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Abstract: This paper is fourfold. First, three different time-optimal control problems for simulating the
manipulator robots with one, two, and three arms are mathematically formulated. Corresponding to the
related dynamical systems, the nonlinear system of ordinary differential equations is derived. It has been
found that these problems are time-free and have distinct initial and boundary conditions, making them
hard to solve. To find the minimum time with different payloads, a successful numerical method based
on the finite difference and the three-stage Lobatto formula is proposed. Secondly, the related torque-
controlling problems are simulated, and then for one, two, and three armed manipulator robots, they
are solved using the PID controller method. Thirdly, it is shown that, compared to the time-optimal
controlling problem, the optimal PID torque controller solution takes more time to do the job than was
expected. However, the solution in the PID controller method shows less oscillation than the time-optimal
control problem. Fourthly, mathematical theories are used, and the numerical results for both methods
and different payloads are compared.
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1 Introduction
The robot is an automatic device that performs
functions ordinarily ascribed to human beings, [1],
[2].A two-jointed arm light robot without pay-
load (RR-type robot) is introduced by [3]. Robots
for manipulating with several rigid links that are
controlled by a computer are used to produce
things such as electronics, medical devices, optics,
and watches, [4]. Most industries today can im-
prove time and facility energy efficiency with light-
armed robots, reducing operating costs. Smaller,
lighter parts take less time and energy to acceler-
ate, enabling these machines to work faster than
their competitors. This speed is ideal for pick-
ing, placing, part assembly, sorting, and carrying
light payloads. This kind of robot is lighter, so it
has less inertia when moving. Their lower weight
also means that if a collision occurs, it won’t be
as damaging, [5].

Since manipulators are typically used to repeat
a prescribed task a large number of times, even
small improvements in their performances may re-
sult in large monetary savings. Here, an attempt
is made to reduce the movement time (time op-
timal control strategy) between two points. Any
trajectory that can be realized by applying the

available driving forces and connecting the start-
ing point with the target point can be used to
implement the maneuver, [6], [7]. Among the op-
timal control methods, the application of Pontrya-
gin’s maximum principle is certainly one of the
most widely used. It provides an optimal condi-
tion that must be met at each time during the
trajectory. The method generally involves restric-
tions in the form of ordinary differential equations
(ODE), which are usually of the first order, there-
fore limiting the computational cost of their solu-
tion up to a certain extent, [8], [9], [10], [11], [12],
[13]. One of the most common control algorithms
used in the industry is the proportional-integral-
derivative (PID) controller (smooth payload trans-
portation strategy), partly because of its robust
performance over a wide range of operating con-
ditions as well as its simplicity of operation, [14],
[15], [16].

The paper is organized as follows: In Section
Armed robot dynamic systems, dynamic systems
of armed robots is proposed. The statement of
the time optimal control is proposed for armed
robots in Section Time optimal control problem .
In Section PID controller problem , the problem
is described with the PID controller. Numerical
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simulation and the corresponding results are given
in Section Work Examples. Comprising the results
of time optimal control and PID controller discuss
in Section Numerical results and discussions and
final result is in Section Conclusions.

2 Armed robot dynamic systems
In the year 2020 the behavior of armed robot dy-
namical systems by using Euler-Lagrange equa-
tions are described, [2]:

D(θ(t))θ̈(t)+C(θ(t), θ̇(t))+g(θ(t)) = τ (t), (1)

where τ is the generalized force associated with
angle θ (rad). The variable θ is stated as gen-
eralized coordinates θ1 for a robot with one arm,
(θ1, θ2) for a robot with two arms and (θ1, θ2, θ3)
for a robot with three arms. D(θ) is the inertia
matrix that is symmetric and positive definite in
the form, [2].

D(θ) =
n∑

i=1
(miJνi(θ)T Jνi(θ)

+ Jωi(θ)T Ri(θ)IiRi(θ)T Jωi(θ)) ,
(2)

inwhich mi is the mass of the i-th arm, Jνi and
Jωi are Jacobian matrices, Ri is the orientation
transformation between the body attached frame
and the inertial frame, and Ii is the i-th inertial
torque. C(θ, θ̇) is the Christopher matrix

ckj =
n∑

i=1
cijk(θ)θ̇i =

n∑
i=1

1
2

{
∂dkj

∂θi
+ ∂dki

∂θj
− ∂dij

∂θk

}
θ̇i

(3)
inwhich dij are components of D(θ) and g(θ) is
the gravity vector

g(θ) = [g1(θ), ..., gn(θ)]T , gk = ∂P

∂θk
. (4)

inwhich P is a potential energy. For R-type armed
robots n = 1, n = 2 for RR-type armed robots
and n = 3 for RRR-type armed robots. The dy-
namical system (1) consists of a typical second-
order nonlinear differential equation (the number
of equations corresponds to the number of arms).

The physical characteristics of an armed robot
without payload for a robot with two arms are
given by [3]. Here, we assume that for R, RR and
RRR type robots, Li is the length for the i-th arm
and lci is the i-th center of mass for i = 1, 2, 3 (see
Table 1).

(a) Robot with 1 arm

(b) Robot with 2 arms

(c) Robot with 3 arms

Figure 1: Manipulator robot with payload M , (a)
R-type armed (b) RR-type armed, (c) RRR-type
armed.
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Table 1: Physical characteristics of an armed
robot without payload.

Arms # i Li (m) lci (m) mi (kg) Ii (kg.m2)

1 0.250 0.198 0.193 1.15 × 10−3

2 0.234 0.143 0.115 4.99 × 10−4

3 0.218 0.109 0.100 6.58 × 10−4

According to (1) the dynamic equation for one
armed robot (see Figure 1(a)) is

τ1 = (m1l2c1 + I1)θ̈1 + m1glc1 cos (θ1) (5)

inwhich τ1 is the corresponding torque for one
armed robot. The dynamical system for an RR-
type robot in matrix form is as follows (see Figure
1(b) and [2], [17], [18])(

τ1
τ2

)
=
(

d11 d12
d21 d22

)(
θ̈1
θ̈2

)

+
(

hθ̇2 hθ̇1 + hθ̇2
−hθ̇1 0

)(
θ̇1
θ̇2

)
+
(

g1
g2

)
(6)

where

d11 = m1 l2c1 + m2 (L2
1 + l2c2 + 2 L1 l2c1

+ 2 L1 lc2 cos (θ2)) + I1 + I2,

d12 = d21 = m2 (l2c2 + L1 lc2 cos (θ2)) + I2,

d22 = m2 l2c2 + I2,

c121 = c211 = 1
2

(
δd11
δθ2

)
= −m2 L1 lc2 sin (θ2) = h,

c221 =
(

δd12
δθ2

)
− 1

2

(
δd22
δθ1

)
= h,

c112 =
(

δd21
δθ1

)
− 1

2

(
δd11
δθ2

)
= −h,

g1 = (m1 lc1 + m2 L1) g cos (θ1) + m2 g lc2 cos (θ1 + θ2),
g2 = m2 g lc2 cos (θ1 + θ2).

The dynamical system for RRR-type robot in ma-
trix form is as follows (see Figure 1(c), [14]) τ1

τ2
τ3

 =

d11 d12 d13
d21 d22 d23
d31 d32 d33


 θ̈1

θ̈2
θ̈3


+

c11 c12 c13
c21 c22 c23
c31 c32 c33


 θ̇1

θ̇2
θ̇3

+

 g1
g2
g3

 .

(7)

where

d11 = I1 + I2 + I3 + 1
4 m1 L2

1 + m2 (l2c1 + 1
4 L2

2

+L1 L2 cos(θ2)) + m3 (L2
1 + L2

2 + 1
4 L2

3 + 2 L1

L3 cos(θ2) + L1 L3 cos (θ2 + θ3) + L1 L3 cos(θ3)),

d12 = I2 + I3 + 1
2 m2 (1

2 l2c2 + L1 L2 cos(θ2)) + m3

(2 L2
2 + 1

2 L2
3 + 2 L1 L2 cos(θ2) + L1 L3

cos (θ2 + θ3) + 2 L2 L3 cos(θ3)),

d13 = I3 + 1
2 (1

2 L2
3 + L1 L3 cos (θ2 + θ3) + L2 L3

cos(θ3)),

d21 = d31 = d32 = 0,

d22 = I2 + I3 + 1
4 m2 L2

2 + m3 (L2
2 + 1

4 L2
3 + L2 L3

cos(θ3)),

d23 = I3 + 1
2 m3 (L2

3 + L2 L3 cos(θ3)),

d33 = I3 + 1
4 m3 L2

3,

c11 = c21 = c31 = 0,

c12 = −1
2 m2 L1 L2 sin (θ2)[θ̇1 + θ̇2 + 1

2 θ̇3] − m3 L1

sin (θ2) [L3 θ̇1 + L2 (2 θ̇2 + θ̇3)] − m3 L1 L3

sin (θ2 + θ3)[ 1
2 θ̇1 + θ̇2 + 1

2 θ̇3] − 1
4 L1 L3

sin (θ2 + θ3) θ̇3,

c13 = L3 sin (θ3)[−1
2 L2 (1

2 θ̇2 + θ̇3) − 1
2 m3 L1 θ̇1

−3
4 m3 L2 θ̇2],

c22 = c32 = 1
2 θ̇1 [L1 L2 sin (θ2)(1

2 m2 + 2 m3)
+m3 L1 L3 sin (θ2 + θ3)],

c23 = L2 L3 sin (θ3)[−1
2 m3 (1

2 θ̇1 + θ̇2 + θ̇3) + 1
4 θ̇1],

c33 = 1
4 L2 L3 sin (θ3)[θ̇1 − m3 θ̇2],

g1 = 1
2 m1 g L1 cos(θ1) + m2 g (L1 cos(θ1) + 1

2 L2

cos (θ1 + θ2)) + m3 g (L1 cos(θ1) + L2 cos (θ1

+θ2) + 1
2 L2 cos (θ1 + θ2 + θ3)),

g2 = 1
2 m2 g L2 cos (θ1 + θ2) + m3 g (L2 cos (θ1

+θ2) + 1
2 L3 cos (θ1 + θ2 + θ3)),

g3 = 1
2 m3 g L3 cos (θ1 + θ2 + θ3).

Now, additional payloads M (see Table 2) will
be added to the last arm to make a sensitivity
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analysis for the additional payloads with different
masses. Note that if one changes the load mi into
mi + M , Li stays fixed, Ii and lci will change cor-
respondingly.

Table 2: Masses M that added to the last arm in
grams (g).

M (g) 21.2 31.2 51.8 100.6 121.9 130.7 150.5 200 500 1000

3 Time optimal control problem
The aim of designing time optimal control prob-
lem here is to consider how one transfer the end-
effector of an armed manipulator robot from an
initial position to the fixed destination in the min-
imum possible time and optimal effort. The time
optimal control problem is represented by the fol-
lowing performance index:

J(u) =
∫ tf

t0

dt = tf − t0, (8)

where the final time tf is unknown, [2], [19], sub-
ject to the following nonlinear first order dynamic
constraint: 

ẋ(t) = f(x(t), τ (t))

x0 = (θ0, θ̇0)T

xtf = (θtf , θ̇tf )
T

(9)

inwhich x(t) = (x1(t), x2(t))T = (θ(t), θ̇(t))T ,
that is derived from (5) and (6), for certain initial
x0 = (θ0, θ̇0)T and final desired xtf = (θtf , θ̇tf )

T

conditions, [14]. The minimum time t∗
f denotes

the first time that x posits in the above final de-
sired condition. Note that θ is radian and θ̇ is
radian
second . Here, for a robot with one arm the vec-
tor points x0, xtf belong to R2. The function f
depends upon the control parameter τ is belong-
ing to a set A ⊂ R, so that f : R2 × A → R2,
x : [−π, π] → R2 and function τ : [−3, 3] → A
are given. If the robot has two arms R2 converts
to R4 and if the robot has three arms R2 converts
to R6.

By applying the Routh-Hurwitz criteria to an-
alyze different stability zones, the stability of the
dynamical system is investigated. As well as the
modulation equations and detuning parameters,
the obtained results offer insights into stable or
unstable fixed points, which are illustrated by time
history graphs of solutions, phases, and ampli-
tudes.

In the following, we propose two different ap-
proaches to solve the optimal control problem (8)
and (9). We call this problem as time optimal
control problem with the corresponding dynami-
cal system for certain initial x0 = (θ0, θ̇0)T and
final desired xtf = (θtf , θ̇tf )

T conditions.
The first approach: Although, one can con-

sider the simple dynamics of a vibrating spring
where the control is interpreted as an exterior force
acting on an oscillating weight of unit mass hang-
ing from a spring, here we use this idea for control-
ling the armed manipulator robots. For one armed
manipulator robot, according to (5) one can write

θ̈1 =
( −m1glc1

m1l2c1 + I1

)
cos(θ1) + τ̂1,

inwhich τ̂1 =
(

1
m1l2

c1+I1

)
τ1. The dynamical system

is

ẋ(t) =
(

x2(
−m1glc1
m1l2

c1+I1

)
cos(x1) + τ̂1

)

=
(

x2(
−m1glc1
m1l2

c1+I1

)
cos(x1)

)
+
(

0
τ̂1

)
. (10)

We use the first two terms of the Taylor expansion
around point −π

2 for cos(x1) thus

ẋ(t) =
(

x2
r
(
x1 + π

2
) )+

(
0

k τ1

)
, (11)

inwhich r = −m1glc1
m1l2

c1+I1
and k = 1

m1l2
c1+I1

. According
to Pontryagin minimum principle, there exists a
nonzero vector h such that

(hT x−1(t)N)τ ∗
1 (t) = max

τ1(.)

{
(hT x−1(t)N)τ1(t)

}
,

(12)

where τ ∗
1 (t) is the optimal torque for one arm

robot, for each time 0 ≤ t ≤ t∗
f . Hence

ẋ(t) =
(

0 1
r 0

)(
x1
x2

)
+
(

0
k

)
τ1 +

(
0 0

r π
2 0

)
.

(13)

Naming

M =
(

0 1
r 0

)
, N =

(
0
k

)
,

yields
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Mn =

r
n−1

2 M n = 1, 3, 5, ...

r
n
2 I n = 2, 4, 6, ... .

In order to derive x−1(t) in (12) we use the expan-
sion of etM as

etM = I + tM + t2

2!M
2 + t3

3!M
3 + ...

...

=
(

cos(rt) sin(rt)
r sin(rt) cos(rt)

)
consequently

x−1(t) =
(

cos(rt) sin(rt)
r sin(rt) cos(rt)

)−1

= 1
det

(
cos(rt) − sin(rt)

−r sin(rt) cos(rt)

)
inwhich det = cos2(rt) − r sin2(rt). Finally, ac-
cording to (12) we have

τ ∗
1 (t) = k

det
sgn (−h1 sin(rt) + h2 cos(rt)) . (14)

To simplify further, we choose δ such that

h1 = − cos(δ) and h2 = sin(δ)

when h1
2 +h2

2 = 1. By recalling the trigonometry
identity sin(a + b) = sin(a) cos(b) + sin(b) cos(a),
one can write

τ ∗
1 (t) = k

det
sgn (sin(δ + rt)) , (15)

ie., the optimal control torque is found and τ ∗
1

switches from k
det to − k

det and vice versa, every
2π
r units of time. Thus, our goal, which is to de-

sign an optimal exterior torque τ ∗
1 (.) that brings

the motion to a stop in minimum time t∗
f is suc-

cessfully achieved. Numerical results for a robot
with one arm is given in Table 3.

The second approach, [20]: The authors
considered the Variation Evolving Method (VEM)
that was developed for the classic time-optimal
control problem by initializing the transformed
IVP with arbitrary initial values of variables.
Here, we use their idea to solve the problem of con-
trolling armed manipulator robots in the shortest

Table 3: First approach for a robot with one arm.

M (g) 2π
r

± k
det

21.2 0.166 2.662

31.2 0.177 2.653

51.8 0.198 2.625

100.6 0.237 2.552

121.9 0.258 2.491

130.7 0.267 2.459

150.5 0.290 2.367

200 0.324 2.232

500 0.452 1.614

1000 0.627 0.354

amount of the shortest amount of time. Math-
ematically, the difference is that we face initial-
boundary-value (IBVP) problems instead of IVP
problems. Moreover, we use the first optimize,
then discretize technique for a finite-dimensional
IBVP as follows:

To solve the time optimal control problems (8)
and (9) the Hamiltonian equation

H = 1 + ρT ẋ (16)

is used and for 0 ≤ t ≤ tf
∗ the response

(x∗, τ ∗, ρ∗, tf
∗) according to

H(x∗(t), τ ∗(t), ρ∗(t)) = min
τ

H(x∗(t), τ (t), ρ∗(t)),
(17)

can be computed by solving the following canoni-
cal system of equations (optimality conditions)



∂H

∂x
(x∗(t), τ ∗(t), ρ∗(t)) = −ρ̇∗(t)

∂H

∂ρ
(x∗(t), τ ∗(t), ρ∗(t)) = ẋ∗(t)

H(x∗(t), τ ∗(t), ρ∗(t))|t=t∗
f

= 0,

(18)

where τ ∗ and x∗ are optimal torque and optimal
state, τ and x are admissible torque and state, ρ
is Lagrange multiplier and ρ∗ is optimal costate.

For a robot with one arm the Hamiltonian
equation is:

H = 1 + ρ1x2 + ρ2r cos(x1) + ρ2kτ.

According to (17) one can write

τ ∗
1 = −ρ2. (19)
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For a robot with two arms the Hamiltonian equa-
tion is:

H = ρ2(d̄11(τ1 − c1 − g1) + d̄12(τ2 − c2 − g2))
+ρ4(d̄21(τ1 − c1 − g1) + d̄22(τ2 − c2 − g2))
+ρ1x2 + ρ3x4 + 1,

then from (17) we getτ ∗
1 = −(ρ2d̄11 + ρ4d̄21)

τ ∗
2 = −(ρ2d̄12 + ρ4d̄22).

(20)

For a robot with three arms the Hamiltonian equa-
tion is:

H = ρ2(d̄11(τ1 − c1 − g1) + d̄12(τ2 − c2 − g2)
+d̄13(τ3 − c3 − g3)) + ρ4(d̄21(τ1 − c1 − g1)
+d̄22(τ2 − c2 − g2) + d̄23(τ3 − c3 − g3))
+ρ6(d̄31(τ1 − c1 − g1) + d̄32(τ2 − c2 − g2)
+d̄33(τ3 − c3 − g3)) + ρ1x2 + ρ3x4 + ρ5x6 + 1,

according to (17) we have


τ ∗

1 = −(ρ2d̄11 + ρ4d̄21 + ρ6d̄31)

τ ∗
2 = −(ρ2d̄12 + ρ4d̄22 + ρ6d̄32)

τ ∗
3 = −(ρ2d̄13 + ρ4d̄23 + ρ6d̄33)

(21)

where d̄ij for i, j = 1, 2, 3 are components of
D−1(θ). Thus, the response (x∗, τ ∗, ρ∗, tf

∗) can
be computed by replacing (19), (20) and (21) into
(18) for a robot with one, two and three arms re-
spectively.

4 PID controller problem
In general, the main purpose of a PID controller
is to bring the final result of the system process
closer to the desired value.
In the year 2015 robust adaptive PID control
schemes with known or unknown upper bound
of the external disturbances are applied to solve
the strong nonlinearity and coupling problems in
robot manipulator control problems, [21].
In the year 2016 a PID controller for the simula-
tion of a robotic force control application demon-
strating well-damped control with no requirement
for a force-rate signal is applied, [22].
In the year 2022 a PID controller for the trajec-
tory tracking of robotic manipulators with known

or unknown upper bounds of the uncertainties is
applied, [16].

Here, the goal is to carry some payloads from
the given starting position to the given final po-
sition. Thus, for a defined torque τ̂ (θ(t)) as a
controller output, the final form of parallel PID
algorithm for an armed manipulator robot is

Output(t) ≡ τ̂ (θ(t)) = D−1(θ) τ

= kP e(θ(t)) + kD
de(θ(t))

d(t) + kI

∫ t

0
e(α) dα

(22)

where kP , kI and kD are the proportional, integral
and derivative gains as tuning parameters, respec-
tively, t is the present time or instantaneous time,
α is the variable of integration and e(θ(t)) stands
for error. Therefore, the conversion or Laplace
transformation function G(s) for the PID con-
troller is

G(s) = kP + kI

s
+ kD s, (23)

inwhich s is the complex frequency (Laplace trans-
formation variable), [23], [24]. The proportional
term involving the kP coefficient increases system
speed and reduces the permanent state differences
(but does not take zero). Adding an integral term
involving the kI coefficient vanishes the perma-
nent state differences, but adds a lot of overshoot
to the transient response. The derivative term in-
volving kD coefficient attenuates the transient re-
sponse fluctuations and brings the step response
closer to the ideal desired angle in radians, [18].

Combination of robot dynamic system (1) and
PID controller (22) yields

θ̈ = D−1(θ)[−C(θ, θ̇) − g(θ)] + τ̂ (24)

where the n-vector τ̂ is

τ̂ = D−1(θ) τ (25)
and the error or difference is considered as

e(θi) = θ̃i − θi , i = 1, ..., n (26)

inwhich θ̃i is the given final position and θi is the
instantaneous final position of each joint for the
arm robot in radians.
From (22) and (23), the matrix form for the PID
controller of each conversion function vector input
is

τ̂ = kP e + kD ė + kI

∫
e dt. (27)
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According to robot dynamic (24) and PID con-
troller algorithm (27) for one armed robot (R-
type) we have

θ̈1 =−m1glc1 cos(θ1)
m1l2c1 + I1

+ kP1(θ̃1 − θ1) + kD1 θ̇1

+ kI1

∫
e(θ1) dt, (28)

for two armed robot (RR-type) we get

(
θ̈1
θ̈2

)
=
(

d11 d12
d21 d22

)−1 [
−
(

h θ̇2 h θ̇1 + h θ̇2
−h θ̇1 0

)
(

θ̇1
θ̇2

)
−
(

g1
g2

)]

+
(

kP1(θ̃1 − θ1) + kD1 θ̇1 + kI1

∫
e(θ1) dt

kP2(θ̃2 − θ2) + kD2 θ̇2 + kI2

∫
e(θ2) dt

)
(29)

and for three armed robot (RRR-type) we can
write

 θ̈1
θ̈2
θ̈3

 =

d11 d12 d13
d21 d22 d23
d31 d32 d33

−1 [
−

c11 c12 c13
c21 c22 c23
c31 c32 c33


 θ̇1

θ̇2
θ̇3

−

 g1
g2
g3

]

+

 kP1(θ̃1 − θ1) + kD1 θ̇1 + kI1

∫
e(θ1) dt

kP2(θ̃2 − θ2) + kD2 θ̇2 + kI2

∫
e(θ2) dt

kP3(θ̃3 − θ3) + kD3 θ̇3 + kI3

∫
e(θ3) dt

 .

(30)

The problem here is defined as the determina-
tion of the best possible control strategy (optimal
control torque vector τ̂ ), which minimizes a per-
formance index as the difference between the given
desired position and the instantaneous final posi-
tion of each joint arm. The last arm has a payload
of mass M and the goal is to transport the mass
M from the initial position into the desired posi-
tion. The robot dynamic system under control is
described in (28), (29) and (30) for a robot with
one, two and three arms respectively. Thus, the
general corresponding optimal parallel PID con-

troller problem is as follows:

minτ J =
∫ tf

t0 e(θ, θ̇) dt,

S.t.

θ̈ = D−1(θ)[−C(θ, θ̇) − g(θ)]
+kP e + kD ė + kI

∫
e dt

x0 = (θ0, θ̇0)T

xtf = (θtf , θ̇tf )
T

.

(31)

Note that, this problem is not considered the
minimum time control problem since the termi-
nal time is not free. This problem can be called
a fixed endpoint for a fixed time to some great
enough time extension. Moreover, components of
the n-vector τ̂ increase as the robot’s arms in-
crease. Thus, we face a nonlinear problem that is
far too difficult to solve, since the corresponding
dynamical problem is IBVP. To overcome these
difficulties, the parallel PID controller technique
for manipulator robots with one, two and three
arms (R, RR and RRR types) is proposed, [14]. 

5 Work Examples
For one, two and three armed manipulator robots
with the assumptions in Table 1 and Table 2.
Firstly, we consider three optimal time control
problems in Work Examples 1, 2 and 3. The per-
formance index is stated by (8) while in the nonlin-
ear dynamical system, initial and final states are
given by (9). Secondly, in Work Examples 4, 5 and
6 we consider three parallel PID controller prob-
lems as described by (31). In both cases, control is
the torque τ (t) while x(t) and ρ(t) are state and
costate, respectively. Then, we compare and dis-
cuss the numerical results for all the above cases.

5.1 Example 1 (time optimal for
R-type robot)

In this example, the one armed manipulator robot
(see Figure 1(a)) for carrying 10 different loads in
Table 2 from angle position −π

2 to angle position
π
20 is considered. The initial and final desired con-
ditions are:(

θ1(0)
θ̇1(0)

)
=
( −π

2
0

)
and

(
θ1(t∗

f )
θ̇1(t∗

f )

)
=
( π

20
0

)

respectively. The optimal total time t∗
f is unknown

and will be found. The optimal angle θ∗(t), veloc-
ity θ̇∗(t) and torque τ ∗(t) for t ∈ [0, t∗

f ] must be
found.
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5.2 Example 2 (time optimal for
RR-type robot)

Here, the two armed manipulator robot (see Fig-
ure 1(b)) for carrying 10 different loads in Table
2 from angle position (−π

2 , π
84) to angle position

( π
20 , −π

84 ) is considered. The initial and final de-
sired conditions are:

θ1(0)
θ2(0)
θ̇1(0)
θ̇2(0)

 =


−π
2
π
84
0
0

 and


θ1(t∗

f )
θ2(t∗

f )
θ̇1(t∗

f )
θ̇2(t∗

f )

 =


π
20−π
84
0
0


respectively. The optimal total time t∗

f is unknown
and will be found. The optimal angle θ∗(t), veloc-
ity θ̇∗(t) and torque τ ∗(t) for t ∈ [0, t∗

f ] must be
found.

5.3 Example 3 (time optimal for
RRR-type robot)

In this Example the state is X(t) =
(θ1(t), θ2(t), θ3(t), θ̇1(t), θ̇2(t), θ̇3(t))T .

The three armed manipulator robot (see Fig-
ure 1(c)) for carrying 10 different loads in Table 2
from angle position (−π

2 , π
84 , −π

84 ) to angle position
( π

20 , −π
84 , π

84) is considered. The initial and final de-
sired conditions are:

θ1(0)
θ2(0)
θ3(0)
θ̇1(0)
θ̇2(0)
θ̇3(0)

 =



−π
2
π
84−π
84
0
0
0

 and



θ1(t∗
f )

θ2(t∗
f )

θ3(t∗
f )

θ̇1(t∗
f )

θ̇2(t∗
f )

θ̇3(t∗
f )

 =



π
20−π
84
π
84
0
0
0


respectively. The optimal total time t∗

f is unknown
and will be found. The optimal angle θ∗(t), veloc-
ity θ̇∗(t) and torque τ ∗(t) for t ∈ [0, t∗

f ] must be
found.

Examples 4, 5 and 6 are about PID control for
one-armed two-armed and three-armed robots, re-
spectively. In Section 4, we described the method
of calculating PID controller problem is proposed.
In Examples 4, 5 and 6, the initial and final po-
sition values are fixed while the optimal torque
is computed by specifying PID coefficients. The
speed and position of the one and two armed
robots with the optimal torque are shown in Fig-
ure 3, Figure 5 and Figure 7 respectively.

5.4 Example 4 (PID controller for
R-type robot)

The one armed manipulator robot for carrying 10
different loads from angle position θ0 = −π

2 to an-
gle position θtf

= π
20 , with the initial and final

velocity equal to zero (θ̇0 = θ̇tf
= 0, rad

sec ) is consid-
ered. Suppose that t ∈ [0, 10], i.e., tf = 10 is long
enough time to complete the robot work process.
The coefficients of the PID controller are:

kP1 = 30, kD1 = 10, kI1 = 50 (32)

5.5 Example 5 (PID controller for
RR-type robot)

Here, the two armed manipulator robot for car-
rying 10 different loads from angle position θ0 =
(−π

84 , π
84) to angle position θtf

= ( π
84 , −π

84 ) and the
initial and final velocity equal to zero (θ̇0 = θ̇tf =
0, rad

sec ) is considered. Suppose that t ∈ [0, 10], i.e.,
tf = 10 is long enough time to complete the robot
work process. The PID coefficients are:

kPi = 30, kDi = 10, kIi = 50, i = 1, 2 (33)

5.6 Example 6 (PID controller for
RRR-type robot)

The three armed manipulator robot for carry-
ing 10 different loads from angle position θ0 =
(−π

2 , π
84 , −π

84 ) to angle position θtf
= ( π

20 , −π
84 , π

84),
with the initial and final velocity equal to zero
(θ̇0 = θ̇tf = 0, rad

sec ) is considered. Suppose that
t ∈ [0, 10], i.e., tf = 10 is long enough time to com-
plete the robot work process. The PID coefficients
are:

kPi = 30, kDi = 10, kIi = 50, i = 1, 2, 3 (34)

6 Numerical results and
discussions

In this section, we discuss the numerical results
calculated for Examples 1, 2, 3, 4, 5 and 6. We
remind you that in each of the examples in the
Work Example section, 10 different masses in Ta-
ble 2 are added to the end of the last arm of each of
the one, two, and three armed robots. The results
related to the total time process are presented in
Table 4, Table 5 and Table 6. In these tables, the
first column is related to the mass added to the
last arm, and the second column is the computed
minimum total time of the solution in problems
(8) and (9). The third column is related to the so-
lution for the problem (31). Total times in Table
4, Table 5 and Table 6 show the period time when
the robot is placed in the given final position for
the first time. Examples 1, 2 and 3 are solved.
Figure 2, Figure 4 and Figure 6 are optimal posi-
tion, velocity and torque diagrams obtained from
solving the time optimal control problems (8) and
(9). Examples 4, 5 and 6 are solved. Figure 3,
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Figure 5 and Figure 7 are optimal position, veloc-
ity and torque diagrams obtained from solving the
PID controller problem (31). Note that all 10 pay-
loads are used. However, the graphs are presented
for the mass of 100.6 (g) and for the rest of the
masses, only the times are calculated and given in
tables.

In Section 6.1, results for Examples 1 and 4 are
compared when the one-armed robot is used. Ex-
ample 1 is the optimal time control problem while
Example 4 is a PID controller problem. Accord-
ing to Figure 2 and Figure 3, some resulting data
are compared in Table 4. Total time, Oscillations,
Range of speeds, Effect of payloads, and Stability
are discussed and compared for Examples 1 and 4.

6.1 Results comparison for Example 1
and 4

Numerical results for the solutions in Examples 1
and 4 for manipulator robots with one arm (see
Table 4, Figure 2 and Figure 3) show that:
(i) (Total time) Due to Figure 2, the minimum
time is t∗

f = 0.3319 seconds. In Example 4, for
the PID controller problem (see Figure 3), it takes
about 4.317 seconds for the payload to be in the
given final position for the first time (comparison
can be made by considering Table 4, Figure 2 and
Figure 3).
(ii) (Oscillations) The range of changes for posi-
tion, velocity and torque in Example 1 (see Figure
2) are greater than the corresponding results for
the PID controller problem (see Figure 3). In an
optimal time control problem, one needs that the
robot move very quickly to reach the final given
position in the posible minimum time. In Exam-
ple 4, one needs to minimize the states during the
total time with the best possible torque. Thus
we expect a longer period of time with smoother
graphs compared to the resultes in Example 1.
(iii) (Range of speeds) Velocity comparison
(see Figure 2(b) and Figure 3(b)) shows that the
range of the velocity values in Example 1 is greater
than the velocity values in Example 4.
(iv) (Effect of payloads) Both problems for dif-
ferent payloads are solved. As the payloads are
increased, the time in both Examples 1 and 4 in-
creases (see Table 4).
(v) (Stability) As it is shown in Figure 3(a), Fig-
ure 3(b) and Figure 3(c) the solutions stay stable
even after the minimum torque is found. In Ex-
ample 1, after t = t∗

f the process of computing is
stopped.

In the minimum time control problem, one
reaches the final destination in the least time,
(with almost 3 oscillations in 0.312 to 0.405 sec-
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(a) Optimal position value for robot with 1 arm
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(b) Optimal velocity value for robot with 1 arm
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(c) Optimal torque value for robot with 1 arm

Figure 2: (Example 1) Time optimal control so-
lutions for an R-type armed manipulator robot
with a payload of 100.6 (g). As it is shown in
the three different graphs, the optimal minimum
time is t∗

f = 0.3319 (sec) and it is computed in the
process of solving the problem in Example 1: (a)
Optimal Position values against time are depicted
(b) Optimal Velocity values against time are de-
picted (c) Optimal Torque values against time are
depicted.
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(c) Optimal torque value for robot with 1 arm

Figure 3: (Example 4) PID controller numeri-
cal solutions for R-type armed manipulator robot
with payload 100.6 (g). As it is shown in the three
different graphs, the optimal minimum torque
is 0.3891 (Nm) at time 4.317 seconds (see Fig-
ure 3(c)) and it is computed in the process of
solving the problem in Example 4: (a) Posi-
tion values (corresponding to the optimal torque
value) against time are depicted (b) Velocity val-
ues (corresponding to the optimal torque value)
against time are depicted (c) Optimal Torque val-
ues against time are depicted.

Table 4: Total time (sec) for R-type manipulator
robot.

M (g) Total time (Example 1) Total time (Example 4)

21.2 0.312 4.260

31.2 0.321 4.271

51.8 0.330 4.301

100.6 0.331 4.317

121.9 0.347 4.328

130.7 0.358 4.336

150.5 0.363 4.345

200 0.382 4.369

500 0.395 4.415

1000 0.405 4.502

onds for mass between 21.2 to 1000 grams) how-
ever this itself causes wear and tear and sometimes
damage to the robot.

6.2 Results comparison for Example 2
and 5

Numerical results for the solutions in Examples 2
and 5 for a manipulator robot with two arms (see
Table 5, Figure 4 and Figure 5) show that:
(i) (Total time) Due to Figure 4, the minimum
time is t∗

f = 0.3837 seconds. In Example 5, for
the PID controller problem (see Figure 5), it takes
about 4.607 seconds for the payload to be in the
given final position for the first time (comparison
can be made by considering Table 5, Figure 4 and
Figure 5).
(ii) (Oscillations) The corresponding fluctua-
tions of the position, velocity and torque graphs
for Example 2 (see Figure 4) are greater than the
results of the PID controller problem (see Figure
5). Since, in an optimal time control problem, one
needs the robot to move quickly enough to reach
the final given position in the minimum time. As
it was expected in Example 5, (one needs to do
the work with the best torque), thus we expect a
longer period of time with smoother graphs com-
pared to the results of Example 2, while the opti-
mal torque value by solving problem (31) is greater
(see Figure 4(c) and Figure 5(c)).
(iii) (Range of speeds) Velocity comparison
(see Figure 4(b) and Figure 5(b)) shows that the
range of the velocity values in Example 2 is greater
than the velocity values in Example 5.
(iv) (Effect of payloads) Both problems for dif-
ferent payloads are solved. As the payloads are
increased, the time in both Examples 2 and 5 in-
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creases (see Table 5).
(v) (Stability) As it is shown in Figure 5(a), Fig-
ure 5(b) and Figure 5(c) the solutions stay stable
even after the minimum torque is found. In Ex-
ample 2, after t = t∗

f the process of computing is
stopped.

Table 5: Total time (sec) for RR-type manipulator
robot.

M (g) Total time (Example 2) Total time (Example 5)

21.2 0.342 4.213

31.2 0.360 4.320

51.8 0.379 4.568

100.6 0.383 4.607

121.9 0.399 4.779

130.7 0.410 4.880

150.5 0.432 4.995

200 0.449 5.005

500 0.560 5.012

1000 0.584 5.029

6.3 Results comparison for Example 3
and 6

Numerical results for the solutions in Examples 3
and 6 for a manipulator robot with three arms (see
Table 6, Figure 6 and Figure 7) show that:
(i) (Total time) Due to Figure 6, the minimum
time is t∗

f = 0.6257 seconds. In Example 6, for
the PID controller problem (see Figure 6), it takes
about 6.235 seconds for the payload to be in the
given final position for the first time (comparison
can be made by considering Table 6, Figure 6 and
Figure 7).
(ii) (Oscillations) The corresponding fluctua-
tions of the position, velocity and torque graphs
for Example 3 (see Figure 6) are greater than the
results of the PID controller problem (see Figure
7). Since, in an optimal time control problem, one
needs that the robot move quickly enough to reach
the final given position in the minimum time. As
it was expected in Example 6, (one needs to do
the work with the best torque), thus we expect
a longer period of time with more smooth graphs
compared to the results of Example 3, while the
optimal torque value by solving problem (31) is
greater (see Figure 6(c) and Figure 7(c)).
(iii) (Range of speeds) Velocity comparison
(see Figure 6(b) and Figure 7(b)) shows that the
range of the velocity values in Example 3 is greater
than the velocity values in Example 6.
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(a) Optimal position value for robot with 2 arms
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(b) Optimal velocity value for robot with 2 arms
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(c) Optimal torque value for robot with 2 arms

Figure 4: (Example 2) Time optimal control so-
lutions for an RR-type armed manipulator robot
with a payload 100.6 (g). As it is shown in the
three different graphs, the optimal minimum time
is t∗

f = 0.3837 (sec) and it is computed in the
process of solving the problem in Example 2: (a)
Optimal Position values against time are depicted
(b) Optimal Velocity values against time are de-
picted (c) Optimal Torque values against time are
depicted.
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(a) Position value for robot with 2 arms
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(b) Velocity value for robot with 2 arms
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(c) Optimal torque value for robot with 2 arms

Figure 5: (Example 5) PID controller numerical
solutions for RR-type armed manipulator robot
with payload 100.6 (g). As it is shown in the three
different graphs, the optimal minimum torque for
the first joint 1.242 (Nm) and the second joint
0.3396 (Nm) at time 4.607 seconds is calculated
(see Figure 6(c)) and it is computed in the pro-
cess of solving the problem in Example 5: (a) Po-
sition values (corresponding to the optimal torque
value) against time are depicted (b) Velocity val-
ues (corresponding to the optimal torque value)
against time are depicted (c) Optimal Torque val-
ues against time are depicted.

(iv) (Effect of payloads) Both problems for dif-
ferent payloads are solved. As the payloads are
increased, the time in both Examples 3 and 6 in-
creases (see Table 6).
(v) (Stability) As it is shown in Figure 7(a), Fig-
ure 7(b) and Figure 7(c), the solutions stay stable
even after the minimum torque is found. In Ex-
ample 1, after t = t∗

f the process of computing is
stopped.

Table 6: Total time (sec) for RRR-type manipu-
lator robot.

M (g) Total time (Example 3) Total time (Example 6)

21.2 0.566 6.202

31.2 0.582 6.218

51.8 0.601 6.229

100.6 0.625 6.235

121.9 0.651 6.248

130.7 0.683 6.260

150.5 0.701 6.275

200 0.719 6.298

500 0.723 6.354

1000 0.758 6.407

6.4 Total torques computation for
Examples 1 to 6

The trapezoidal numerical integral method is used
to calculate the total torque for each arm.

∫ tf

t0

|τtotal(t)| dt = tf − t0

2N

N∑
n=1

[|τtotal(tn)| + |τtotal(tn+1)|]

(35)
where the spacing between each point is equal to
the scalar value tf − t0

N
= 1.

The numerical results for robots of R, RR and
RRR types with payload of 100.6 (g) are given in
Table 7. According to Table 7, the total torque
increases with the increase in the number of arms
in Examples 1, 2, ..., 6. In the PID controller
strategy for RR and RRR type robots, it is found
that the first arm consumes more torque compared
to the other arms.

7 Conclusions
This paper presents the mathematical simulation
of an armed manipulator robot of R, RR, RRR
type for the application of lifting and moving light
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(a) Optimal position value for robot with 3 arms
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(b) Optimal velocity value for robot with 3 arms
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(c) Optimal torque value for robot with 3 arms

Figure 6: (Example 3) Time optimal control so-
lutions for an RRR-type armed manipulator robot
with a payload of 100.6 (g). As it is shown in the
three different graphs, the optimal minimum time
is t∗

f = 0.6257 (sec) and it is computed in the
process of solving the problem in Example 3: (a)
Optimal Position values against time are depicted
(b) Optimal Velocity values against time are de-
picted (c) Optimal Torque values against time are
depicted.
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(b) Velocity torque value for robot with 3 arms
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(c) Optimal torque value for robot with 3 arms

Figure 7: (Example 6) PID controller numerical
solutions for RRR-type armed manipulator robot
with payload 100.6 (g). As it is shown in the three
different graphs, the optimal minimum torque
for the first joint 1.356 (Nm), the second joint
0.5411 (Nm) and the third joint 0.1338 (Nm) at
time 6.235 seconds is calculated (see Figure 7(c))
and it is computed in the process of solving the
problem in Example 6: (a) Position values (cor-
responding to the optimal torque value) against
time are depicted (b) Velocity values (correspond-
ing to the optimal torque value) against time are
depicted (c) Optimal Torque values against time
are depicted.
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Table 7: Total torque (Nm) for Examples 1 to 6.

Robot type Example # Total torque

R-type
1 |τ1| = 0.0977

4 |τ1| = 1.9141

RR-type

2 |τ1| = 0.2171

|τ2| = 0.1062

5 |τ1| = 4.7883

|τ2| = 1.3450

RRR-type

|τ1| = 0.1062

3 |τ2| = 0.5022

|τ3| = 0.2673

|τ1| = 8.8336

6 |τ2| = 2.5010

|τ3| = 0.5668

material objects between 21 to 1000 grams. The
torque controller is used to control the servo mo-
tor in combined motion and the robot end-effector.
The robotic problem is mathematically formulated
as: (i) The Time Optimal Control Problem, (ii)
The PID Controller Problem. Numerical results
show that the first strategy gives better solutions
considering time, speed and torque consumption.
However, the PID controller strategy will give a
smoother solution with relatively greater torque,
a lower speed and a longer time. In both cases,
manipulator robots can successfully move objects
with a maximum weight of 1 kg based on the given
robotic assumptions and problem hypotheses. The
final conclusion in the application of method 1 and
2 is that although method 1 announces smaller nu-
merical results, in practice it may cause the failure
of the devices, while in method 2, although the
numerical results are larger, but from the point
of view of damage to the devices, it is reasonable
It looks better. Moreover, computational results
show that when the number of jointed arms is in-
creased both total time and total torque increase,
respectively. However, in the PID strategy, when
we add an arm to the robot, the operational torque
needed for the first arm is greater than the others.

8 Future work
We intend to investigate the following topics in the
future:

(i) The use of artificial intelligence as well as
interval calculations for the problem of the least
optimal time for the robot dynamic system.

(ii) Combination of the methods with Luen-

berger observers.
(iii) Combinations of the methods with compu-

tational Intelligence.
(iv) Stability and the stability margin of the

system.
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