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Abstract: - Kalman filters are used with great success to solve filtering problems in many fields of science and 

engineering. The ignorance of state noise covariance or the measurement noise covariance often creates 

difficulties in the practical application of Kalman filters. In this paper, the relation between the Input/Output 

signal-to-noise ratio (I/O SNR) and the noise covariance norm ratio for the discrete-time steady-state Kalman 

filter is established. The state or measurement noise covariance can be tuned via the I/O SNR. This result can 

be applied in time-varying systems and in steady-state systems, without the a priori knowledge of the state or 

measurement noise covariance.  
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1  Introduction 
State estimation uses measurements to 

estimate/predict the system states. A popular 

algorithm for this purpose is the Kalman filter [1], 

which has been successfully used in various fields: 

object detection and tracking [2], robotic 

applications [3], electric load estimation [4], stock 

price prediction [5], weather forecasts [6], satellite 

orbit determination [7], power generation prediction 

[8], cases prediction of Covid-19 [9], multi-

observation fusion applications related to timescale 

[10], DC-Drives and sensors applications [11], 

estimation with unlimited sensing measurements 

[12], applications where the measurement noise is 

correlated with the state noise [13], multi-target 

localization [14]. 

The discrete-time Kalman filter is associated 

with discrete-time state space systems, which 

describe the relation between the n × 1 state vector 

x(k) and the m × 1  measurement vector z(k), at 

time k. In the time-invariant case, all the Kalman 

filter parameters are constant real matrices: F is the 

transition matrix, H is the output matrix, Q is the 

state noise covariance matrix and R is the 

measurement noise covariance matrix.  

Kalman filter computes the mean x(k/k) and 

covariance P(k/k) of estimation, as well as the 

mean x(k + 1/k) and covariance P(k + 1/k) of 

prediction and the Kalman filter gain K(k). 

Time-invariant Kalman filter takes the form of 

steady-state Kalman filter, when well-defined 

conditions [15] are satisfied. In the steady-state 

case, the estimation error covariance matrix, the 

prediction error covariance matrix, and the Kalman 

filter gain remain constant. The steady-state 

prediction error is the unique solution Pp of the 

associated Riccati equation: 

Pp = Q + F ∙ Pp ∙ FT 

     −F ∙ Pp ∙ HT ∙ (H ∙ Pp ∙ HT + R)
−1

∙ H ∙ Pp ∙ FT  (1) 

 

Note that the existence of the inverse in the 

Riccati equation is guaranteed when the 

measurement noise covariance matrix R is positive 

definite (which means that no measurement is 

exact). 

Because of the importance of the Riccati 

equation, there is considerable literature on its 

solution, [15], [16], [17], [18], [19], [20]. 
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In the infinite measurement noise case, the 

Riccati equation takes the form of the Lyapunov 

equation: 

PL = Q + F ∙ PL ∙ FT                             (2) 

 

Due to the importance of the Lyapunov 

equation, there exists considerable literature on its 

solution, [16], [20]. 

Using the matrix inversion lemma, the Riccati 

equation is written as: 

Pp = Q + F ∙ (Pp
−1 + HT ∙ R−1 ∙ H)

−1
∙ FT  (3) 

 

The nonsingularity of Q and R (which then are 

positive definite matrices) ensures the 

nonsingularity of Pp.  

The steady-state estimation error covariance 

matrix is: 

Pe = (Pp
−1 + HT ∙ R−1 ∙ H)

−1
    (4) 

 

Note that the steady-state prediction error 

covariance matrix Pp and the steady-state estimation 

error covariance matrix Pe are real square symmetric 

positive definite matrices.   

 

The steady-state Kalman filter gain K is: 

K = Pp ∙ HT ∙ (H ∙ Pp ∙ HT + R)
−1

   (5) 

 

The steady-state Kalman filter produces the 

state estimation using the previous state estimation 

and the actual measurement: 

x(k + 1/k + 1) = [I − K ∙ H] ∙ F ∙ x(k/k) 

                           +K ∙ z(k)                (6) 

 

 

2  Noise Covariance Matrices  
Kalman filter assumes the knowledge of all Kalman 

filter parameters, i.e. the matrices F, H, Q, R are 

known. In the case where the noise covariances are 

unknown, the identification of the noise covariances 

of the Kalman filter is discussed in [21]. Kalman 

filter statistics (Q, R) tuning is discussed in [22]. In 

fact, R can be estimated by computing the 

covariance of measurements, but Q cannot be easily 

estimated, due to the fact that a) the state is not 

measured directly and b) the state noise covariance 

functions as a “waste basket” for unknown 

modeling errors. As explained in [23], if we choose 

a too small Q, then the Kalman filter will converge 

too slowly, while if we choose a too large Q, then Pp 

will become large, and the filter becomes over-

sensitive, [23]. The idea proposed in [23] is to make 

Q so large that it just about matches the effects of 

the measurement noise covariance R: 

H ∙ Pp ∙ HT = c ∙ R                                         (7) 

 

where c is a scalar positive tuning factor. 

 

Then, an acceptable choice for Pp is: 

Pp = c ∙ H+ ∙ R ∙ (H+)T     (8) 

 

where M+ denotes the Moore-Penrose 

pseudoinverse of M. 

 

Note that it is required that the output matrix H 

is full rank [23]; if not, then it the can be replaced 

by a proper output matrix by using the observability 

matrix [23]. 

 

Thus, the desired Q is derived: 

Q = Pp −
1

1+c
∙ F ∙ Pp ∙ FT        (9) 

 

The noise covariances norm ratio is the ratio 

defined by the state noise covariance norm divided 

by the measurement noise covariance norm: 

λ =
‖Q‖F

‖R‖F
                                                          (10) 

 
where the subscript F indicates the Frobenius norm. 

 

In [23] it is depicted that if the ratio λ is known, 

then the tuning factor c is derived: 

c = λ ∙ ‖H‖2                                                               (11) 
                                       (11) 

where ‖H‖ is the largest singular value of H [23]. 

 

Then, obviously, the desired Q can be derived 

via the ratio λ: 

Q = Pp −
1

1+λ∙‖H‖2 ∙ F ∙ Pp ∙ FT              (12) 

 

where 

Pp = λ ∙ ‖H‖2 ∙ H+ ∙ R ∙ (H+)T               (13) 

 

 

3  SNR Definitions 
The input signal-to-noise ratio (input SNR) and 

output signal-to-noise ratio (output SNR) are 

defined in [16]: 

 

The input signal-to-noise ratio (input SNR) is: 

H ∙ PL ∙ HT = rin ∙ R               (14) 

 

The output signal-to-noise ratio (output SNR) is: 

H ∙ PL ∙ HT = rout ∙ H ∙ Pe ∙ HT              (15) 
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where the following signal-to-noise ratio 

improvement property holds: 

rout ≥ rin                (16) 

 

The I/O SNR is the ratio defined by the output 

SNR divided by the input SNR: 

r =
rin

rout
                  (17) 

 

Obviously,  

r ≤ 1                  (18) 

 

 

4  Relation between SNR and Noise 

Covariances 
In the following, the relation between the I/O SNR r 

and the noise covariances norm ratio λ is 

established. 

 

From (14) and (15) we get: 

rout ∙ H ∙ Pe ∙ HT = rin ∙ R 
 

From (4) and (7) we get: 

H ∙ Pe ∙ HT = H ∙ (Pp
−1 + HT ∙ R−1 ∙ H)

−1
∙ HT

=
c

1 + c
∙ R 

 

Then, we have: 

rout ∙
c

1 + c
∙ R = rin ∙ R 

 

and using (17) we get: 

r =
c

1+c
                              (19) 

 

or 

 

c =
r

1−r
                                         (20) 

 

Finally, using (11) we get the relation between r and 

λ: 

r =
λ∙‖H‖2

1+λ∙‖H‖2                (21) 

 

or 

 

λ =
r

1−r
∙

1

‖H‖2                (22) 

 

 

5  Noise Covariances Estimation  
 

5.1  State Noise Covariance Estimation 
When the state noise covariance Q is unknown, we 

are able to estimate it via the I/O SNR. In fact, we 

rewrite (12) and (13) using (22). Then, the desired Q 

can be derived via the ratio r: 

Q = Pp − (1 − r) ∙ F ∙ Pp ∙ FT              (23) 

 

where 

 

Pp =
r

1−r
∙ H+ ∙ R ∙ (H+)T                          (24) 

 

5.2  Measurement Noise Covariance 

Estimation 
When the state noise covariance R is unknown, we 

are able to estimate it via the I/O SNR. In fact, we 

rewrite (23) as: 

Pp = Q + (√1 − r ∙ F) ∙ Pp ∙ (√1 − r ∙ F)
T

          (25) 

 

The solution of this Lyapunov equation depends 

on the known parameters F, Q, r. It is worth to note 

that a proper selection of r is prerequisite for the 

existence of the unique solution of this Lyapunov 

equation. 

Then, the desired R can be derived via the ratio r by 

rewriting (7) as: 

R =
1−r

r
∙ H ∙ Pp ∙ HT                           (26) 

 

 

6  Application in Steady-State 

Kalman Filter 
In both the above cases where the state or the 

measurement noise covariance is unknown, the 

steady-state Kalman filter gain (5) becomes [23]: 

K = Pp ∙ HT ∙ (H ∙ Pp ∙ HT + R)
−1

 

    = H+ ∙ H ∙ Pp ∙ HT ∙ (H ∙ Pp ∙ HT + R)
−1

 

 

Then, using (26) we get: 

K = r ∙ H+                                 (27) 

 

Hence, the steady-state Kalman filter becomes: 

Steady-State Kalman Filter 

 

x(k + 1/k + 1) = (1 − r) ∙ F ∙ x(k/k) + r ∙ H+ ∙ z(k) 

 

It is obvious that the steady-state Kalman filter 

parameters depend on r. 

The resulting steady-state Kalman filter is 

suboptimal [23], but it can be implemented without 

the a priori knowledge of the state or measurement 

noise covariance.  

Note that in the time-invariant case, all the 

Kalman filter parameters constant. In the steady-

state case, the Kalman filter gain in (27) is constant 

as well. The estimation error covariance and the 

prediction error covariance are also constant. The 
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state estimation is derived by the steady-state 

Kalman filter equation. The state prediction is: 

x(k + 1/k) = F ∙ x(k/k)              (28) 

 

 

7  Application in Time-Varying 

Kalman Filter 
Consider the time-varying case, where all the 

Kalman filter parameters are time-varying, i.e. 

F(k + 1, k), H(k), Q(k), R(k).  

Then we use the time-varying noise covariances 

norm ratio λ(k): 

λ(k) =
‖Q(k)‖F

‖R(k)‖F
                            (29) 

 

Following the ideas in [23], we define the time-

varying scalar positive tuning factor c(k): 

H(k) ∙ P(k/k − 1) ∙ HT(k) = c(k) ∙ R(k)            (30) 

 

with 

 

c(k) = λ(k) ∙ ‖H(k)‖2               (31) 

 

Then, the Kalman filter gain becomes:  

K(k) =
c(k)

1+c(k)
∙ H+                           (32) 

 

since 

 

K(k) = P(k/k − 1) ∙ HT(k) 

          ∙ (H(k) ∙ P(k/k − 1) ∙ HT(k) + R(k))
−1

 

 

H(k) ∙ K(k) = H(k) ∙ P(k/k − 1) ∙ HT(k) 

         ∙ (H(k) ∙ P(k/k − 1) ∙ HT(k) + R(k))
−1

 

 

H(k) ∙ K(k) = c(k) ∙ R(k) ∙ (c(k) ∙ R(k) + R(k))−1 

 

H(k) ∙ K(k) =
c(k)

1 + c(k)
 

 

The estimation and the estimation error 

covariance matrix are:  

x(k/k) = [I − K(k) ∙ H(k)] ∙ x(k/k − 1) 

             +K(k) ∙ z(k)               (33) 

 

P(k/k) = [I − K(k) ∙ H(k)] ∙ P(k/k − 1)           (34) 

 

The prediction and the prediction error 

covariance matrix are: 

x(k + 1/k) = F ∙ x(k/k)                          (35) 

 

P(k + 1/k) = Q(k) 

           +F(k + 1, k) ∙ P(k/k) + FT(k + 1, k)      (36) 

 

or 

 

P(k + 1/k) = c(k) ∙ H+(k) ∙ R(k) ∙ (H+(k))
T

   (37) 

 

Finally, we define the time-varying factor r(k): 

r(k) =
c(k)

1+c(k)
                            (38) 

 

Of course 

 

c(k) =
r(k)

1−r(k)
                            (39) 

 

Then, from (32) and (39) we get: 

r(k) =
λ(k)∙‖H(k)‖2

1+λ(k)∙‖H(k)‖2                                       (40) 

 

Thus, we are able to use the time-varying noise 

covariances norm ratio λ(k) in order to derive the 

time-varying Kalman filter: 

 

Time-Varying Kalman Filter 

 

K(k) = r(k) ∙ H+(k) 

x(k/k) = (1 − r(k)) ∙ x(k/k − 1) + K(k) ∙ z(k)                               

P(k/k) = (1 − r(k)) ∙ P(k/k − 1) 

x(k + 1/k) = F(k + 1, k) ∙ x(k/k) 

P(k + 1/k) =
r(k)

1 − r(k)
∙ H+(k) ∙ R(k) ∙ (H+(k))

T
 

 

 

8  Conclusions 
Kalman filters are successfully used for solving 

filtering problems in many different areas of science 

and engineering. Especially in the field of electrical 

engineering and electric controls, Kalman filters are 

an integral part of many states of the art of electric 

controls.  

However, the practical implementation of 

Kalman filters often presents difficulties due to the 

ignorance of noise covariances. In this paper, the 

relation between the I/O SNR and the noise 

covariances norm ratio for the discrete-time steady-

state Kalman filter has been determined and it is 

shown that when the state or measurement noise 

covariance is unknown, it can be tuned via the I/O 

SNR.  

This result can be applied in time-varying 

systems and in steady-state systems, without the a 

priori knowledge of the state or measurement noise 

covariance. The impact of this result on Kalman 

filtering, combined with AI techniques to estimate 

the noise covariances, can be to derive reliable 

estimates, in the absence of noise covariances. 
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Future work includes solving real-world 

electrical engineering and electronic problems using 

the proposed approach and investigating the 

extension of the proposed method in nonlinear 

prediction and estimation applications.  
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