for osteoporosis. Curr Phar Design, 7 (2001):
p.671-687.
[6] Parfitt, A.M. Targeted and nontargeted bone
remodelling: relationship to basic
multicellular unit origination and progression.
Bone, 30 (2002): p.5-7.
[7] Heersche, J.N.M. and Cherk, S. Metabolic
Bone Disease: Cellular and tissue
mechanisms. Boca Raton, FI: CRC Press,
1989.
[8] Sapra, L., Saini, C., Garg, B., Gupta, R.,
Verma, B., Mishra, P.K., Srivastava, R.K.
Long-term implications of COVID-19 on
bone health: pathophysiology and
therapeutics. Inflammation Research,
71(2022): p.1025-1040.
[9] Kuba, K., Imai, Y., Penninger, J. Angiotensin-
converting enzyme 2 in lung diseases. Curr
Opin Pharmacol. 6 (2006): 271–6.
[10] Shimizu, H., Nakagami, H., Osako, M.K.,
Hanayama, R., Kunugiza, Y., Kizawa, T.,
Tomita, T., Yoshikawa, H., Ogihara, T.,
Morishita, R. Angiotensin II accelerates
osteoporosis by activating osteoclasts. FASEB
J. 22(7) (2008): 2465-75.
[11] Rattanakul, C., Lenbury, Y., Krishnamara, N.
and Wollkind, D.J. Mathematical Modelling
of Bone Formation and Resorption Mediated
by Parathyroid Hormone: Responses to
Estrogen/PTH Therapy. BioSystems,
70(2003): p.55-72.
[12] Chaiya I., Rattanakul C., Rattanamongkonkul
S., Kunpasuruang W., Ruktamatakul S.
Effects of Parathyroid Hormone and
Calcitonin on Bone Formation and
Resorption: Mathematical Modeling
Approach. Int. J. Math. Comp. Simul. 5(6)
(2011): p.510-519.
[13] Ayati, B.P., Edwards, C.M., Webb, G.F. et
al. A mathematical model of bone remodeling
dynamics for normal bone cell populations
and myeloma bone disease. Biol Direct. 5(28)
(2010).
[14] Rattanakul C., Rattanamongkonkul S. Effect
of Calcitonin on Bone Formation and
Resorption: Mathematical Modeling
Approach. Int. J. Mathl. Mod. Meth. Appl. Sci.
5(8) (2011): p.1363-1371.
[15] Chen-Charpentiera B.M., Diakite I. A
mathematical model of bone remodeling with
delays. Journal of Computational and Applied
Mathematics 291(2016):76–84.
[16] Chaiya, I., Rattanakul, C. Effects of Prolactin
on Bone Remodeling Process with
Parathyroid Hormone Supplement: An
Impulsive Mathematical Model. Advances in
Difference Equations (2017) 2017: 147.
[17] Trejo I., Kojouharov H. A Mathematical
Model to Study the Fundamental Functions of
Phagocytes and Inflammatory Cytokines
During the Bone Fracture Healing
Process. Letters in Biomathematics 7(1)
(2020), p.171–189.
[18] Aekthong, S., Rattanakul, C. Dynamical
Modelling of Bone Formation and Resorption
under Impulsive Estrogen Supplement:
Effects of Parathyroid Hormone and Prolactin.
International Journal of Mathematics and
Mathematical Sciences. Article ID 5435876,
(2021) 17 pages. https://doi.org/10.1155/2021/
5435876.
[19] Kroll, M.H. Parathyroid hormone temporal
effects on bone formation and resorption.
Bull. Math. Bio, 62 (2000): p.163-188.
[20] Dempster, D.W., Cosman, F., Parisisen, M.,
Shen, V. and Linsay, R. Anabolic actions of
parathyroid hormone on bone. Endocr Rev. 14
(1993): p.690-709.
[21] Weryha, G. and Leclere, J. Paracrine
regulation of bone remodeling. Horm Res. 43
(1995): p.69-75.
[22] Brown, E.M. Extracellular Ca2+ sensing,
regulation of parathyroid cell function, and
role of Ca2+ and other ions as extracellular
(first) messengers. Physiol Rev. 71 (1991):
p.371-411.
[23] Zheng, K., Zhang, W., Xu, Y., Geng, D.
Covid-19 and the bone: underestimated to
consider. European Review for Medical and
Pharmacological Sciences. 24 (2020):
p.10316-10318.
[24] Tao, H., Bai, J., Zhang, W., Zheng, K., Guan,
P. Ge, G., Li, M., Geng, D. Bone biology and
COVID-19 infection: Is ACE2 a potential
influence factor? Medical Hypotheses. 144
(2020): 110178.
[25] Whitfield, J.F., Morley, P. and Willick, G.E.
The parathyroid hormone: an unexpected
bone builder for treating osteoporosis. Austin,
Tex: Landes Bioscience Company, 1998.
[26] The epidemiology and pathogenesis of
osteoporosis [Online 2002]. Available from
http://www.endotext.org/parathyroid/parathyr
oid11/parathyroid11.htm.
[27] Kaper, T.J. An introduction to geometric
methods and dynamical systems theory for
singular perturbation problems. Analyzing
multiscale phenomena using singular
perturbation methods, Proc. Symposia Appl
Math, 56 (1999).
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.32