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Abstract: - This study aims to develop a combined Moving Average - Exponentially Weighted Moving Average 
Control Chart with standard deviation based (MA-EWMAS chart) that can be used to identify changes in standard 
deviation in processes under a normal distribution. The average run length (ARL), standard deviation of run length 
(SRL), and median run length (MRL) are used to compare the performance of the proposed control chart with S, 
MAS, and EWMAS control charts. This benchmark is assessed using Monte Carlo (MC) simulations. Furthermore, 
actual data is used to apply the suggested control charts. For all levels of variation, the recommended control chart 
outperforms S, MAS, and EWMAS control charts in terms of detection performance, as indicated by the 
performance comparison results. Additionally, the MA-EWMAS chart demonstrates superior performance in 
managing process variability for moderate and large subgroup sizes across all magnitudes of shift parameters. One 
way to assess the control chart's effectiveness is to apply the suggested chart to track the fruit juice and wafer 
coating production process and verify that it complies with standards. The results of the simulations were found to 
align with the actual data. 
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1   Introduction  
Control charts are the primary tools used in statistical 
process control (SPC). Control charts have practical 
applications and are used extensively in a variety of 
industries, including the healthcare sector. Methods of 
production used in environmental science, etc. 
Shewhart initially developed the control chart, which 
is thought to be the main tool of SPC, using statistical 
concepts, [1]. The production process is ascertained 
by scatter plotting data from previous production 
processes in what is commonly known as a Shewhart 
control chart. Therefore, the plot distribution pattern 
cannot be determined if the production process 
remains largely unchanged. Therefore, using a 
Shewhart control chart, it is possible to detect more 

significant changes in a process. [2] and [3] 
subsequently created control charts to detect 
modifications in the production process, regardless of 
how minor. Compared to Shewhart control chart also 
known as cumulative sum (CUSUM) and 
exponentially weighted moving average (EWMA) 
control charts are more sensitive to identifying slight 
to moderate changes in a process. [4], developed a 
moving average (MA) control chart in 2004 to 
ascertain the percentage of inconsistent observations. 
The outcomes show that the MA control chart 
outperforms the other charts. Making EWMA and MA 
control charts for various scenarios is a common 
research focus. In order to detect process averages in 
the case of a lognormal distribution using integral 
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equations and verify the accuracy of the results 
obtained from simulation techniques, [5], presented 
algorithms to design CUSUM control chart with time 
series observations. It was discovered that the integral 
equation outperformed the EWMA control chart, [6]. 
The EWMA-MA control chart was proposed in 2019 
combined the EWMA and MA control charts, [7]. The 
performance of the EWMA-MA control chart and the 
MA-EWMA control chart are compared to detect 
changes in the process average. Upon comparing the 
suggested control chart with the MA-EWMA control 
chart for both symmetric and asymmetric distributions 
under all shift magnitudes, it is discovered that the 
MA-EWMA control chart outperforms the EWMA-
MA control chart regarding parameter change 
detection. 

On the other hand, the comparison results show 
that the ARL1 value of the EWMA-MA and MA-
EWMA control charts depend on the parameter of the 
control chart mentioned above; that is, if the values of 
λ change, ARL1 will not change, but the MA-EWMA 
chart will vary ARL1 when the range size changes. 
[8], looked into the use of moving average standard 
deviation (MAS) control charts for process variation 
detection. Process variation is tracked by comparing 
the S control chart with the MAS control chart using a 
moving average of the sample standard deviation. S 
control chart is found to be less effective than MAS 
control chart through comparisons. Using a MAS 
control chart, small and large process variation 
changes can be rapidly recognized as out-of-control 
events. 

This research aims to propose a new control chart, 
called the MA-EWMAS control chart, which 
combines the EWMAS and MAS control charts and 
can be used to track a change in the standard deviation 
process by comparing the chart performance. To 
manage MA-EWMAS for process dispersion change, 
use S, EWMAS, and MAS control charts. A control 
chart with the lowest ARL1 performs best regarding 
change detection. Verifying the inter-thread thickness 
on real data can also be done with it. In addition, 
information on fruit juice bottle packaging and wafer 
surface coating quality inspection have been used to 
compare the performance of the presented chart with 
the original control chart. 

 
 

2   Research Methodology 
Let 1 2, ,..., ,...iS S S  represent the standard deviation from 
a set of subgroups following a normal distribution          
( 2( , )Normal   ) [9], which iS  signifies the standard 
deviation of the sample of subgroups i. Establishing a 
control limit is imperative to ascertain the value of the 
actual standard deviation ( ).  

A value   is unknown in most cases and needs to 
be estimated from prior data. The average sample 
standard deviation S  is typically determined from an 
initial set of k subgroup standard deviations provided 
by the unbiased estimator 4ˆ / ,S c  , where 
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on the sample size ,k  including the following chats in 
this research. 
 
2.1 Control Chart for Standard Deviation (S 

Chart) 
The standard deviation control limits are usually 
computed based on the 3  approach, i.e., 3S S   
where S  and S  are the mean and standard 
deviation of the process [9], respectively. Thus, the 
upper and lower control limits of the chart, when   is 
unknown, are given as: 

                                                   
2

1 4ˆ ˆ/ 1UCL LCL B c       (2) 
 
where 1B  is the factor of control limit of the S chart. A 
sample point plot that deviates from the control limit 
indicates instability in the process. 
 
2.2 Moving Average for Standard Deviation 

Control Chart (MAS chart) 
The moving average standard deviation (MAS) control 
chart was examined by [8] in order to look into the 
control chart's middle movement for identifying 
process variability which original presented from [10]. 
For minor and large process variability changes, the 
MAS chart can quickly identify departures from 
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control. The statistical values of the MAS chart can be 
categorized into two cases as follows: 
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Where   is the width of the MAS chart. The average 
of the MAS statistic is denoted as  
                                   4 ˆ( ) .=SE MA c      (4) 
 
Furthermore, the variance of the MAS statistic can be 
split into the following two scenarios:  
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As a result, the following is the upper and lower 
control limit, 
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where 2B  is the factor of control limit of the MAS 
chart. 

 

2.3 Exponentially Weighted Moving Average 

for Standard Deviation Control Chart 

(EWMAS chart) 
[3], introduced the EWMA chart to track minute 
parameter variations like process mean and standard 
deviation. EWMA statistics for detecting the variation 
of a process [9] are as follows  
          

1
1 , 1,2,...

i iS i SEWMA S EWMA i 


          (7) 
 
where   the weighting parameter of the past data has 
a value from 0 to 1, and iS  the average standard 
deviation at the time i. The expectation and variance 
of EWMAS are: 

  4 ˆ
iSE EWMA c   

 
and 
 
                 2

4ˆ 1 / 2 .
iSVar EWMA c                (8) 

Therefore, the EWMAS chart's control limits are 
               2

4 3 4ˆ/ 1 / 2UCL LCL c B c             (9) 
 
where 3B  is the factor of control limit of the EWMAS 
chart. 
 
2.4  Moving Average - Exponentially Weighted 

Moving Average for Standard Deviation 

Control Chart (MA-EWMAS chart) 
The MAS chart and the EWMAS chart are combined to 
create the MA-EWMAS chart. As an input to the MAS 
chart, let us consider the statistical data of the 
EWMAS chart. Thus, the statistics of the MA-
EWMAS chart are as follows: 
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where   is the span of the moving average of the 
MA-EWMAS chart. The expectation and variance of 
statistics MA-EWMAS are: 

4( = ˆ) SE MA EWMA c   
 
and 
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Therefore, the MA-EWMAS chart’s control limits are  
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where 4B  is the factor of control limit of the MA-
EWMAS chart. 
 
 
3 The Performance of the Control 

Chart 
The effectiveness of control charts can be evaluated 
using a variety of techniques. This research uses three 
values to consider the tracking performance of control 
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charts with Monte Carlo (MC) simulation techniques, 
including the following methods. 
 
3.1  Average Run Length (ARL) 
The Average Run Length (ARL) is a commonly used 
metric to evaluate a control chart's effectiveness. ARL 
measures the control chart's effectiveness in 
identifying outliers in the production process. It 
measures how quickly the process parameter shifts are 
identified on the chart. The average number of data 
points (ARL) that must be plotted before one point 
indicates an out-of-control condition, which is 
represented by ARL0 and ARL1, respectively, 
representing the in-control and out-of-control 
processes. The ARL can be determined as follows: 

                              
1

.
T

j

j

ARL RL T


                (13) 

In this case, the sample being examined before the 
process surpasses the control limits for the first time is 
indicated by RLj. T is set to 200,000, is the number of 
experiment repetitions in the simulation during round 
j. 
 
3.2  Standard Deviation of Run Length (SRL) 
The standard deviation of the run length (SRL) can be 
computed as follows: 

                        
2 2 .jSDRL E RL ARL                   (14) 

 
3.3  Median Run Length (MRL) 
The middle of RLj points plotted on a chart before an 
out-of-control signal is given is called the median run 
length, or MRL. Thus, the MRL is calculated as 
follows: 
                              ( ).jMRL Median RL                    (15) 
 
 

4   Numerical Results 
The numerical results of this research are divided into 
three parts. Part 1 focuses on assessing the efficiency 
of the MA-EWMAS chart. Part 2 involves comparing 
the efficiency of control charts, and Part 3 explores 
the application of these charts to real-world data in 
that order. 
 
4.1 Average Run Length of MA-EWMAS 

Chart 
A performance metric is the average run length 
(ARL). The estimated number of samples needed until 

a control chart indicates an out-of-control condition is 
indicated by the ARL0. A large ARL0 is desirable 
when there is no change in the process variability. 
However, in the scenario where the process variability 
shifts from 0  to 1 , 1 0 ,   a small ARL1 value is 
preferred. Monte Carlo simulations estimate the 
average run lengths of the MA-EWMAS chart that are 
in control and out-of-control, considering different 
shifts in the process standard deviation. The in-control 
process is assumed to follow a normal distribution 
with parameters Normal 2( , ),   while the out-of-
control process is supposed to be normally distributed 
as Normal 2( , ).   The shift values are represented as 

1 0/    where   takes on values in the set {1.01, 
1.025, 1.05, 1.10, 1.20, 1.50, 2.00}. It is assumed that 
 = 0 and 0 = 1, ensuring that the chart's in-control 
average run length (ARL0) is approximately 370. 

Table 1, Table  2 and Table 3 display the ARL of 
the MA- EWMAS chart for sample sizes of k = 5, 10, 
and 15, respectively, with the weighting parameter of 
the data ( )  as 0.5 and the width ( )  of the MA-
EWMAS chart are 2, 5, 10 and 15. The results showed 
that in Table 1, when the number of subgroups is 5, 
the optimal width parameter ( )  for the MA-
EWMAS chart, when the shift value is set to 1.01, is 2. 
Next, in Table 2, the optimal width parameter ( )  for 
the MA-EWMAS chart, when the shift value is set to 
1.025, is determined to be 5. Finally, in Table 3, the 
optimal width parameter ( )  for the MA-EWMAS 
chart, when the shift value is greater than 1.05, the 
value of width ( )  is determined to be 15, resulting 
in the lowest ARL1. Additionally, the number of 
subgroups is 10 and 15. The result indicates that the 
optimal width parameter ( )  for the MA-EWMAs 
chart, when the shift value is equal to 1.01, is found to 
be 2, and when the shift value starts from 1.025 and 
upwards, it is found to be 15. 

Additionally, the efficiency of the MA-EWMAS 
chart increases performance as the width ( ) is 
augmented across all levels of parameter changes. At 
the same time, the subgroup size (k) does not impact 
the proposed chart’s performance. 

Table 4, Table 5 and Table 6 displays the 
performance of the MA-EWMAS chart for sample 
sizes of k = 5, 10, and 15, respectively, with the 
weighting factor of the past data ( )  based on the 
value in the set {0.05, 0.2, 0.25, 0.50} and the width 
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( )  of the MA-EWMAS chart is 2. The results 
demonstrate that in Table 4, if the number of 
subgroups is 5, the optimal parameter of weighting 
( )  for the MA-EWMAS chart, when the shift value is 
set from 1.01 to 1.20, is given to be 0.25. Next, in 
Table 5, when the shift value is set from 1.50 to 2.00, 
it is shown to be 0.2 and 0.25. In the scenario of the 
number of subgroups being 10, the optimal parameter 
of weighting ( )  for the MA-EWMAS chart, when the 
shift value is set from 1.01 to 1.20, is given to be 0.05. 
Furthermore, when the shift value is set from 1.50 to 
2.00, it is shown to be 0.05 to 0.52. In Table 6, the 
number of subgroups is 15, and the optimal parameter 

of weighting ( )  for the MA-EWMAS chart, when the 
shift value is set from 1.01 to 1.20, is given to be 0.25. 
Finally, in Table 6, when the shift value is set from 
1.50 to 2.00, it is found to be 0.05 to 0.52. 
Furthermore, the MA-EWMA chart's efficiency 
increases as weighting ( )  decreases, where the 
subgroup size affects the proposed chart’s 
performance. When the subgroup size (k) is small, the 
weighting ( )  tends to increase; conversely, when the 
subgroup size (k) is large, the weighting value ( )  
tends to decrease. 

 
 

Table 1. Comparative ARL1 of MA-EWMAS chart when ARL0=370, k=5 and  =0.2. 
Shift sizes 

( ) 
 =2  =5  =10  =15 

4B =5.316 4B =5.052 4B =4.808 4B =4.634 
1.01 323.274 325.565 331.352 334.431 

1.025 262.444 261.825 265.748 267.274 
1.05 184.347 175.965 171.945 166.776 

1.10 95.228 82.614 73.846 67.939 

1.20 33.602 26.313 22.295 20.394 

1.50 5.442 4.418 3.991 3.744 

2.00 1.273 1.128 1.036 0.974 

*bold is a minimum of ARL1 
                                          

Table 2. Comparative ARL1 of MA-EWMAS chart when ARL0=370, k=10 and  =0.2. 
Shift sizes 

( ) 
 =2  =5  =10  =15 

4B =5.236 4B =5.047 4B =4.815 4B =4.641 
1.01 317.787 321.606 324.275 324.551 

1.025 245.814 241.454 235.952 228.462 

1.05 155.473 139.378 123.287 111.568 

1.10 66.598 50.517 40.566 35.603 

1.20 18.091 12.730 10.483 9.556 

1.50 2.186 1.817 1.646 1.537 

2.00 0.368 0.335 0.302 0.279 

*bold is a minimum of ARL1 

 
Table 3. Comparative ARL1 of MA-EWMAS chart when ARL0=370, k=15 and  =0.2. 

Shift sizes 
( ) 

 =2  =5  =10  =15 

4B =5.219 4B =5.043 4B =4.809 4B =4.639 
1.01 314.979 317.512 316.863 315.912 

1.025 235.683 225.311 210.330 198.089 

1.05 137.286 114.375 93.817 82.508 

1.10 51.077 35.467 27.113 23.802 

1.20 11.917 8.090 6.704 6.175 

1.50 1.228 1.051 0.952 0.885 

2.00 0.141 0.127 0.112 0.101 

     *bold is a minimum of ARL1 
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Table 4. Comparative ARL1 of MA-EWMAS chart when ARL0=370, k=5, and  =2. 
Shift sizes 

( ) 
𝜆 = 0.05 𝜆 = 0.2 𝜆 = 0.25 𝜆 = 0.50 

4B =19.166 4B =9.207 4B =8.120 4B =5.316 
1.01 323.256 323.216 323.204 323.274 

1.025 262.435 262.394 262.386 262.444 
1.05 184.346 184.315 184.312 184.347 
1.10 95.228 95.219 95.217 95.228 
1.20 33.601 33.599 33.598 33.602 
1.50 5.442 5.441 5.441 5.442 
2.00 1.273 1.272 1.272 1.273 

*bold is a minimum of ARL1 

 
Table 5. Comparative ARL1 of MA-EWMAS chart when ARL0=370, k=10, and  =2. 

Shift sizes 
( ) 

𝜆  = 0.05 𝜆 = 0.2 𝜆 = 0.25 𝜆 = 0.50 

4B =18.874 4B =9.068 4B =7.997 4B =5.236 

1.01 317.048 317.268 317.103 317.787 
1.025 245.307 245.509 245.347 245.814 
1.05 155.144 155.283 155.163 155.473 
1.10 66.465 66.515 66.476 66.598 
1.20 18.066 18.076 18.069 18.091 
1.50 2.185 2.185 2.185 2.185 

2.00 0.368 0.368 0.368 0.368 

*bold is a minimum of ARL1 

 
Table 6. Comparative ARL1 of MA-EWMAS chart when ARL0=370, k=15, and  =2. 

Shift sizes 
( ) 

𝜆 = 0.05 𝜆 = 0.2 𝜆 = 0.25 𝜆 = 0.50 

4B =18.815 4B =9.042 4B =7.971 4B =5.219 
1.01 314.872 315.643 314.866 314.979 

1.025 235.578 236.139 235.576 235.683 
1.05 137.235 137.538 137.234 137.286 
1.10 51.068 51.156 51.062 51.077 
1.20 11.917 11.932 11.916 11.917 
1.50 1.228 1.228 1.228 1.228 

2.00 0.141 0.141 0.141 0.141 

*bold is a minimum of ARL1 
 

4.2  Comparison Performance of the Control 

Chart  
This section compares the MA-EWMAS chart's 
efficiency to that of the S, MAS, and EWMAS charts. 
The standard deviation of run length (SRL), median 
run length (MRL), and average run length (ARL) 
were among the metrics used to assess the 
effectiveness of control charts. The control chart 
exhibiting the lowest values for ARL1, SRL, and 
MRL was deemed the most efficient. When the 
process is under control, it is given that ARL0 = 370, 
the width ( ) for the MA-EWMAS chart is two, and 
the weighting factor of the data is 0.2. Table 7 shows 
that the number of subgroups is 5, indicating that the 
MAS chart performs best when the shift parameter is 

1.01 to 1.02. Next, the shift parameter ( ) is 1.05 to 
1.20, and the EWMAS chart achieves the most. 
Finally, if the shift parameter exceeds 1.50, the MA-
EWMAS chart detects change most effectively. Table 
8 for the number subgroup is 10, showing that when 
the shift parameter is 1.01, the MAS chart is the best 
performing. Next, the shift parameter is 1.02, and the 
EWMAS chart performs the most. Furthermore, if the 
shift parameter is greater than 1.05, the MA-EWMAS 
chart detects change most effectively. Additionally, 
Table 9 for the number of subgroups is 10, 
demonstrating that when the shift parameter is 
greater than 1.01, the MA-EWMAS chart is the best 
performing. 
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Table 7. The comparison of control chart when ARL0 = 370, k = 5,   = 0.2, and   = 2. 

Shift sizes 
( ) 

S MAS EWMAS MA-EWMAS 

1B = 3.19 2B = 3.07 3B = 3.19 4B = 5.32 
ARL1 SRL MRL ARL1 SRL MRL ARL1 SRL MRL ARL1 SRL MRL 

1.01 330 0.83 243 323 0.82 237 324 0.94 219 323 0.82 237 
1.02 276 0.73 196 262 0.70 186 263 0.81 171 262 0.70 186 
1.05 203 0.57 142 184 0.52 128 181 0.59 115 184 0.52 128 
1.10 114 0.33 79 95 0.28 66 90 0.29 58 95 0.28 95 
1.20 44 0.13 30 33 0.10 23 31 0.09 22 33 0.10 23 
1.50 7 0.23 5 6 0.02 4 6 0.02 5 5 0.01 4 

2.00 1 0.01 1 1 0.01 1 2 0.01 2 1 0.01 1 

*bold is a minimum of ARL1, SRL, and MRL 
 

Table 8. The comparison of control chart when ARL0 = 370, k = 10,   = 0.2 and   = 2. 
Shift 
sizes 
( ) 

S MAS EWMAS MA-EWMAS 

1B = 3.07 2B = 3.02 3B = 3.58 4B = 5.24 
ARL1 SRL MRL ARL1 SRL MRL ARL1 SRL MRL ARL1 SRL MRL 

1.01 319 0.81 232 317 0.81 231 355 1.27 232 317 0.81 232 
1.02 253 0.69 179 245 0.67 174 321 0.67 173 245 0.67 174 
1.05 170 0.49 119 155 0.44 108 239 0.45 45 155 0.45 108 

1.10 82 0.24 57 66 0.19 46 100 0.42 37 66 0.19 46 

1.20 25 0.07 17 18 0.05 14 24 0.09 15 18 0.05 12 

1.50 2 0.01 2 2 0.01 1 4 0.01 4 2 0.01 1 

2.00 0.5 0.01 0 0.5 0.01 0 1 0.01 1 0.3 0.01 0 

*bold is a minimum of ARL1, SRL, and MRL 
 

Table 9. The comparison of control chart when ARL0 = 370, k = 15,   = 0.2, and   = 2. 
Shift 
sizes 
( ) 

S MAS EWMAS MA-EWMAS 

1B = 3.047 2B = 3.014 3B = 4.291 4B = 5.219 
ARL1 SRL MRL ARL1 SRL MRL ARL1 SRL MRL ARL1 SRL MRL 

1.01 317 0.81 230 315 0.80 230 385 1.39 232 314 0.80 230 

1.02 244 0.67 172 235 0.65 166 404 1.36 171 235 0.65 166 

1.05 155 0.45 108 137 0.39 96 431 1.36 96 137 0.39 96 

1.10 66 0.19 46 51 0.15 36 51 1.03 84 51 0.15 36 

1.20 17 0.05 12 11 0.03 8 41 0.15 24 11 0.04 8 

1.50 1.6 0.01 1 1.2 0.01 1 4.3 0.01 4 1.2 0.01 1 

2.00 0.2 0.01 0 0.1 0.01 0 1.5 0.01 0 0.1 0.01 0 

*bold is a minimum of ARL1, SRL, and MRL 

 
4.3  Comparison Performance of the Control 

Chart 
This section describes how the control chart is 
applied to real data to inspect and manage production 
process quality and meet predetermined standards. 
The standard deviation is the value used to assess the 
performance of both data sets. The data is divided 
into two sets as follows: 
 
4.3.1  Application I: Fruit Juice Volume 

Data from the production process will be collected to 
inspect the quantity of fruit juice packages, which 
will involve 15 sample groups, each containing ten 
bottles. The measurement consists of assessing the 
height of the fruit juice level in the bottles compared 

to standard quality. The interpretation is as follows: if 
the measured height is 0, it indicates that the 
packaging quantity is equal to the normal amount. A 
positive or negative estimated height signifies that 
the packaging quantity is higher or lower than the 
standard quantity, [9]. 

The efficiency of detecting changes in the 
standard deviation values of S, MAS, EWMAS, and 
MA-EWMAS charts can be illustrated as follows. In 
Figure 1, the change detection performance for the S 
chart reveals no data from the sample group of fruit 
juice bottles exceeding the control limits. Next, 
Figure 2, Figure 3 and Figure 4 illustrate the change 
detection performance of the MAS, EWMAS, and 
MA-EWMAS charts, respectively. The results of the 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2024.19.23 Suganya Phantu, Yupaporn Areepong, Saowanit Sukparungsee

E-ISSN: 2224-2856 223 Volume 19, 2024



control chart performance measurements reveal that 
sample group no. At Sixth the fruit juice bottles 
exceed the control limits of the chart. Therefore, 
these charts detect changes faster than the S chart. 
Additionally, the comparative results indicate that 
MAS, EWMAS, and MA-EWMAS control charts 
exhibit comparable efficiency in detecting changes in 
the data's standard deviation. 

 

 
Fig. 1: The performance of the S chart for fruit juice 

 

 
Fig. 2: The performance of the MAS chart for fruit 
juice 

 

 
Fig. 3: The performance of the EWMAS chart for 
fruit juice 

 

 
Fig. 4: The performance of the MA-EWMAS chart 
for fruit juice 

 
4.3.2  Application II: The Coating on Wafers 
Quality control is essential in semiconductor 
manufacturing, which involves hardback processes. 
The thickness of the surface coating on wafers is 
examined by sampling five units from each of the 20 
groups to observe whether the production process is 
under control. The sampling intervals are set to be 1 
hour apart for each instance, [9]. 
 The efficiency of detecting changes in the 
standard deviation values of S, MAS, EWMAS, and 
MA-EWMAS charts can be explained as follows. 
Figure 5, Figure 6 and Figure 7 present the 
performance evaluation of the S, MAS, and EWMAS 
control charts. The results indicate that these charts 
cannot detect changes in the data because no data 
from the sample group exceeds the control limits. 
The performance of the MA-EWMAS chart is finally 
displayed in Figure 8. The outcomes demonstrated 
that the MA-EWMAs chart can detect data changes 
immediately. For this reason, compared to the S, 
MAS, and EWMAS charts, the MA-EWMAs chart is 
better at tracking changes in the data's standard 
deviation. 
 

 
Fig. 5: The performance of the S chart for the coating 
on wafers 
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Fig. 6: The performance of the MAS chart for the 
coating on wafers 

 

 
Fig. 7: The performance of the EWMAS chart for the 
coating on wafers 

 
 

 
Fig. 8: The performance of the MA-EWMAS chart 
for the coating on wafers 
 
 
5   Conclusion and Future Work 
In order to monitor process variability, this study 
substitutes the moving average statistic for the MAS 
and EWMAS charts. For the chart, control limit 
factors are given for a range of sample sizes and 
width parameters. Through simulation procedures, 
the average run length (ARL), standard deviation of 
run length (SRL), and median run length (MRL) 

values are used to assess the performance of the MA-
EWMAS chart. The S, MAS, and EWMAS charts for 
process variability monitoring are compared with the 
ARL1, SRL, and MRL values. The comparison 
shows that the MA-EWMAS chart is superior to all 
charts when the shift parameter is significant, and the 
number of subgroups is small. The MA-EWMAS 
chart also performs best in process variability for 
moderate and large subgroup sizes (k) of all shift 
parameters. In all the above research, the MA-
EWMAS chart primarily excels in rapidly identifying 
signals of process variability shift, even slight ones 
that could be crucial. Organizations value this 
capability as early detection of such variability can 
enhance overall process quality. The aspiration is for 
the MA-EWMAS chart to be seen as a compelling 
substitute for the traditional S chart, particularly 
among quality control operators dealing with minor 
to moderate shifts in process variability. 
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