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1 Introduction
Optimal control problems are applied in nearly all en-
gineering and scientific fields. It has many applica-
tions in robotics, aeronautics, the chemical, biochemi-
cal and medicine industry, etc. In chemical processes,
it helps to find an optimal policy that maximizes the
yield of a desired product. In the medical sector, re-
searchers use it to find an optimal amount of drug
dosage in people of different ages. It helps in the con-
trol of thermally unstable batch processes.

The optimal control problems have been solved
using various approaches, [1], in the literature, in-
cluding direct, indirect, and dynamic programming-
based methods. In 2020, [2], developed a collocation
method based on Legendre wavelet to deal with frac-
tional optimal control problems. To address optimal
control problems with non-smooth solutions, in 2021
the standard LGR collocation method, [3], is modi-
fied. The authors in [4], used an RBF collocation
method to address economic growth model optimal
control problems. The authors in [5], have used op-
timal control techniques to determine the effective-
ness of the oncolytic viral therapy for short-term treat-
ment. Using nonlinear delay differential equations
that simulate the spread of a computer virus. The au-
thors in [6], introduced Legendre-Gauss-Radau col-
location to approximate the optimal control prob-
lem. A technique for solving singular optimal con-
trol and bang-bang problems was created in 2022
by [7]. It involved the use of adaptive Legendre–

Gauss–Radau collocation. Most recently, the Volterra
integro-differential equation-governed optimal con-
trol problems were solved using a collocation method
based on Dickson polynomials, [8].

Haar wavelet-based numerical methods, [9], have
attracted significant attention of researchers in recent
years. The authors in [10], have highlighted some
of the advantages of the Haar wavelet method. The
authors in [11], developed a Haar wavelet colloca-
tion technique for boundary layer fluid flow prob-
lems in 2001. To solve elliptic partial differential
equations numerically, two novel and efficient ap-
proaches, [12], based on collocation with Haar and
Legendre wavelets were introduced in 2013. Two ef-
ficient methods based on collocation utilising Haar
and Legendre wavelets for the numerical solution of
linear as well as nonlinear differential equations are
proposed in 2014, [13]. A Haar wavelet-based ap-
proach was suggested by [14], in 2014 to solve a time
delayed optimal control problem. The convection-
diffusion equation can be solved more accurately,
simply, quickly, and computationally attractively us-
ing the Haar wavelet collocation approach, which was
developed in 2015 by [15]. In 2016, [16], developed
a Haar wavelet-based collocation algorithm and its
application to path planning and obstacle avoidance
problems.

In the next section, we define some preliminaries,
the Haar wavelets, and how these can be used in the
function approximation.
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2 Basic definitions and preliminaries
This section contains the introductory material and
the definitions used in this article.

Definition 2.1. Function space C1[0, 1]
The space C1[0, 1] is defined as the set of all contin-
uously differentiable real-valued functions on [0, 1].

Definition 2.2. Function space L2[0, 1]
The space L2[0, 1] is defined by the set

L2[0, 1] =

{
f : [0, 1] → R :

∫ 1

0
|f(t)|2dt < ∞

}
,

with the norm defined as

∥f∥L2 =

(∫ 1

0
|f(t)|2dt

) 1

2

.

Definition 2.3. Haar wavelets
The Haar wavelet orthogonal family, [17], hi(t) de-
fined on [0, 1) is defined for i = 0 as

h0(t) =

{
1, t ∈ [0, 1) ,
0, elsewhere,

and for i ≥ 1 as

hi(t) =


1, t ∈

[
k
2j ,

k+ 1

2

2j

)
,

−1, t ∈
[
k+ 1

2

2j , k+1
2j

)
,

0, elsewhere,

where i = 2j+k, j = 0, 1, . . . , k = 0, 1, . . . , 2j−1.
Here, j and k represent the dilation and translation
parameters, respectively.

The Haar wavelet family {hi(t)}∞i=0 forms an or-
thonormal basis forL2[0, 1] as proved by [18]. Hence,
any function z ∈ L2[0, 1] can be written as

z(t) =

∞∑
i=0

cihi(t),

where ci =
∫ 1
0 z(t)hi(t)dt.

The approximation zM (t) of z(t) by considering the
firstM = 2j − 1 terms is given by

z(t) ≈ zM (t) =

M-1∑
i=0

cihi(t).

Similarly, the approximation żM (t) of ż(t) can be
given as

ż(t) ≈ żM (t) =

M-1∑
i=0

dihi(t),

from which we can get the approximation for z(t) as

zM (t) =

M-1∑
i=0

M-1∑
j=0

dipi+1,j+1hi(t) + z(0),

where P = [pi,j ], 1 ≤ i, j ≤ M , is the Haar wavelet
integration matrix, [19].

3 Error bounds at the collocation
points

In this section, using existing results in the litera-
ture, we have derived the error bounds for the func-
tion approximated by Haar wavelets at the collocation
points.

Theorem 3.1. Let z(t) ∈ C1[0, 1] and let zM (t) be
the Haar wavelet approximation, [20], of z(t).
Then

∥z − zM∥L2 ≤
K√
3M

,

whereK is the bound for ż(t).

Remark 3.2. Let z : [0, 1] −→ R be a function
having bounded third-order derivative and z̈M be the
Haar wavelet approximation of z̈, then by Theorem
3.1, we have

∥z̈ − z̈M∥L2 ≤
k′√
3M

, (1)

where k′ is the bound for ...
z (t). Thus, we have,

żM (t) =
∫ t
0 z̈M (s)ds+ ż(0). Hence, we get

|ż(t)− żM (t)| =
∣∣∣∣∫ t

0
(z̈(s)− z̈M (s))ds

∣∣∣∣
≤

∫ t

0
|z̈(s)− z̈M (s)| ds

≤
(∫ 1

0
|z̈(s)− z̈M (s)|2ds

) 1

2

= ∥z̈ − z̈M∥L2 .

Thus, we have, for all t ∈ [0, 1]

|ż(t)− żM (t)| ≤ ∥z̈ − z̈M∥L2 . (2)

Thus, at the collocation points tj = j+1/2
M , j =

0, 1, 2, . . . ,M − 1, we have, from (1) and (2)

|ż(tj)− żM (tj)| ≤
k′√
3M

.

Again, from (1) and (2) , it follows that

∥ż − żM∥L2 ≤
k′√
3M

.
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Using a similar argument, we get

|z(tj)− zM (tj)| ≤
k′√
3M

,

∥z − zM∥L2 ≤
k′√
3M

.

(3)

4 Optimal control problem and its
corresponding discretization

In this section, the optimal control problem and its
discretization are discussed.
The continuous optimal control problem is to deter-
mine the state x ∈ L2[0, 1] and control u ∈ L2[0, 1],
that minimizes the cost functional

I[x, u] =

∫ 1

0
F (x, u)dt+ E(x(0), x(1)), (4)

with dynamics
ẋ = f(x, u), (5)

endpoint conditions

ep(x(0), x(1)) = 0, p = 1, 2, . . . , Ne, (6)

and mixed constraint

gq(x, u) ≤ 0, q = 1, 2, . . . , Ng. (7)

It is assumed that F : R×R −→ R, E : R×R −→
R, f : R ×R −→ R, with

ep : R ×R −→ R, p = 1, 2, . . . , Ne,

gq : R ×R −→ R, q = 1, 2, . . . , Ng,

are Lipschitz continuous with respect to each
argument. Additionally, it is assumed that an optimal
solution (x∗, u∗) exists.

Next, the discretized version of the continuous
optimal control problem (4)-(7) by using Haar
wavelet-based collocation method is described be-
low:

Determine xM and uM that minimize

I[xM , uM ] =
1

M

M−1∑
j=0

F (xM (tj), uM (tj))

+ E(xM (0), xM (1)),

(8)

subject to

|ẋM (tj)− f(xM (tj), uM (tj))| ≤ δ1,

j = 0, 1, . . . ,M − 1,
(9)

for each p = 1, 2, . . . , Np

|ep(xM (0), xM (1))| ≤ δ2, (10)
for each q = 1, 2, . . . , Ng

gq(xM (tj), (uM (tj)) ≤ δ3, j = 0, 1, . . . ,M − 1,
(11)

where δ1, δ2 and δ3 are the relaxation bounds, which
are positive constants dependent onM .

5 Feasibility and consistency of the
approximation

This section contains two results, the feasibility and
consistency of the Haar wavelet approximation (8)-
(11).
Theorem 5.1. Let (x(t), u(t)) be any given feasible
solution to the problem (4)-(7) such that x ∈ L2[0, 1]
has third order bounded derivative and u ∈ L2[0, 1]
has second order bounded derivative, then the prob-
lem (8)-(11) has a Haar wavelet feasible solution
(xM , uM ) such that for j = 0, 1, . . . ,M − 1

|x(tj)− xM (tj)| ≤
N1√
3M

,

|u(tj)− uM (tj)| ≤
N2√
3M

,

where N1, N2 > 0 are the bounds for the third-
order derivative of x and the second-order derivative
of u respectively.
Proof. Since x has a third-order bounded derivative,
we have, from Theorem 3.1

∥ẍ− ẍM∥L2 ≤
N1√
3M

, (12)

where ẍM is the Haar wavelet approximation of ẍ and
N1 is the bound for

...
x .

Then, from the Remark 3.2 it follows that, for each
j = 0, 1, . . . ,M − 1, we obtain

|x(tj)− xM (tj)| ≤
N1√
3M

,

|u(tj)− uM (tj)| ≤
N2√
3M

,

|ẋ(tj)− ẋM (tj)| ≤
N1√
3M

.

For the dynamic constraint, we get
|ẋM (tj)− f(xM (tj), uM (tj))|
≤ |ẋ(tj)− ẋM (tj)|
+ |f(x(tj), u(tj))− f(xM (tj), uM (tj))|

≤ N1√
3M

+ l1|x(tj)− xM (tj)|+ l2|u(tj)− uM (tj)|

≤ N1√
3M

+ l1
N1√
3M

+ l2
N2√
3M

,
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where l1 and l2 are Lipschitz constants of f with re-
spect to x and u, respectively, which are independent
ofM .
It follows that, for j = 0, 1, . . . ,M − 1, we have∣∣ẋM (tj)− f(xM (tj), uM (tj))

∣∣ ≤ δ1,

where
δ1 =

N1 + l1N1 + l2N2√
3M

.

For each of the endpoint conditions with p =
1, 2, . . . , Ne, we get

|ep(xM (0), xM (1))|
= |ep(xM (0), xM (1))− ep(x(0), x(1))|
≤ l1p|x(0)− xM (0)|+ l2p|x(1)− xM (1)|

≤ (l1p + l2p)
N1√
3M

,

where l1p and l2p are Lipschitz constants.
Thus,

|ep(xM (0), xM (1))| ≤ δ2,

where, δ2 = (l1p + l2p)
N1√
3M

.
For each of the path constraints gq, q = 1, . . . , Ng

gq(xM (tj), uM (tj))

≤ gq(xM (tj), uM (tj))− gq(x(tj), u(tj))

≤ |gq(xM (tj), uM (tj))− gq(x(tj), u(tj))|
≤ l′′1q |x(tj)− xM (tj)|+ l′′2q |u(tj)− uM (tj)|

≤ l′′1q
N1√
3M

+ l′′2q
N2√
3M

,

where l′′1q and l′′2q are Lipschitz constants of gq for x
and u respectively. Thus we have

gq(xM (tj), uM (tj)) ≤ δ3, j = 0, 1, . . . ,M − 1,

where

δ3 =
l′′1qN1 + l′′2qN2√

3M
.

Thus, (xM , uM ) is a feasible solution to the problem
(8)-(11).

Remark 5.2. The set of feasible solutions to the prob-
lems (8)-(11) is non-empty as a consequence of The-
orem 5.1.

Lemma 5.3. Let (xM , uM ) be any feasible solution
to problem (8)-(11) such that xM and uM converge
uniformly to xf and uf , respectively, with ẋf and uf

continuous on [0, 1]. Then, (xf , uf ) is a feasible so-
lution to problem (4)-(7).

Proof. To prove that (xf , uf ) is a feasible solution to
problem (4)-(7), first we show that it satisfies the dy-
namic constraint (5). By the contradiction argument,
suppose that (xf , uf ) does not satisfy the differential
equation (5). Then there exists some t′ ∈ [0, 1] such
that

|ẋf (t′)− f(xf (t′), uf (t′))| > 0. (13)
Since the collocation points tj , j = 0, 1, . . . ,M − 1
are dense in [0, 1], there exists a sequence of indices
{jM}∞M=0 such that

lim
M→∞

tjM = t′.

Thus, we have

|ẋf (t′)− f(xf (t′), uf (t′))|
= lim

M→∞
|ẋM (tjM )− f(xM (tjM ), uM (tjM ))|

≤ lim
M→∞

δ1 = 0,

which implies that

ẋf (t′)− f(xf (t′), uf (t′)) = 0,

a contradiction to our assumption.
Hence, we have

ẋf (t) = f(xf (t), u(t)).

By a similar argument, it follows that (xf , uf ) satis-
fies the endpoint constraints (6) and path constraints
(7). Hence, (xf , uf ) is a feasible solution to problem
(4)-(7).

Next, we prove the consistency of the approxima-
tion.

Theorem 5.4. Suppose that (x∗M , u∗M ) is a solution to
problem (8)-(11) and there exist (x̃, ũ) with ˙̃x(t) and
ũ(t) continuous on [0, 1] such that x∗M (t) → x̃(t) and
u∗M (t) → ũ(t) uniformly. Then

lim
M→∞

I[x∗M , u∗M ] = I[x̃, ũ], (14)

and (x̃, ũ) is an optimal solution to problem (4)-(7).

Proof. The cost functional of the continuous problem
is given by

I[x̃, ũ] =

∫ 1

0
F (x̃(t), ũ(t))dt+ E(x̃(0), x̃(1)),

while the cost functional of the approximation prob-
lem is

I[x∗M , u∗M ] =
1

M

M−1∑
j=0

F (x∗M (tj), u
∗
M (tj))

+ E(x∗M (0), x∗M (1)).
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To prove (14), we first show that∫ 1

0
F (x̃(t), ũ(t))dt =

lim
M→∞

 1

M

M−1∑
j=0

F (x∗M (tj), u
∗
M (tj))

 .

Since F (x̃(t), ũ(t)) is continuous in t, we have,
[21]∫ 1

0
F (x̃(t), ũ(t))dt = lim

M→∞

 1

M

M−1∑
j=0

F (x̃(tj), ũ(tj))

 .

Thus, we have∫ 1

0
F (x̃(t), ũ(t))dt =

lim
M→∞

 1

M

M−1∑
j=0

F (x∗M (tj), u
∗
M (tj))

+

lim
M→∞

 1

M

M−1∑
j=0

(F (x̃(tj), ũ(tj))− F (x∗M (tj), u
∗
M (tj)))

 .

Now by the Lipschitz continuity of F (x, u), we have

|F (x̃(tj), ũ(tj))− F (x∗M (tj), u
∗
M (tj)|

≤ L(|x̃(tj)− x∗M (tj)|+ |ũ(tj)− u∗M (tj)|),

for some L > 0 and for all 0 ≤ j ≤ M − 1. Since
x∗M (t) → x̃(t) and u∗M (t) → ũ(t) uniformly, we have

lim
M→∞

|x̃(tj)− x∗M (tj)| = 0,

and
lim

M→∞
|ũ(tj)− u∗M (tj)| = 0.

for all j = 0, 1, . . . ,M − 1. Thus,

lim
M→∞

∣∣∣∣∣∣ 1M
M−1∑
j=0

(F (x̃(tj), ũ(tj))− F (x∗M (tj), u
∗
M (tj)))

∣∣∣∣∣∣
≤ lim

M→∞

L

M

M−1∑
j=0

(|x̃(tj)− x∗M (tj)|+ |ũ(tj)− u∗M (tj)|)

= 0.

Hence, we get∫ 1

0
F (x̃(t), ũ(t))dt = lim

M→∞

1

M

M−1∑
j=0

F (x∗M (tj), u
∗
M (tj)).

(15)

It is straightforward to prove that

lim
M→∞

E(x∗M (0), x∗M (1)) = E(x̃(0), x̃(1)). (16)

Thus, from (15) and (16), we have

lim
M→∞

I[x∗M , u∗M ] = I[x̃, ũ].

Next, to show that (x̃, ũ) is an optimal solution to
problem (4)-(7), we first show that it is a feasible solu-
tion. By Lemma 5.3, it follows that (x̃, ũ) is a feasible
solution to the problem (4)-(7).
Finally, we prove that (x̃, ũ) is an optimal solution to
problem (4)-(7) by using the contradiction argument.
Suppose (x̃, ũ) is not optimal and there exist optimal
(x̂, û) so that

I[x̂, û] < I[x̃, ũ].

Now by Theorem 5.1, (x̂M , ûM ) is a feasible solution
to problem (8)-(11). But since (x∗M , u∗M ) is assumed
to be optimal solution to problem (8)-(11), we have

I[x∗M , u∗M ] < I[x̂M , ûM ].

LettingM → ∞, we get

I[x̃, ũ] < I[x̂, û],

a contradiction.
Hence (x̃, ũ) is an optimal solution to the problem (4)-
(7).

6 Applications
In this section, the Haar wavelet collocationmethod is
applied to problems in fluid dynamics and economics.
The accuracy of the method has been shown by eval-
uating the maximum absolute error L∞ defined as

L∞ = max
j=0,1,...,M−1

|y(tj)− yM (tj)| .

For the examples where the exact solution is un-
known, M = 128 has been considered as exact, and
the L∞ error has been calculated with respect to it.

Example 6.1. (Temperature control of CSTR)
Consider the temperature control problem, [22], of

a continuous-stirred tank reactor (CSTR) by cooling-
rate manipulation. The optimal control problem for-
mulation of the temperature is as follows

min I[x, u] =

∫ 0.5

0
[(x(t)− 1.3)2 + µu2(t)]dt,

subject to ẋ = 1− x(t) + ae−γ/x(t) − u(t),

x(0) = 1.5, x(0.5) = 1.3,

where a = 1000, γ = 10 and µ = 0.25.
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Fig. 1:    Comparison of approximate states and con-
trols for various values ofM in case of Example 6.1.

Table 1. Comparison of values of cost functional and
error for various values ofM in case of Example 6.1

.
M I[x∗M (·), u∗M (·)] L∞ for state L∞ for control
4 0.0892 0.0061 0.1659
8 0.0885 0.0040 0.0711
16 0.0882 0.0020 0.0314
32 0.0880 0.0009 0.0131
64 0.0879 0.0003 0.0043

The Haar wavelet approximations for the state and
control variables for M = 4, 8, 16, 32, 64, 128 are
shown in Figure 1. The values of the approximate
cost functional and the L∞ error in the state and con-
trol variables decreasewith the increasing value ofM ,
as shown in Table 1.

Example 6.2. (Isothermal reaction in the presence
of catalyst)

Consider an isothermal liquid-phase reaction,
[23], in a Continuous stirred tank reactor (CSTR)
A −→ B in the presence of a solid catalyst. It is
required to find the u(t), which represents the time-
dependent volumetric throughput per unit reactor vol-
ume, that minimizes the deviation in the concentra-
tion x of species A and u from the reference condi-
tion (xs, us), in a given time tf . The corresponding
optimal control problem can be formulated as

I[x, u] =

∫ tf

0
[(x− xs)

2 + (u− us)
2]dt,

with dynamics

ẋ = u(xf − x)− kx2,

x(0) = x0,

where, xf is the x in the feed and k is the reaction rate
coefficient.
The parameters taken to get the numerical solution are
x0 = 5 g/cm3, xs = 8 g/cm3, xf = 10 g/cm3,
us = 5 min−1, k = 10−3 cm3/(g ·min) and tf = 1
min.

For M = 4, 8, 16, 32, 64, 128, the approximate
state and control variables are plotted and shown in
Figure 2. It can be seen that the approximation im-
proves as the value of M increases. The value of the
cost functional, L∞ error in the state and control vari-
ables also decreases with increasing value of M and
is shown in Table 2.

Table 2. Comparison of values of cost functional and
error for various values ofM in case of Example 6.2

.
M I[x∗M (·), u∗M (·)] L∞ for state L∞ for control
4 2.4464 0.3273 0.0954
8 2.4450 0.1420 0.0431
16 2.4443 0.0634 0.0195
32 2.4442 0.0266 0.0083
64 2.4441 0.0088 0.0027
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Fig. 2:     Comparison of approximate states and con-
trols for various values ofM in case of Example 6.2.

Example 6.3. (Product quality control via pH
value in a chemical reaction)

The pH value of a chemical reaction is an impor-
tant factor that decides the quality of the product of the
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reaction. In this example, [24], we consider a chemi-
cal reaction over a fixed interval [0, T ]. An ingredient
with strength u(t) is added to the chemical reaction to
control the pH value x(t) at time t. The rate of change
in pH is assumed to be proportional to the current pH
value and the strength of the ingredient u. The dy-
namics of the reaction is given by

ẋ(t) = αx(t) + βu(t), x(0) = x0,

where α, β ∈ R+ are known and x0 is the initial
pH value.
The cost functional to be minimized for this model is
given by

I[x(·), u(·)] = 1

2

∫ T

0
(ax2(t) + u2(t))dt,

where
∫ T
0 x2(t)dt is the decrease in the yield due

to changes in pH, and the cost rate of maintaining the
strength u is proportional to u2.

The exact solution to this problem is given by

x∗(t) =
1

aβ
[c1(r + α)ert − c2(r − α)e−rt],

u∗(t) = c1e
rt + c2e

−rt,

where

r =
√

α2 + aβ2, c1 =
aβx0

(r + α) + (r − α)e2rT
,

c2 = − aβx0e
2rT

(r + α) + (r − α)e2rT
.

Table 3. Comparison of values of cost functional and
error for different values ofM in case Example 6.3

.
M I[x∗M (·), u∗M (·)] L∞ for state L∞ for control
4 15.9187 0.0127 1.3826
8 15.7378 0.0073 0.5832
16 15.6924 0.0059 0.2565
32 15.6811 0.0030 0.1069
64 15.6782 0.0011 0.0352
128 15.6775 0.0001 0.0001

The numerical solution is obtained by taking α =
2, β = 0.7, x0 = 2, a = 3 and T = 1. The optimal
cost is 15.6773.
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Fig. 3:     Comparison of approximate states and con-
trols for various values ofM in case of Example 6.3.

Figure 3 shows that as the level of approximation
increases with M = 4, 8, 16, 32, 64, and 128, the
Haar wavelet approximations for the state and con-
trol variables become more accurate. The values of
the estimated cost functional and the L∞ error in the
state and control variables decrease with increasing
values ofM , as shown in Table 3.

Example 6.4. (Various investment problems) In
this example, we consider three types of investment
problems, [25], [26], namely, the unbounded invest-
ment problem, the bounded investment problem, and
the minimum control effort investment problem. Let
x(t) denote the available capital, u(t) the gross capi-
tal expenditures, and ẋ(t) the variation in the capital
stock. In the case of unbounded investment, we want
to maximize the profit performance measure, which
can be formulated as an optimal control problem to
maximize

I[x, u] =

∫ 1

0

(
x− 1

2
u2

)
dt,

with dynamics ẋ = u− δx,

x(0) = 0, x(1) = free,

(17)

where δ is the depreciation rate.
The optimal solution to this problem is given by

x(t) = 1− 1

2
et−1 +

(
1

2e
− 1

)
e−t,

u(t) = 1− et−1,

(18)

and the optimal cost is 0.0840.
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Fig. 4:      Comparison of approximate states and con-
trols for various values of M in case of unbounded
investment problem.

Table 4. Comparison of values of cost functional and
error for various values of M in case of unbounded
investment problem

.
M I[x∗M (·), u∗M (·)] L∞ for state L∞ for control
4 0.0824 0.0067 0.0063
8 0.0836 0.0018 0.0017
16 0.0839 0.0004 0.0004
32 0.0840 0.0001 0.0001
64 0.0840 0.0001 0.0000

The bounded investment problem can be formu-
lated to maximize

I[x, u] =

∫ 1

0

(
2x− 1

2
u2

)
dt,

with dynamics ẋ = u− δx,

x(0) = 0, x(1) = 0,
(19)

where the capital path is required to be zero at T = 1.
The analytical solution is given by

x(t) = 2− 2et + 2e1−t

e+ 1
,

u(t) = 2− 4et

e+ 1
,

(20)

and the optimal cost is 0.1515.
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Fig. 5:     Comparison of approximate states and con-
trols for various values of M in case of bounded in-
vestment problem.

Table 5. Comparison of values of cost functional and
error for various values of M in case of bounded in-
vestment problem

.
M I[x∗M (·), u∗M (·)] L∞ for state L∞ for control
4 0.1433 0.0140 0.0224
8 0.1495 0.0037 0.0061
16 0.1510 0.0009 0.0016
32 0.1514 0.0002 0.0004
64 0.1515 0.0000 0.0001

Finally, the minimum control effort investment
problem, so called because of the performance mea-
sure of type

∫ T
0 u2dt, is to maximize

I[x, u] =

∫ 1

0
−u2dt,

with dynamics ẋ = u− δx,

x(0) = 0, x(1) = 1.

(21)

The exact solution is given by

x(t) =
e1−t − e1+t

1− e2
,

u(t) =
−2e1+t

1− e2
,

and the optimal cost is 2.3130.
By using an optimal investment strategy and mini-
mizing the total cost in the functional, which is di-
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rectly proportionate to the investments made, the ob-
jective is to accumulate a unit of capital over the in-
terval [0, 1].
For all three problems, the rate of depreciation, δ, is
assumed to be 1.
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Fig. 6:      Comparison of approximate states and con-
trols for various values ofM in case of minimum con-
trol effort investment problem.

Table 6. Comparison of values of cost functional and
error for various values ofM in case ofminimum con-
trol effort investment problem

.
M I[x∗M (·), u∗M (·)] L∞ for state L∞ for control
4 2.3092 0.0063 0.0114
8 2.3120 0.0017 0.0031
16 2.3127 0.0004 0.0008
32 2.3129 0.0001 0.0002
64 3.3130 0.0000 0.0000

Figure 4, Figure 5 and Figure 6 show the Haar
wavelet approximations for M = 4, 8, 16, 32, 64
along with exact state and exact control for the un-
bounded investment problem, the bounded invest-
ment problem, and the minimum control effort invest-
ment problem, respectively. It can be seen through
the graph that the approximations get better with in-
creasing levels of approximation. Also, Table 4, Ta-
ble 5, and Table 6 show that the Haar wavelet cost ap-
proaches the optimal cost as the value ofM increases
in all three cases.

7 Conclusion
The consistency and feasibility of the Haar wavelet
collocation algorithm are proved for a nonlinear opti-
mal control problemwithmixed state and control con-
straints. Through the consistency result, it has been
shown that the finite-dimensional nonlinear program-
ming problem (8)-(11), consistently approximates the
infinite-dimensional continuous problem (4)-(7). The
implementation of the algorithm has been shown to
solve various problems in fluid dynamics and eco-
nomics. In the future, the current study can be ex-
tended further for optimal control problems with mul-
tiple states and multiple control varibles. The ex-
tended study can be applied to wide-ranging fields
like aerospace, robotics, healthcare, and more while
also incorporating machine learning, deep learning,
and reinforcement learning.
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