ing, Elsevier, Volume 30, 2012,
Pages 982-986, ISSN 1570-7946, ISBN
9780444594310. doi.org/10.1016/B978-
0-444-59520-1.50055-5.
[4] D. Ogorelova and F. Sadyrbaev.
On a three-dimensional neural net-
work model, Vibroengineering PRO-
CEDIA, Vol. 47, pp. 6973, Dec. 2022.
doi.org/10.21595/vp.2022.23059
[5] Hiroki Sayama. Introduction to the
Modeling and Analysis of Complex
Systems, Binghamton University, State
University of New York, LibreTexts.
[6] W. S. Sayed, A. G. Radwan, H. A. H.
Fahmy. Chaos and Bifurcation in Con-
trollable Jerk-Based Self-Excited At-
tractors. Nonlinear Dynamical Systems
with Self-Excited and Hidden Attrac-
tors, Springer, 2018. Pages 45-70.
[7] Inna Samuilik, Felix Sadyrbaev.
On a Dynamical Model of Ge-
netic Networks,WSEAS Transac-
tions on Business and Economics,
vol. 20, pp. 104-112, 2023. doi:
10.37394/23207.2023.20.11
[8] K. Nosrati, Ch. Volos. Bifurcation
Analysis and Chaotic Behaviors of
Fractional-Order Singular Biological
Systems. Nonlinear Dynamical Sys-
tems with Self-Excited and Hidden At-
tractors, Springer, 2018. Pages 3-44.
[9] S. Vaidyanathan, V. Pham, Ch. Volos,
A. Sambas. A Novel 4-D Hyperchaotic
Rikitake Dynamo System with Hid-
den Attractor, its Properties, Synchro-
nization and Circuit Design. Nonlinear
Dynamical Systems with Self-Excited
and Hidden Attractors, Springer, 2018.
Pages 345-364
[10] Inna Samuilik. Lyapunov Expo-
nents and Kaplan-yorke Dimen-
sion for Fivedimensional System,
WSEAS Transactions on Systems,
vol. 21, pp. 268-275, 2022. doi:
10.37394/23202.2022.21.29
[11] Qiu, H., Xu, X., Jiang, Z. et al.
Dynamical behaviors, circuit design,
and synchronization of a novel sym-
metric chaotic system with coexisting
attractors. Sci Rep 13, 1893, 2023.
doi.org/10.1038/s41598-023-28509-z
[12] Inna Samuilik. Genetic engineer-
ing construction of a network of
four dimensions with a chaotic
attractor, Vibroengineering PROCE-
DIA, Vol. 44, pp. 6670, Aug. 2022,
doi.org/10.21595/vp.2022.22829
[13] Sergey P.Kuznetsov. Dynamical chaos
and hyperbolic attractors: from math-
ematics to physics, ISBN 978-5-4344-
0100-5. 2013, pages 488, Binder.
[14] V. S. Anishchenko. Deterministic
chaos. Soros Educational Jour-
nal,Vol.6, 1997, 70-76.
[15] A. Amon. Nonlinear dynamics. Mas-
ter. Phenomenes nonlineaires et chaos,
France. 2007. https://hal.archives-
ouvertes.fr/cel-01510146v1
[16] S. Lynch. Dynamical Systems with
Applications Using Mathematica.
Springer, 2017.
[17] R. Bakker, J. C. Schouten, C.
Lee Giles, F. Takens, Cor M. van
den Bleek. Learning Chaotic At-
tractors by Neural Networks. Neural
Comput 2000; 12 (10): 23552383.
doi:/10.1162/089976600300014971
[18] E. Ott. Chaos in Dynamical Sys-
tems (2nd ed.). Cambridge: Cam-
bridge University Press, 2002.
doi:10.1017/CBO9780511803260
[19] A. C. Reinol, M. Messias. Periodic
Orbits, Invariant Tori and Chaotic
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.6