
[3] J. Hu, H. Niu, J. Carrasco, B. Lennox,
and F. Arvin, “Voronoibased multirobot au
tonomous exploration in unknown environ
ments via deep reinforcement learning,” IEEE
Transactions on Vehicular Technology, vol. 69,
no. 12, pp. 14 413–14 423, 2020, ISSN: 1939
9359. DOI: 10.1109/tvt.2020.3034800.
[4] Y. Kantaros and G. J. Pappas, “Scalable active
information acquisition for multirobot sys
tems,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), IEEE,
2021. DOI: 10 . 1109 / icra48506 . 2021 .
9561244.
[5] C. W. Reynolds, “Flocks, herds and schools:
A distributed behavioral model,” ACM SIG
GRAPH Computer Graphics, vol. 21, no. 4,
pp. 25–34, 1987, ISSN: 00978930. DOI: 10.
1145 / 37402 . 37406. [Online]. Available:
https : / / dl . acm . org / doi / 10 . 1145 /
37402.37406.
[6] F. Martínez, “Review of flocking organization
strategies for robot swarms,” Tekhnк, vol. 18,
no. 1, pp. 13–20, 2021, ISSN: 16928407.
[Online]. Available: https : / / revistas .
udistrital.edu.co/index.php/tekhne/
article/view/19257.
[7] R. BailonRuiz, A. BitMonnot, and S. Lacroix,
“Realtime wildfire monitoring with a fleet of
UAVs,” Robotics and Autonomous Systems,
vol. 152, no. 1, p. 104 071, 2022, ISSN: 0921
8890. DOI: 10 . 1016 / j . robot . 2022 .
104071. [Online]. Available: https://www.
sciencedirect . com / science / article /
abs/pii/S0921889022000355.
[8] T. Elmokadem and A. V. Savkin, “A method
for autonomous collisionfree navigation of a
quadrotor UAV in unknown tunnellike envi
ronments,” Robotica, vol. 40, no. 4, pp. 835–
861, 2021, ISSN: 02635747. DOI: 10.1017/
s0263574721000849.
[9] A. A. Paranjape, S.J. Chung, K. Kim, and
D. H. Shim, “Robotic herding of a flock
of birds using an unmanned aerial vehicle,”
IEEE Transactions on Robotics, vol. 34, no. 4,
pp. 901–915, 2018, ISSN: 15523098. DOI:
10 . 1109 / tro . 2018 . 2853610. [Online].
Available: https : / / ieeexplore . ieee .
org/document/8424544.
[10] F. Martínez, “Turtlebot3 robot operation for
navigation applications using ROS,” Tekhnк,
vol. 18, no. 2, pp. 19–24, 2021, ISSN:
16928407. [Online]. Available: https : / /
revistas . udistrital . edu . co / index .
php/tekhne/article/view/19261.
[11] J. Yang, R. Grosu, S. A. Smolka, and A.
Tiwari, “Love thy neighbor: Vformation as
a problem of model predictive control (in
vited paper),” en, in 27th International Con
ference on Concurrency Theory (CONCUR
2016), Schloss Dagstuhl LeibnizZentrum
fuer Informatik GmbH, Wadern/Saarbruecken,
Germany, 2016, 4:1–4:5. DOI: 10 . 4230 /
LIPICS . CONCUR . 2016 . 4. [Online]. Avail
able: https://drops.dagstuhl.de/opus/
volltexte / 2016 / 6189 / pdf / LIPIcs -
CONCUR-2016-4.pdf.
[12] B. Aminof, A. Murano, S. Rubin, and F.
Zuleger, “Verification of agent navigation in
partiallyknown environments,” Artificial In
telligence, vol. 308, no. 103724, p. 103 724,
2022, ISSN: 00043702. DOI: 10 . 1016 /
j . artint . 2022 . 103724. [Online]. Avail
able: https : / / www . sciencedirect .
com / science / article / abs / pii /
S0004370222000649.
[13] M. S. Talamali, A. Saha, J. A. R. Marshall, and
A. Reina, “When less is more: Robot swarms
adapt better to changes with constrained com
munication,” Science Robotics, vol. 6, no. 56,
eabf1416, 2021, ISSN: 24709476. DOI: 10 .
1126/scirobotics.abf1416.
[14] E. Latif, Y. Gui, A. Munir, and R. Parasuraman,
“Energyaware multirobot task allocation in
persistent tasks,” arXiv, pp. 1–6, Dec. 31, 2021.
arXiv: 2112.15282v1 [cs.RO].
[15] L. Bobadilla, F. Martinez, E. Gobst, K. Goss
man, and S. M. LaValle, “Controlling wild mo
bile robots using virtual gates and discrete tran
sitions,” in 2012 American Control Confer
ence (ACC), IEEE, 2012, pp. 1–8. DOI: 10 .
1109 / acc . 2012 . 6315569. [Online]. Avail
able: https : / / ieeexplore . ieee . org /
document/6315569.
[16] J.G. Dong, “Avoiding collisions and pattern
formation in flocks,” SIAM Journal on Ap
plied Mathematics, vol. 81, no. 5, pp. 2111–
2129, 2021, ISSN: 00361399. DOI: 10.1137/
21m1390141.
[17] S. He, R. Xu, Z. Zhao, and T. Zou, “Vision
based neural formation tracking control of
multiple autonomous vehicles with visibility
and performance constraints,” Neurocomput
ing, vol. 492, no. 1, pp. 651–663, 2022, ISSN:
09252312. DOI: 10.1016/j.neucom.2021.
12.056. [Online]. Available: https://www.
sciencedirect . com / science / article /
abs/pii/S0925231221018944.
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.20
Fredy Martinez, Angelica Rendon, Fernando Martinez