
Robustness of Moving Average-Exponential Weighted Moving Average 

Control Chart with the Light-Tailed Distribution 

 
SUGANYA PHANTU1, YUPAPORN AREEPONG2, SAOWANIT SUKPARUNGSEE2,* 

1Faulty of Science, Energy, and Environment,  
King's Mongkut University of Technology North Bangkok,  

Rayong 21120,  
THAILAND 

 
2Department of Applied Statistics, Faculty of Applied Science, 
 King Mongkut's University of Technology, North Bangkok,  

Bangkok, 10800 
THAILAND 

 
*Corresponding Author 
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present a case to show how essential control charts are in practice. 
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1  Introduction 
Statistical Process Control (SPC) utilizes statistical 
analysis to monitor and improve the quality of 
processes across various industries, extending its 
reach beyond traditional manufacturing 
applications. Control charts, introduced by [1], serve 
as the cornerstone of SPC methodology. These 
charts effectively identify abnormal variations 
within a process, ensuring consistent performance 
and adherence to quality specifications. Initially 
developed for the manufacturing sector, control 
charts have seen widespread adoption in diverse 
fields, including nuclear engineering, healthcare, 
and education, [2], [3], [4], [5]. 

Prioritizing the analysis of dispersion 
parameters before location parameters is crucial for 
establishing a robust understanding of process 
variability. Higher dispersion indicates a broader 
process output. At the same time, low dispersion 
suggests that the output is closely clustered around a 
central trend. To characterize process features, 
failing to assess and control dispersion before 
estimating position parameters might drastically 
impair their interpretability due to the potentially 

deceptive effects of excessive variance. As a result, 
a thorough examination of dispersion gives critical 
insights into process variability and guides the 
selection of the best position measurement for 
robust characterization. 

Although much control chart research focuses 
on the fundamentals of normality, it is also helpful 
for verification processes governed by standard 
distributions, such as the Student's t-distribution and 
the mixture-specific distribution, which are common 
in industrial applications. Furthermore, control chart 
features can be carefully chosen for processes with 
non-normal distributions to achieve a given shift 
magnitude. Conversely, control chart designs are 
suited to processes with unknown distributions and 
predefined target shift sizes. It is a daunting 
challenge. 

Shewhart chart is excellent at spotting 
substantial process changes despite their reliance on 
recent observations. It is, however, less responsive 
to changes. Control charts with memory, such as 
cumulative sum (CUSUM) and exponentially 
weighted moving average (EWMA) control charts 
[6], [7], can be used to address this problem. These 
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graphics make use of both historical and current 
data. Enhances ability to notice small process 
changes. Although, [8] suggests moving average 
(MA) charts as an alternative, their performance 
may not always match that of CUSUM or EWMA 
charts in all circumstances. 

The never-ending quest for better process 
parameter changes detection has driven the recent 
development of advanced control charts. 
Researchers used known approaches, such as 
EWMA and MA charts, to present an innovative 
control chart. [9] show a modified EWMA 
(mEWMA) chart. It is specifically developed to 
increase average verification while [10] used a 
different strategy. [11], who pioneered the MA-
EWMA chart for processes with exponential 
distributions, presented EWMA-MA charts, which 
integrate strategic features from both control charts. 
Their findings convincingly indicate the improved 
effectiveness of MA-EWMA charts in identifying 
parameter changes in a wide range of processes. It 
includes symmetric and asymmetric distributions for 
all change sizes.  

The use of control charts is divided into two 
situations: Phase I and Phase II where Phase I 
retrospectively focuses on thoroughly understanding 
the process and assessing its stability. This distance 
ensures the process functions within the inherent 
variability at the desired goal level. In addition, 
Phase I includes estimating essential process 
parameters and determining control limits. 
Following this, Phase II, the prospective phase, 
leverages the control chart to monitor processes in 
real-time. Its primary objective is the detection of 
incipient process shifts, facilitating the timely 
implementation of corrective actions. Phase II 
assesses control chart performance, particularly its 
efficacy in identifying process changes. In this 
paper, In Phase II, we focus on effective control 
charts for process dispersion parameters to solve 
problems with position parameters. For EWMA 
charts, [12]. Leveraging the established framework 
of EWMA charts, [13] introduced a ground-
breaking approach to process variability monitoring. 
Their methodology centers on log-transformed 
sample variance, explicitly targeting the detection of 
nascent increases in variability that can critically 
impact product quality. This innovative approach 
outperforms traditional range or s2 chart by enabling 
the swift identification of even minute standard 
deviation increases within a normally distributed 
process. [14], go into much detail about tracking 
distributions via normalized transformation. Their 
study looked at using EWMA control charts created 
utilizing the sample variance transformed 

logarithmically. They introduced a new control 
chart known as the NEWMA chart. The strategy 
includes a selective deletion of negative 
observations. As a result, it can improve the 
efficiency of detecting fragmentation changes, 
particularly for little differences. 

[15], extended the study of process variability 
by employing one-sided and two-sided EWMA 
charts. Their simulations confirmed the accuracy of 
the preceding chart in detecting upward drift. The 
chart below outperforms current approaches for 
identifying shifts. [16], examine the choice of 
control charts for variability. Eight configurations 
were rigorously evaluated using standard deviation 
estimators for normal and non-normal distributions. 
They include calculation variables for control limits, 
greatly aiding the operator in chart selection. [17], 
compared the average performance (AMRL) of two 
new memory charts (Float T-S^2 and U-S^2) to 
CUSUM and EWMA charts. Their findings suggest 
fragmentation changes are detected more accurately, 
particularly for specific change sizes. [18], 
evaluated the efficacy of moving average standard 
deviation (MA-S) control charts in detecting process 
variability changes. Their study compared the 
performance of the MA-S chart to the standard S 
control chart, which used a moving average of 
sample standard deviations to measure process 
variance. 

This article offers a combination control chart 
used to monitor process fragmentation. One 
distinguishing characteristic is using EWMA and 
MA statistics to estimate dispersion depending on 
change magnitude. Identifying this constant will 
mainly cause the control chart to differ. Monte 
Carlo simulations are crucial. It gives essential 
measures such as AMRL and SDRL. These 
indicators enable us to evaluate the chart's 
performance in various conditions. 
Comprehensively, this guarantees that adequate 
performance is evaluated under various scenarios.  

As a result, this work presents an effective MA-
EWMA control chart for monitoring process 
dispersion parameters. The design structure and 
performance were investigated, particularly in 
distinct primary conditions where the process 
dispersion factors differed. The motivation and 
inspiration for this investigation came from, [19]. 
Before moving on to the MA EWMA chart's basic 
structure, we describe the robust estimators in the 
next section. This paper is structured as follows: 
Sec. 2 comprehensively develops the control chart 
for standard deviation, detailing its construction; 
Sec. 3 meticulously evaluates its performance, 
scrutinizing effectiveness; Sec. 4 encompasses the 
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simulation study; Sec. 5 includes comparative 
analysis and Sec. 6 discusses the illustrating 
example; and finally, Sec. 7 encapsulates the study's 
findings, making a definitive statement about the 
research. 
 
 
2  Control Charts 
This section outlines the theoretical basis for control 
charts. It begins by outlining the assumptions 
regarding the underlying data distribution, 
specifically the Student's t distribution, followed by 
a detailed explanation of control chart properties.  
 
2.1  Distribution 
This study investigates the performance 
measurement of control charts utilizing the 
arithmetic mean of run length and standard 
deviation of the run length with the t-value 
distribution shown below. 

However, t   has heavier tails, and the 
parameter   controls the probability mass of the 
tails. For 1,   the Student's t distribution t  is 
transformed into the standard Cauchy distribution, 
which has very fat tails, whereas for ,   it is 
transformed into the standard average distribution 
N(0,1), which has thin tails. The probability density 
function for the Student's t-distribution is: 
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The parameter  is the number of degrees of 

freedom. The expectation of t distribution is 0, and 
the variance of the distribution is / 2.     
 
2.2  Control Chart 
The author's research focuses on the performance of 
the moving average control chart - exponential 
moving average (MA-EWMAS) with standard 
deviation. Then, compare the detection efficiency. 
The Student's t-distribution is an example of a 
symmetrical distribution. Control chart performance 
is determined by the arithmetic mean of run length 
when the manufacturing process is outside of the 
arithmetic mean of run length control (AMRL1) and 
the run length's standard deviation. The theories and 
related research are discussed below. 
 

2.2.1  S Chart 

The standard deviation control chart (S-chart) is the 
most basic chart for detecting variations in a 
process's standard deviation. The standard deviation 
control limit is computed using the probability limit, 
or 3  in the approach, which is 3S S  , where S  
and S  are the process's mean and standard 
deviation, [20].  
 Thus, the chart's upper and lower control limits 
are given as (2). When ̂  is an unknown parameter, 
it can be calculated by 4/ .S c  
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  (2) 
 
where 1B  is the coefficient of control limit of the S 
chart. The process is unstable if a sample point plot 
is outside the control limit. 4c  is the factor for 
calculating the control limit of the control chart. S  
is the mean of the standard deviation of the process. 
 
2.2.2  MA-S Chart 

To detect process fluctuations, [18] investigated 
standard moving average (MA) control charts. MA 
charts may immediately identify departures from the 
control for changes. Minor and Major Process 
Variability MA charts have two possible statistical 
values: 
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When l is the width of the MA-S chart. The 
expectation of the MA-S statistic is denoted as  
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and the variance of MA statistic can be divided into 
two cases as follows: 
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Therefore, the variance of MA-S can be rewritten as  
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Therefore, the upper and lower control limits 

are given as follows: 
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Where 2B  is the coefficient of control limit of the 
MA chart. 
 
2.2.3 EWMA-S chart 

[6], introduced EWMA charts, which [13] 
investigated further. EWMA charts are a great 
alternative to Shewhart charts for detecting minor 
changes in process parameters and 
monitoring fluctuations. The procedure is based on 
statistics, [20]. 
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Where   is the weighting parameter of the data 
in the past having the value from 0 to 1, and 

iS  is 
the average standard deviation at the time i. The 
mean and variance of EWMA-S are: 
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Therefore, the control limit of the EWMA-S chart is 
as follows: 
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Where 3B  is the coefficient of control limit of the 
EWMA-S chart. 
 
2.2.4  MA-EWMAS Chart 

The MA-EWMAS chart combines the MA-S and 
EWMA-S charts, [11]. Let iZ  is statistical data for 
the EWMA-S chart, which is input to the MA-S 
chart. Thus, the statistics of the MA-EWMAS chart 
are as follows: 
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When l is the width of the MA-EWMAS chart. 

The mean and variance of statistics MA-EWMAS 
are 
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Therefore, the control limits of the MA-

EWMAS chart are as follows 
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Where 4B  is the coefficient of control limit of the 
MA-EWMAS chart. 
 
2.3 The Performance of Control Chart 

Commonly, the efficiency of control charts is 
measured from the mean of run length or arithmetic 
mean of run length (AMRL). The AMRL is the 
estimated number of observations from a 
process under control before the control chart 
incorrectly flags out of control. It is divided into two 
phases: Phase I is in control (represented by 
AMRL0), and Phase II is out of control (represented 
by AMRL1). The AMRL can be defined as follows: 
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In this case, the sample being examined before 

the process surpasses the control limits for the first 
time is indicated by RLi. T, set to 200,000, is the 
number of experiment repetitions in the simulation 
during round i. 

The standard deviation of the run length 
(SDRL) can be computed as follows: 
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3  Analyses of Results 
This study investigates the efficiency of control 
charts in detecting changes in process standard 
deviation. The analysis employed a student 
distribution with 15, 30, and 50 degrees of freedom 
and sample sizes of 5 and 10. Monte Carlo 
simulations allow for the calculation of numerical 
results. The in-control arithmetic mean of run length 
(AMRL0) is set at 370. The AMRL1 measure is used 
to determine the effectiveness of the control chart. 
The figure displays the lowest AMRL1 readings, 
regarded as the most effective at detecting changes. 
The findings of the study are separated into two 
parts: 
 
3.1  Performance of MA-EWMA Chart 
The run length evaluation method for a mixed 
moving average – exponentially weighted moving 
average control chart (MA-EWMA) for process 
dispersion. The weighting factors ( )  of the MA-
EWMA control charts were 0.50, and the width of 
the moving average (l) was 2, 3, 5, 10, and 15. The 
number of repetitions of the MA-EWMA chart is 
5,000 iterations. The changing sizes of the process  
   were 1.10, 1.20, 1.30, 1.40, 1.50, 1.75, 2.00, 
2.50, and 3.00. The estimated arithmetic mean of 
run lengths (AMRLs) for each case can be explained 
as follows: 

Table 1 (Appendix) presents the arithmetic 
mean of run length (AMRL) of the MA-EWMA 
chart for t-distributed data with a parameter value of 
15 and a subgroup size of 5. The AMRLs of the 
MA-EWMA chart with smoothing parameters (l) of 
2, 3, 5, 10, and 15 are compared. The results show 
that when the process shift increases, the MA-
EWMA chart with a smoothing parameter (l) of 2 is 
the most effective in detecting changes in the 
standard deviation, as it has the lowest AMRL1 
value. 

Table 2 (Appendix) displays the AMRL values 
of the MA-EWMA control chart based on data 
distributed as the t-distribution, utilizing parameter 
settings of 15 and a subgroup size of 10. This 
research examines the AMRL performance of the 
MA-EWMA control chart with smoothing 
parameter (l) settings of 2, 3, 5, 10, and 15. The 
results imply that the MA-EWMA control chart 
with smoothing grows with the extent of the process 
change. Because of the lowest AMRL1 value, the 
parameter (l) set to 2 outperforms others in detecting 
standard deviation differences. 

Table 3 and Table 4 (Appendix) show the 
arithmetic mean of run length (AMRL) of the MA-
EWMA charts when the data is assumed to follow a 

t-distribution with parameters of 30 and subgroup 
sizes of 5 and 10, respectively. Furthermore,  

Table 5 and Table 6 (Appendix) display the 
AMRL values of the MA-EWMA charts under the t 
distribution assumption, with the parameter set to 50 
and the subgroup sizes set to 5 and 10, respectively. 
The results reveal that when process variability 
grows, parameter (l) value 2 for MA-EWMA charts 
performs the best in identifying changes in standard 
deviation. This result mirrors the outcomes observed 
when the t-distribution parameters were set at 15. 
 
3.2 AMRL and SDRL Performance of the 

 Control Chart 
To comparison, the MA-EWMA control chart is 
compared with the S chart, moving average-
standard deviation (MA), exponentially weighted 
moving average-standard deviation (EWMA), 
measured by the out-of-control arithmetic mean of 
run length (AMRL1), and standard deviation of run 
length (SDRL). The parameter of in-control for the 
MA-EWMA chart is given AMRL0 = 370, 0.5, 

and l = 2. The parameter changes at  = 1.10, 1.20, 
1.30, 1.40, 1.50, 1.75, 2.00, 2.50, and 3.00. The 
results of comparing the efficiency of control charts 
for measuring dispersion can be explained as 
follows: 

Table 7 (Appendix) specifies data assumed to 
follow a t-distribution with parameters set at 15 and 
subgroup sizes of 5. The numerical data analysis 
reveals that when there is a change in the process, 
the measurement of dispersion increases. The MA 
chart is the most efficient control chart for detecting 
these changes, exhibiting the lowest AMRL1 value. 

Subsequently, Table 8 (Appendix) outlines data 
presumed to conform to a student t-distribution with 
parameters set at 15 and subgroup sizes of 10. 
Analysis of the numerical data indicates that the 
dispersion measurement falls within the range of 
1.00 to 2.00 in the event of a process change. S 
charts seem to be the best control charts for spotting 
these changes. MA charts also outperform in 
identifying changes, as evidenced by the lowest 
AMRL1 value. 

 Table 9 (Appendix) displays the results from 
numerical investigations expected to follow a t-
distribution with parameters set to 30 and a 
subgroup size of 5, the dispersion metric increases 
when the method changes. MA charts appear to be 
the best control charts for detecting such changes. It 
outperforms other charts, each with the lowest 
AMRL1 value.  

Table 10 (Appendix) demonstrates that with 
data from the t-distribution and parameters set to 30 
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with a subgroup size of 10, numerical analysis 
suggests that S-charts are the most successful at 

detecting changes within a range. Dispersion 
measurement ranges from 1.00 to 2.50.  

Additionally, when the dispersion measurement 
reaches 3.00 or higher due to a process change, the 
MA chart outperforms all presented charts, 
exhibiting the lowest AMRL1 value in change 
detection.  

Table 11 and Table 12 (Appendix) compare 
control charts' arithmetic mean of run length 
outcomes under a t-distribution with parameters set 
at 50 and subgroup sizes of 5 and 10, respectively. 
The findings suggest that the most effective chart 
consistently aligns with the scenario where the data 
follows a student-t distribution with parameters set 
at 30, regardless of the level of change. 

 
3.3  A Real Application 
This section illustrates the practical application of 
an accelerometer dataset within the control chart 
examined in this research. Accelerometers, versatile 
devices with applications spanning manufacturing 
vibration measurement, car accident detection, 
pollution monitoring, scientific research, medicine, 
and more, are the focus. For this study, we have 
utilized a smartphone accelerometer dataset for 
monitoring objectives, specifically implementing 
control charts for accelerometer data. Following the 
methodology outlined by [21], we have divided the 
data into 10 subgroups, each comprising 40 entries. 
The appropriate distribution for this data is a 
student- t distribution with an average of 0.843 and 
a standard deviation of 0.257. The performance 
measurement results in detecting data changes 
through graphical representations can be explained. 

Figure 1 demonstrates that the S-chart statistic 
falls between the upper and lower boundaries, which 
leads to the conclusion that S chart cannot detect 
changes in data. MA chart, like S chart, cannot 
detect changes in data since the statistics do not 
surpass the top and lower bounds, as seen in Figure 
2. 

Figure 3 indicates that the EWMA chart 
cannot detect changes in the data. Finally, the 
analysis detects variations in the standard deviation. 
Figure 4 illustrates how the MA-EWMA chart 
successfully identified nine process improvements 
when comparing the performance of the charts 
above. Finally, the MA-EWMA chart outperforms 
other methods for detecting standard deviations. 

 
 

4   Conclusion and Further Research 
This research aims to construct the new mixed MA-
EWMA for monitoring the standard deviation and 

examines the AMRL and SDRL of control charts for 
a Student t-distribution method. The preliminary 
study gives operators insight into control charts to 
aid in process monitoring and prevent delays in 
identifying process changes. The mixed MA-
EWMA chart is robust to the light-tail process as 
student-t distribution to detect a process dispersion 
based on standard deviation for large magnitudes of 
shift sizes.  
  

 
Fig. 1: Performance of S chart 
 

 

 
Fig. 2: Performance of MA chart 
 
 

 
Fig. 3: Performance of EWMA chart 
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Fig. 4: Performance of MA-EWMA chart 
 

In addition, the results obtained by simulation 
studies reveal that the mixed MA-EWMA based on 
standard deviation outperformed as well as for MA 
chart for moderate to large shift sizes when the 
parameter of student-t distribution is increased. In 
future research, the verification can be extended to 
heavy-tail processes and compared with other 
control charts. Other performance metrics include 
the median run length (MRL) and the percentile of 
the run length distribution. In most real-world 
settings, comparing these charts helps determine 
process parameters such as target mean and standard 
deviation from Phase I datasets. Because so little 
information is available, the process parameters 
must be guessed. 
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APPENDIX 

 
Table 1. AMRL1 of MA-EWMAS charts when the data are from t(15) with AMRL0 =370, n=5 and 𝜆=0.5

Shift size l=2 l=3 l=5 l=10 l=15 

B4 = 3.124 B4 = 3.113 B4 = 3.136 B4 = 3.125 B4 = 3.143 
1.00 370.667 370.449 370.447 370.170 370.892 
1.10 352.726 355.624 358.461 362.486 364.252 
1.20 327.148 330.853 331.843 333.644 335.490 
1.30 291.570 292.482 295.173 298.456 310.189 
1.40 267.901 267.056 269.434 275.162 286.953 
1.50 244.116 258.511 267.131 270.667 271.148 
1.75 189.053 202.134 253.835 264.160 266.545 
2.00 144.279 153.502 196.957 211.760 238.471 
2.50 83.056 86.468 106.831 158.806 204.199 
3.00 49.392 49.994 56.377 72.721 83.335 

Note: Italics number represents the lowest AMRL1.   

 
 

Table 2. AMRL1 of MA-EWMAS charts when the data are from t(15) with AMRL0 =370, n=10 and 𝜆=0.5 
Shift size l=2 l=3 l=5 l=10 l=15 

B4 = 3.107 B4 = 3.115 B4 = 3.119 B4 = 3.121 B4 = 3.125 
1.00 370.797 370.209 370.210 370.414 370.174 
1.10 350.237 354.958 357.066 365.182 367.205 
1.20 325.249 329.425 331.107 338.925 345.716 
1.30 284.324 289.341 290.143 294.312 297.856 
1.40 254.822 258.821 260.347 262.470 275.314 
1.50 248.723 255.001 261.133 268.213 272.558 
1.75 186.683 231.115 237.073 245.840 248.512 
2.00 134.565 166.357 173.987 181.801 192.608 
2.50 68.557 78.794 103.557 159.087 172.579 
3.00 35.540 37.997 43.778 53.497 59.378 

Note: Italics number represents the lowest AMRL1.   

 
 

Table 3. AMRL1 of MA-EWMAS charts when the data are from t(30) with AMRL0 =370, n=5 and 𝜆=0.5 

Shift size l=2 l=3 l=5 l=10 l=15 

B4 = 3.109 B4 = 3.112 B4 = 3.120 B4 = 3.124 B4 = 3.125 
1.00 370.018 370.049 370.016 370.299 370.836 
1.10 360.449 361.204 365.780 367.564 368.056 
1.20 355.092 356.101 357.315 359.930 360.417 
1.30 347.868 349.724 350.443 352.946 356.410 
1.40 323.542 326.829 330.216 343.928 347.281 
1.50 309.954 314.645 319.955 339.068 340.928 
1.75 275.962 282.378 294.507 322.848 331.998 
2.00 241.405 248.910 270.843 317.289 322.096 
2.50 176.970 181.798 201.243 242.719 274.396 
3.00 126.273 127.269 138.049 161.846 177.374 

Note: Italics number represents the lowest AMRL1.   
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Table 4. AMRL1 of MA-EWMAS charts when the data are from t(30) with AMRL0 =370, n=10 and 𝜆=0.5 

Shift size l=2 l=3 l=5 l=10 l=15 

B4 = 3.105 B4 = 3.114 B4 = 3.118 B4 = 3.124 B4 = 3.126 
1.00 370.015 370.641 370.534 370.521 370.296 
1.10 351.967 353.187 356.822 360.478 361.854 
1.20 344.630 346.859 349.558 352.064 358.416 
1.30 325.418 330.714 333.561 336.205 342.758 
1.40 312.546 316.852 320.141 324.189 337.286 
1.50 309.064 315.986 317.717 319.902 327.354 
1.75 271.972 293.404 308.508 312.539 318.041 
2.00 232.434 255.135 293.359 304.849 308.863 
2.50 160.521 174.281 202.015 252.182 287.580 
3.00 104.469 106.640 119.966 136.785 144.904 

Note: Italics number represents the lowest AMRL1.   

 

 

Table 5. AMRL1 of MA-EWMAS charts when the data are from t(50) with AMRL0 =370, n=5 and 𝜆=0.5 

Shift size l=2 l=3 l=5 l=10 l=15 

B4 = 3.109 B4 = 3.116 B4 = 3.119 B4 = 3.125 B4 = 3.126 
1.00 370.524 370.568 370.268 370.173 370.096 
1.10 349.786 352.748 357.809 361.270 364.593 
1.20 347.152 349.617 352.641 355.276 358.947 
1.30 343.268 345.501 348.286 350.421 352.119 
1.40 339.107 341.226 343.028 347.564 349.871 
1.50 336.352 338.328 341.881 340.819 345.469 
1.75 315.385 318.340 327.536 336.919 338.771 
2.00 293.496 296.135 307.660 321.987 327.538 
2.50 245.854 247.676 260.307 288.648 306.944 
3.00 198.407 199.040 209.393 232.726 246.549 

Note: Italics number represents the lowest AMRL1.   

 
 

Table 6. AMRL1 of MA-EWMAS charts when the data are from t(50) with AMRL0 =370, n=10 and 𝜆=0.5 

Shift size l=2 l=3 l=5 l =10 l =15 
B4 = 3.108 B4 = 3.118 B4 = 3.121 B4 = 3.125 B4 = 3.128 

1.00 370.637 370.020 370.342 370.084 370.026 
1.10 352.411 355.967 357.187 359.721 360.187 
1.20 349.724 351.092 355.131 357.413 358.943 
1.30 343.528 345.201 348.664 350.217 352.323 
1.40 339.642 340.829 342.511 345.976 348.665 
1.50 335.655 337.017 339.812 341.139 342.956 
1.75 312.999 320.704 330.587 334.313 338.704 
2.00 287.991 297.356 316.148 329.476 332.221 
2.50 233.555 243.308 262.604 294.001 315.031 
3.00 179.770 186.303 198.041 214.766 222.886 

Note: Italics number represents the lowest AMRL1.   
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Table 7. Comparison AMRL1 of S, MA, EWMA, and MA-EWMAS charts from t(15) with l=2, 𝜆=0.5, and n=5 
 

Shift size 
S chart MA chart EWMA chart MA-EWMAS chart 

B1 = 3.156 B2 = 3.075 B3 = 3.154 B4 = 3.124 
AMRL SDRL AMRL SDRL AMRL SDRL AMRL SDRL 

1.00 370.114 0.971 370.096 0.973 370.352 0.978 370.667 0.974 
1.10 265.464 0.927 261.287 0.915 274.689 0.967 352.726 0.961 
1.20 260.794 0.894 258.164 0.894 263.478 0.935 327.148 0.902 
1.30 259.799 0.851 253.461 0.824 256.974 0.912 291.570 0.854 
1.40 254.637 0.790 249.347 0.781 252.962 0.880 267.901 0.785 
1.50 250.747 0.743 243.793 0.728 248.385 0.862 244.116 0.731 
1.75 199.445 0.616 188.855 0.587 192.659 0.698 189.053 0.588 
2.00 156.547 0.483 144.024 0.457 145.375 0.536 144.279 0.458 
2.50 96.280 0.308 82.938 0.264 82.759 0.300 83.056 0.265 
3.00 60.980 0.194 49.332 0.158 48.727 0.171 49.392 0.158 

Note: Italics number represents the lowest AMRL1.   

 
 
Table 8. Comparison AMRL1 of S, MA, EWMA, and MA-EWMAS charts from t(15) with l=2, 𝜆=0.5 and n=10 

 
Shift size 

S chart MA chart EWMA chart MA-EWMAS chart 
B1 = 3.158 B2 = 3.082 B3 = 3.167 B4 = 3.107 

AMRL SDRL AMRL SDRL AMRL SDRL AMRL SDRL 
1.00 370.835 0.972 370.745 0.972 370.545 0.980 370.797 0.972 
1.10 295.146 0.944 304.107 0.946 293.107 0.953 350.237 0.954 
1.20 270.764 0.914 290.174 0.915 273.165 0.924 325.249 0.897 
1.30 264.822 0.832 272.316 0.889 269.208 0.873 284.324 0.834 
1.40 230.486 0.715 256.864 0.824 264.815 0.852 254.822 0.815 
1.50 227.612 0.687 248.707 0.741 259.988 0.697 248.723 0.741 
1.75 170.475 0.533 186.659 0.582 254.287 0.590 186.683 0.582 
2.00 126.960 0.402 134.526 0.426 195.113 0.513 134.565 0.426 
2.50 70.625 0.214 68.551 0.219 97.726 0.450 68.557 0.319 
3.00 40.496 0.113 35.535 0.134 49.165 0.209 35.540 0.134 

Note: Italics number represents the lowest AMRL1.  

 
 
Table 9. Comparison AMRL1 of S, MA, EWMA, and MA-EWMAS charts from t(30) with l =2, 𝜆=0.5 and n=5 

 
Shift size 

S chart MA chart EWMA chart MA-EWMAS chart 
B1 = 3.164 B2 = 3.068 B3 = 3.159 B4 = 3.109 

AMRL SDRL AMRL SDRL AMRL SDRL AMRL SDRL 
1.00 370.097 0.969 370.065 0.969 370.054 0.984 370.018 0.969 
1.10 336.842 0.945 331.052 0.946 338.461 0.979 360.449 0.953 
1.20 328.603 0.937 325.118 0.922 330.820 0.970 355.092 0.931 
1.30 322.849 0.916 320.176 0.906 325.649 0.962 347.868 0.914 
1.40 317.297 0.891 315.279 0.882 318.502 0.956 323.542 0.875 
1.50 313.791 0.874 309.982 0.868 313.581 0.945 309.954 0.868 
1.75 281.899 0.812 275.979 0.786 279.658 0.938 275.962 0.800 
2.00 249.459 0.740 241.420 0.720 244.241 0.847 241.405 0.723 
2.50 189.362 0.584 176.990 0.552 177.440 0.645 176.970 0.552 
3.00 139.837 0.443 126.286 0.400 123.566 0.453 126.273 0.400 

Note: Italics number represents the lowest AMRL1.   
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Table 10. Comparison AMRL1 of S, MA, EWMA, and MA-EWMAS charts from t(30) with l=2, 𝜆=0.5 and 
n=10 

 
Shift size 

S chart MA chart EWMA chart MA-EWMAS chart 
B1 = 3.168 B2 = 3.083 B3 = 3.176 B4 = 3.105 

AMRL SDRL AMRL SDRL AMRL SDRL AMRL SDRL 
1.00 370.016 0.970 370.028 0.987 370.071 0.989 370.015 0.972 
1.10 346.441 0.954 349.537 0.965 376.759 0.967 351.967 0.955 
1.20 334.749 0.919 338.601 0.922 372.303 0.952 344.630 0.921 
1.30 323.467 0.907 327.642 0.901 367.546 0.937 325.418 0.904 
1.40 310.149 0.884 317.058 0.885 361.037 0.918 312.546 0.886 
1.50 300.023 0.851 309.066 0.870 352.483 0.890 309.064 0.870 
1.75 261.972 0.770 271.973 0.794 335.078 0.864 271.972 0.794 
2.00 223.923 0.678 232.434 0.701 311.042 0.827 232.434 0.701 
2.50 156.675 0.491 160.528 0.503 243.168 0.792 160.521 0.503 
3.00 107.090 0.339 104.469 0.330 163.594 0.771 104.469 0.330 

Note: Italics number represents the lowest AMRL1.   

 

 

Table 11. Comparison AMRL1 of S, MA, EWMA, and MA-EWMAS charts from t(50) with l=2, 𝜆=0.5 and n=5 
 

Shift size 
S chart MA chart EWMA chart MA-EWMAS chart 

B1 = 3.172 B2 = 3.079 B3 = 3.165 B4 = 3.109 
AMRL SDRL AMRL SDRL AMRL SDRL AMRL SDRL 

1.00 370.013 0.971 370.561 0.975 370.563 0.985 370.524 0.971 
1.10 358.647 0.986 348.307 0.969 355.941 0.975 349.786 0.965 
1.20 350.228 0.974 345.922 0.945 351.036 0.952 347.152 0.947 
1.30 345.976 0.965 341.546 0.938 343.550 0.949 343.268 0.938 
1.40 342.208 0.934 338.250 0.922 340.312 0.934 339.107 0.924 
1.50 338.162 0.920 336.364 0.917 339.047 0.921 336.352 0.918 

1.75 319.640 0.886 315.425 0.875 319.235 0.899 315.385 0.880 

2.00 298.749 0.847 293.510 0.838 297.674 0.871 293.496 0.839 

2.50 254.419 0.751 245.873 0.731 248.432 0.852 245.854 0.733 

3.00 209.985 0.639 198.485 0.609 200.026 0.713 198.407 0.609 
Note: Italics number represents the lowest AMRL1.   

 
Table 12. Comparison AMRL1 of S, MA, EWMA, and MA-EWMAS charts from t(50) with l=2, 𝜆=0.5 and 
n=10 

 
Shift size 

S chart MA chart EWMA chart MA-EWMAS chart 
B1 = 3.175 B2 = 3.087 B3 = 3.182 B4 = 3.108 

AMRL SDRL AMRL SDRL AMRL SDRL AMRL SDRL 
1.00 370.833 0.972 370.229 0.971 370.524 0.992 370.637 0.972 
1.10 345.411 0.961 347.023 0.965 349.602 0.984 352.411 0.968 
1.20 341.869 0.955 343.556 0.957 344.856 0.962 349.724 0.960 
1.30 337.528 0.930 340.528 0.934 340.929 0.950 343.528 0.954 
1.40 333.142 0.917 338.641 0.920 339.528 0.934 339.642 0.936 
1.50 331.990 0.909 335.231 0.914 336.430 0.911 335.655 0.915 

1.75 308.280 0.868 312.643 0.874 313.138 0.893 312.999 0.875 

2.00 282.932 0.816 287.609 0.825 288.414 0.871 287.991 0.826 

2.50 230.997 0.696 233.311 0.701 234.775 0.862 233.555 0.701 

3.00 180.136 0.561 179.585 0.557 180.647 0.850 179.770 0.557 
Note: Italics number represents the lowest AMRL1.   
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