1 2

0

0

t

t

e eK

f fK

    
    

       

            (24) 

  

If it is a multiport modulated transformer (𝑀𝑇𝐹) 

then 𝐾𝑡 = Ψ(t) that is the modulated signal. 

The constitutive relation of the multiport gyrator 

(𝐺𝑌) is: 

1 2

1

1 2

0

0

g

g

e eK

Kf f


    
    

       

            (25) 

 

If it is a modulated multiport gyrator (𝑀𝐺𝑌) 

then 𝐾𝑔 = Λ(t) that is the modulated signal. 
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The elements that allow the connection of the 

different multiport elements are the connections 

shown in Figure 11. 

 

 
Fig. 11: Multiport junctions 

 

The effort and flow relationships for multiport 

junction (1) are defined by: 

1 2 3 1 2 3;  e e e f f f                (26) 

and for the multiport junction (0) they are: 

1 2 3 1 2 3;  e e e f f f                (27) 

 

The different multiport elements of a system 

modeled by multi-bond graphs can be organized by 

fields to obtain the mathematical model of the 

system, which is illustrated in Figure 12. 

 

 
Fig. 12: Junction structure of a multi-bond graph 

 

The block diagram in Figure 12 indicates the 

following fields: 

- The multiport sources with input  𝑢(t) ∈ ℜ𝑝
. 

- The multiport states 𝑥(t) ∈ ℜ𝑛 which are the 

elements (ℂ , Ⅰ) in integral causality and the 

multiport co-energy vector 𝑧(t) ∈ ℜ𝑛. 
- The multiport states 𝑥𝑑(t) ∈ ℜ𝑚 that are states 

linearly dependent on 𝑥(t) and with the multiport 

coenergy vector 𝑧d(t) ∈ ℜ𝑚. 
- Multiport dissipation elements (ℝ) are related 

to the junction structure by D𝑖𝑛 ∈ ℜ𝑟 and D𝑜𝑢𝑡 ∈

ℜ𝑟. 

- The multiport junction structure is formed by 

(1, 0) and by multiport transformers and gyrators 

(𝑀𝑇𝐹, 𝑀𝐺𝑌). 

 

The different fields and key vectors that 

determine the mathematical model of a multi-bond 

graph for an electrical system are described in the 

following lemma. 

 

 

Lemma 

Consider a multi-body system modeled by a multi-

bond Graph with predefined integral causality 

assignment according to Figure 12 with a multiport 

junction structure defined by 

•

11 12 13 14

21 22 23

•31

0

0

 

S S S S

S S S

S 0 0

out

in

d

d

z

x D

D
u

z
x

 
                      

 

            (28) 

 

with constitutive relations of the multiport fields 

given by: 

Fz x                               (29) 

 Fd d dz x                           (30) 

Lout inD D                           (31) 

 

then a state space model of the system is described 

by: 

     
•

x z x z x u E A B          (32) 

where 

  1 1

13 31dx   E F S F S             (33) 

  11 12 21x  A S S MS              (34) 

  13 12 23x  B S S MS             (35) 

with 

 
1

22


 M L I S L             (36) 

 

Proof. From the second line of (28) with (31) 

   
1

22 21 23inD z u


  I S L S S
      (37) 

from the third line of (28) with (29) and (30), the 

relationship of linearly independent and dependent 

elements is: 

1

31d dx x F S                           (38) 

differentiating with respect to time (38) and 

replacing in the first line of (28) with (37) and (29) 

     
•

1 1

13 31 11 12 21 13 12 23d z z u     F S F S S S MS S S MS

(39) 

substituting (33), (34) and (35) into (39), the state 

space given in (32) is proven. 

The proposed lemma allows obtaining the 

mathematical model of a system modeled in multi-

bond graph, having the advantage of determining 

the state space in a structured way. 
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4 Systems Modeling in Multi-Bond 

Graphs 
The multi-bond graph model of the system formed 

by a synchronous generator connected to the infinite 

bus through a transmission line is shown in Figure 

13. 

 

 
Fig. 13: Multi-bond graph system 

 

In Figure 13 the synchronous generator is inside 

the blue dotted area, in the armature winding in 

coordinates (d,q,0) we have the multiport resistance  

ℝ: 𝑅𝑑𝑞0
𝐺  and the multiport field inductance 𝐼: 𝐿𝑑𝑞0𝐹 

magnetically connected to the field winding with 

resistance R : 𝑅𝐹  and the DC voltage in this 

winding MSe : 𝑉𝐹  ; the mechanical section of the 

generator consists of the inertia I : J, the air friction 

R : 𝑅𝐽  and the input torque of the prime-motor 

MSe: Tm which is related to the armature winding 

by the multiport gyrator modulated by the flux links 

of the machine. The transmission line within the red 

dotted area is modeled by the multiport resistor 

ℝ: 𝑅𝑑𝑞0
𝑙 , in series with the multi-port inductance 

𝐼: 𝐿𝑑𝑞0
𝑙  and connected to the generator by the 

multiport gyrator modulated by the line flux links 

and machine speed. 

The infinite bus inside the green dotted area is 

the three-phase voltage MSe: 𝑉𝑎𝑏𝑐
∞ , 

 

The key vectors of the system are: 

12 12
3 3 3

•
5 5

4 4 4

9 9
10 10 10

14 14

1
•

6 15 15 15

11

;  ; ; ;

;     ;    ;      

in out

d d d

f e
p e f

f e
x p x e z f D D

f e
p e f

f e

e

u e x p x e z f

e

   
         
                      
                     

 
 

    
 
 

 

with the constitutive relations 

 

0

1

0

0

0 0

F

G T

dq

F

L M

M L

J



 
 

  
 
 

            (40) 

 

 0 0, , ,L
G l

dq F J dqdiag R R R R
            (41) 

0

l

d dqF L             (42) 

where 

 

   

   

 

0 0

0 0 0 0

0 0

0 0 ;     , ,

, , ;  ,

, ,

   ,

G G G G

dF dq d q

l l l l G G G G

dq d q dq d q

l l l l

dq d q

M M L diag L L L

L diag L L L R diag R R R

R diag R R R

 

 



 

 

whose multi-port junction structure matrix is 

described by: 

 

3

4
3

10

4
12

10

5
12

9

5
14

9

1
14

6
15

11

1

0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0%

I I I I

I

I

I

l G

T
G

f

f
e

f
e

e
e

e
f

e
f

e
f

e
f

e
f

e

e

 



     
   

   
   

   
   

   
   
   
   
   
   

  

5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(43) 

 

From (33) , (40), (42) and (43) the inductance 

matrix is given by: 

 
0 0 0

0

0 0

G l T

dq dq

F

L L M

E x M L

J

 
 

  
 
 

 

From (34), (41), and (43) the nonlinear state matrix 

is: 

 

 

0 0 0

0 0

0

G l l G

dq dq

F

T
G

J

R R

A x R

R

 



 
   
  
 
 
 
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and from (35) and (43) the input matrix is: 

 

0 0

0 1 0

0 0 1

I

B x

 
 
 
  

 

 

The behavior of the system state variables is 

achieved from the simulation of the multi-bond 

graph in Figure 13, which is carried out in 20-Sim 

software. The numerical parameters of the system 

are given by 𝑣𝑎=200sin(ωt)V, 𝑣𝑏=200sin(ωt−120)V 

, 𝑣𝑐=200sin(ωt−120)V , 𝑉𝐹= 30V , 𝑇𝑚 =100Nm, 

𝑅𝐽  = 1Nms, 𝑅𝐹=0.95Ω, 𝑅𝑑𝑞0
𝐺 = diag {0.5, 0.5, 0.5} 

Ω, 𝑅𝑑𝑞0
𝑙 ={0.01, 0.01, 0.01} Ω, J=2.37Nms2, 

𝐿𝐹=1.65H, 𝐿𝑑𝑞0
𝐺 =diag{0.5, 0.5, 0.5}H, 

𝐿𝑑𝑞0
𝑙 =diag{0.01, 0.01, 0.01}H, 𝑀𝑑𝐹 =1.55H, F = 

60Hz. 

Figure 14 illustrates the performance of the 

currents supplied from the generator to the infinite 

bus idq0, because the system is balanced and stable, 

the currents stabilize at 𝑖𝑑 = −27.4497A, 𝑖𝑞 = 

0.087A,     𝑖0 =0, 𝑖𝐹 = 31.5798A, ω = 95.80rad/s. 

 

 
Fig. 14: Behavior of generator variables 

 

The currents supplied by the generator in the 

time domain, that is, in coordinates (a, b, c), 𝑖𝑎𝑏𝑐  

are shown in Figure 15, observing that the system is 

stable. Likewise, in Figure 16 shows the currents 

𝑖𝑎𝑏𝑐 in a short time range of 24.95s to 25.2s this 

graph illustrates that there is the phase shift of a 

balanced system of 1200. 

 

 
Fig. 15: Currents supplied to the system 

 
Fig. 16: Iabc currents in a short period of time 

 

 

5   Conclusion 
The multi-bond graph methodology in the modeling 

of a synchronous generator, transmission line and its 

connection to an infinite bus has been applied. 

Because these systems are made up of three phases, 

multi-bond graphs represent an effective alternative 

to obtain compact models. A lemma has been 

proposed to determine the mathematical model from 

its multi-bond graph. Simulation results are shown 

to verify the behavior of the system variables. 
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