
Identification of Linear Systems Having Time Delay Connected in 

Series 

 
CHAIMAE ABDELAALI1, ALI BOUKLATA1, MOHAMED BENYASSI2, ADIL BROURI1  

1AEEE Department, ENSAM,  
Moulay Ismail University,  

MOROCCO 
 

 2Electrical Engineering Department, ESTM,  
Moulay Ismail University,  

MOROCCO 

 
Abstract: - Nonlinear system identification has been a hot research field over the past two decades. A 
substantial portion of the research work has been carried out based on block-structured models. Time delay is a 
problem occurring in most industrial applications. The time delay can destabilize the system. Then, the latter 
should be determined to control the system. This work aims to present an approach allowing the identification 
of a linear system having a time delay connected in series. In this study, an identification method is proposed to 
determine the system parameters. This method is based on sine inputs / or periodic stepwise input.     
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1   Introduction 
Nonlinear system identification has been a hot 
research field over the past two decades, [1], [2], 
[3], [4], [5], [6]. The research in this way is still 
ongoing, [7], [8], [9], [10]. Several available papers 
have been focused on the identification of nonlinear 
systems structured by the series connection of linear 
and nonlinear blocks, [11], [12], [13], as well as the 
parallel connection of linear and nonlinear blocks 
[14]. The nonlinear system identification is often 
addressed in the case of Wiener and Hammerstein 
models, [1], [15], [16], [17], [18]. The identification 
techniques have been used in several application 
domains, [19], [20], [21]. 

Several techniques and solutions have been used 
to identify the nonlinear system parameters, e.g., 
stochastic methods [22], deterministic recursive 
techniques [23], and frequency methods [24], [25]. 

The research on nonlinear systems focuses not 
only on identifying their nonlinearity but also on 
control, to mitigate the negative effects of non-
linearity on an affected system's performance, e.g., 
adaptive control using the backstepping method has 
been proposed, [26], [27], [28], fuzzy fixed-time 
control [29], passive robust control [30]. 

In this work, the focus is on system 
identification rather than compensating for the 
effects of nonlinearity. Knowing these nonlinearities 

makes other operations, including control, easier. In 
this way, the most studied solutions are proposed in 
the case of a series connection of linear and 
nonlinear blocks, i.e., the case of Hammerstein, 
Wiener, Wiener-Hammerstein, or Hammerstein-
Wiener models. To increase the complexity of 
nonlinear system models and to make the model 
more general, the parallel connections of linear and 
nonlinear subsystems can be proposed, [31], [32], 
[33], [34]. 

Presently, the problem of identification of linear 
systems connected in series with a time delay is 
addressed. The proposed approach can be applied to 
a linear system. Furthermore, this system can 
describe many industrial systems. The rest of the 
paper is organized as follows. Section 2 is devoted 
to the presentation of the identification problem. In 
this section, a mathematical description of a studied 
nonlinear system is also presented. The 
identification method of the system (linear with time 
delay) is developed in Section 3. Then, examples of 
simulations are proposed in Section 4. 
 

 
2   Problem Statement 
Most of the studied identification problems have 
been focused on linear or nonlinear blocks, e.g., the 
Hammerstein system (composed of nonlinear 
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element followed by a linear subsystem) and the 
Wiener system (having a linear subsystem followed 
by a nonlinear block). Presently, the identification 
problem is focused on a linear system followed by a 
time delay system. The linear system is described by 
a transfer function 𝐺(𝑠) and the time delay is of 
value 𝐷. When the latter is null (i.e., 𝐷 = 0), a 
constant linear system is obtained. 

Accordingly, the studied system can be 
mathematically described as follows: 

𝑦(𝑡) = 𝑔(𝑡 − 𝐷) ∗ 𝑢(𝑡 − 𝐷)     (1)  
 
where ‘∗’ denotes the convolution product, 𝐷 is the 
time delay, 𝑢(𝑡) is the control signal, 𝑦(𝑡) denotes 
the output signal, and 𝑔(𝑡) is impulse response of 
the linear system (i.e., 𝑔(𝑡) is the inverse Laplace 
transform). 

In discrete form, the transfer function 𝐺(𝑠) can 
be written as the ratio between two polynomials  
𝐴(𝑞) and 𝐵(𝑞):  

𝐴(𝑞) = 1 + ∑ 𝑎𝑘

𝑛𝑎

𝑘=1

𝑞−𝑘             (2)  

𝐵(𝑞) = ∑ 𝑏𝑘

𝑛𝑏

𝑘=1

𝑞−𝑘                        (3)  

where 𝑞 is the offset operator, i.e., 𝑞−𝑘𝑢(𝑡) =
𝑢(𝑡 − 𝑘). In this case, the transfer function 𝐺(𝑞) 
can be expressed as: 

𝐺(𝑞) =
𝐵(𝑞)

𝐴(𝑞)
=

∑ 𝑏𝑘
𝑛𝑏
𝑘=1 𝑞−𝑘

1 + ∑ 𝑎𝑘
𝑛𝑎
𝑘=1 𝑞−𝑘

   (4)  

 
Unlike several previous works (e.g., [1], [12], 

[15], [32]), this transfer function is not necessarily 
of nonzero static gain. Let 𝑣(𝑡) denotes the signal 
before time delay (the output of linear system). 
Then, one has immediately: 

𝑣(𝑡) = 𝑔(𝑡) ∗ 𝑢(𝑡)                            (5)  
 
which can be expressed using (4): 

𝑣(𝑡)

𝑢(𝑡)
=

∑ 𝑏𝑘
𝑛𝑏
𝑘=1 𝑞−𝑘

1 + ∑ 𝑎𝑘
𝑛𝑎
𝑘=1 𝑞−𝑘

                   (6)  

 
The latter leads to the following recursive equation: 

𝑣(𝑡) = ∑ 𝑏𝑘

𝑛𝑏

𝑘=1

𝑢(𝑡 − 𝑘) − ∑ 𝑎𝑘

𝑛𝑎

𝑘=1

𝑣(𝑡 − 𝑘)   (7)  

 
The output 𝑦(𝑡) can thus be written as: 

𝑦(𝑡) = 𝑣(𝑡 − 𝐷)                                         (8)  
 

Let us suppose that the time delay 𝐷 is a 
multiple of the sampling time. This means that 

𝑣(𝑡 − 𝐷) ≡ 𝑞−𝐷𝑣(𝑡). By combining this remark 
with (7), one has: 
 𝑦(𝑡) = 𝑣(𝑡 − 𝐷) = ∑ 𝑏𝑘

𝑛𝑏
𝑘=1 𝑢(𝑡 − 𝐷 −

𝑘) − ∑ 𝑎𝑘
𝑛𝑎
𝑘=1 𝑣(𝑡 − 𝐷 − 𝑘)                             (9) 

 
It is readily seen that the output 𝑦(𝑡) can be 

rewritten as the recursive expression: 
𝑦(𝑡) = 𝜑𝑇(𝑡)𝜃                       (10)  

 
where the data vector 𝜑(𝑡) is defined as: 
 𝜑(𝑡) = [𝑢(𝑡 − 𝐷 − 1), … , 𝑢(𝑡 − 𝐷 −
𝑛𝑏), −𝑣(𝑡 − 𝐷 − 1), … , − 𝑣(𝑡 − 𝐷 − 𝑛𝑎)]𝑇,  
 (11) 
and the parameter vector 𝜃 is defined as follows: 

𝜃 = [𝑏1, … , 𝑏𝑛𝑏
, 𝑎1, … , 𝑎𝑛𝑎

]
𝑇

              (12)  
 

Replacing 𝑣(𝑡 − 𝐷) with 𝑦(𝑡) in (9), one 
immediately gets: 
 𝑦(𝑡) = ∑ 𝑏𝑘

𝑛𝑏
𝑘=1 𝑢(𝑡 − 𝐷 − 𝑘) −

∑ 𝑎𝑘
𝑛𝑎
𝑘=1 𝑦(𝑡 − 𝑘),                                 (13) 

 
which can be also written as the recursive 
expression: 

𝑦(𝑡) = 𝜙𝑇(𝑡)𝜃                                       (14)  
 
where the parameter vector 𝜃 is given in (12) and 
the data vector 𝜙(𝑡) is given as: 
 𝜙(𝑡) = [𝑢(𝑡 − 𝐷 − 1), … , 𝑢(𝑡 − 𝐷 −
𝑛𝑏), −𝑦(𝑡 − 1), … , − 𝑦(𝑡 − 𝑛𝑎)]𝑇,       (15) 
 

In the case where the time delay is known, the 
data vector 𝜙(𝑡) given in (15) become known for 
any time 𝑡 ≥ 𝑚𝑎𝑥(𝐷 + 𝑛𝑏 , 𝑛𝑎). Indeed, the 
expression of 𝜙(𝑡) in (15) contains only the past 
values of input 𝑢(𝑡 − 𝑖) and output 𝑦(𝑡 − 𝑗), for 𝑖 =
𝐷 + 1 …  𝐷 + 𝑛𝑏 and 𝑗 = 1 … 𝑛𝑎, which can be 
fully determined for any time 𝑡 ≥ 𝑚𝑎𝑥(𝐷 +
𝑛𝑏 , 𝑛𝑎). Furthermore, the expression of 𝑦(𝑡) is 
affine according to the parameters, 𝑏1 … 𝑏𝑛𝑏

 and 
𝑎1 … 𝑎𝑛𝑎

. Then, the parameter vector 𝜃 can be easily 
identified using, e.g., the least square method 
(LSM). Let 𝜃(𝑡) denoting the parameter vector 
estimate. Accordingly, the LSM algorithm is 
described by the following equation system (16)-
(17): 

𝜃̇(𝑡) = −𝑃(𝑡)𝜙(𝑡)𝑦(𝑡)          (16)  
for any arbitrary initial estimate value 𝜃(0) and the 
gain matrix 𝑃(𝑡) is defined as: 

𝑃̇(𝑡) = 𝑃(𝑡) − 𝑃(𝑡)𝜙(𝑡)𝜙𝑇(𝑡)𝑃(𝑡)            (17)  
for any arbitrary initial value 𝑅(0) = 𝑅𝑇(0) > 0. 
The problem that arises at this stage is related to the 
fact that the time delay 𝐷 is not known. The data 
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vector 𝜙(𝑡) in (15) is not known. If an upper bound 
𝐷𝑚𝑎𝑥 of time delay 𝐷, the least square method (16)-
(17) remains applicable for 𝑡 ≥ 𝑚𝑎𝑥(𝐷𝑚𝑎𝑥 +
𝑛𝑏 , 𝑛𝑎).  

Presently, any knowledge of time delay is 
required 𝐷. The estimator algorithm (16)-(17) 
cannot be used directly. In order to overcome this 
problem, an estimate method of time delay 𝐷 is 
proposed. In this respect, the system is excited using 
a null control input, or any other constant control, 
for 𝑡 ≥ 𝑚𝑎𝑥(𝐷 + 𝑛𝑏 , 𝑛𝑎). Note that the time delay 
𝐷 is not known at this stage. To ensure that 𝑡 ≥
𝑚𝑎𝑥(𝐷 + 𝑛𝑏 , 𝑛𝑎), the null control is applied until 
the system output becomes null (or constant). Then, 
another value (different from zero) of control is 
applied ,and observing the time value when the 
output begins to change. This time value 
corresponds to 𝑚𝑎𝑥(𝐷 + 𝑛𝑏 , 𝑛𝑎). Once an upper 
bound of time delay 𝐷 delay is estimated, the 
estimator algorithm (16)-(17) can be used.  

Other details of this study can be given in 
simulation section. 

 
Fig. 1: Example of obtained results in the estimate 
of 𝑚𝑎𝑥(𝐷 + 𝑛𝑏 , 𝑛𝑎) 
 

 

3   Simulation 
Presently, the aim is to identify the linear system 
parameters and the time delay 𝐷. The linear part of 
system considered in simulation is given as follows: 
The latter can be characterized by their transfer 
functions 𝐺𝑖(𝑠) and 𝐺𝑜(𝑠), respectively. Then, the 
latter have as parameters the module of gains 
|𝐺𝑖(𝑗𝜔)| and |𝐺𝑜(𝑗𝜔)|, respectively, and the phases 
𝜑𝑖(𝜔) and 𝜑𝑜(𝜔), respectively. Firstly, the 
considered system (Figure 1) is excited by the 
following signal:  
𝐺(𝑞) =

𝐵(𝑞)

𝐴(𝑞)
=

𝑞2+𝑞

𝑞2−0.7𝑞+0.01
=

𝑞−2+𝑞−1

0.01𝑞−2−0.7𝑞−1+1
  (18) 

 
 

where:  
 𝑏1 = 𝑏2 = 1; 𝑎1 = −0.7; 𝑎2 = 0.01;      

(19) 
 

The time delay value is 𝐷 = 1. In this work, the 
time delay is not supposed to be known. To estimate 
𝐷, the method described in section 2 will be used. 
Then, the system is excited firstly by a control of 
zero value until the output returns to zero. The 
system is excited with a control different from zero. 
Example of obtained results for 𝑣(𝑡) = 1 is shown 
in Figure 2. 

To ensure that 𝑡 ≥ 𝑚𝑎𝑥(𝐷 + 𝑛𝑏 , 𝑛𝑎), a control 
of zero value is applied until the system output 
becomes null (or constant). Then, another value of 
the control 𝑣(𝑡) is applied and observing the time 
value when the output begins to change. This time 
value corresponds to 𝑚𝑎𝑥(𝐷 + 𝑛𝑏 , 𝑛𝑎). The result 
shown by Figure 2 allows us to estimate the time 
delay value 𝐷. Specifically, the latter is 𝐷 ≈ 1𝑠. 

Fig. 2: System output for 𝑣(𝑡) = 1 
 

Once an upper bound of time delay 𝐷 delay is 
estimated, the estimator algorithm (16)-(17) can be 
used. In this respect, the studied system is excited 
using a signal with multiple frequencies. The used 
control is shown in Figure 3. 

 
Fig. 3: The used control 𝑣(𝑡) in the estimate of 
linear parameters  
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Then, it follows from (14)-(15) that the output 
𝑦(𝑡) can be expressed as the following recursive 
form: 

𝑦(𝑡) = 𝜙𝑇(𝑡)𝜃                 (20)  
 
where the true parameter vector 𝜃 is given as: 

𝜃 = [𝑏1, 𝑏2, 𝑎1, 𝑎2]𝑇 = [1, 1, −0.7, 0.01]𝑇    (21)  
and the data vector 𝜙(𝑡) is given as: 
 𝜙(𝑡) = [𝑢(𝑡 − 𝐷 − 1), 𝑢(𝑡 − 𝐷 −

2), −𝑦(𝑡 − 1), − 𝑦(𝑡 − 2)]𝑇,                           (22) 
  
Using the estimator algorithm (16)-(17), one 

obtains the estimates of 𝑎1, 𝑎2, 𝑏1, and 𝑏2 shown in 
Figure 4, Figure 5, Figure 6 and Figure 7, 
respectively.  

 

 
Fig. 4: The estimate of parameter 𝑎1 

 

 
Fig. 5: The estimate of parameter 𝑎2 

 

 
Fig. 6: The estimate of parameter 𝑏1 

 
Fig. 7: The estimate of parameter 𝑏2 

 
The obtained results given by Figure 4, Figure 

5, Figure 6 and Figure 7 show that the estimate 
parameters converge to their true values. 

 
 

4   Conclusion 
In this paper, the identification problem of nonlinear 
systems having a more general structure is 
discussed. Most studied nonlinear systems has been 
focused on Hammerstein and Wiener ones. It is 
shown that this nonlinear structure is more general 
than the Hammerstein and Wiener models. Then, 
the latter can be viewed as special cases of this 
nonlinear system. This approach is easy and 
converges quickly. Firstly, an input of a set of step 
signals is used. In the second stage, sine signal input 
is used to estimate the linear block parameters. 
Simulation examples show that the obtained 
parameter estimates are very close to the true 
nonlinear system parameters.  
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