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1   Introduction 
Consider discrete time, k ≥ 0, invariant linear 
systems, which are traditionally formulated by the 
state space equations, [1]: 
 
x(k + 1) = Fx(k) + w(k)                                     (1) 
 
z(k) = Hx(k) + v(k)                                          (2) 
 

Here, x(k) defines the state vector of dimension 
n with Gaussian noise w(k) of zero mean and 
covariance Q and z(k) defines the measurement 
vector of dimension m with Gaussian noise v(k) of 
zero mean and covariance R. In addition, F is the 
transition matrix and H is the output matrix. All the 
model parameters F, H, Q, R are constant. The initial 
state x(0) is Gaussian with mean x0 and covariance 
P0. 

The discrete time Kalman filter, [1], [2], is the 
celebrated algorithm, which computes the state 
estimation x(k/k) and the estimation error 
covariance P(k/k) as well as the state prediction 
x(k/k − 1) and the prediction error covariance 
matrix P(k/k − 1). The prediction and estimation 
error covariances do not depend on the 
measurements; thus they can be computed off-line 
using the equations 

O(k) = HP(k/k − 1)HT + R    (3) 
 
K(k) = P(k/k − 1)HTO−1(k)    (4) 
 
P(k/k) = [I − K(k)H]P(k/k − 1)   (5) 
 
P(k + 1/k) = Q + FP(k/k)FT                (6) 
 
with initial condition P(0/−1) = P0. 
 

Here, MT denotes the transpose of M, I denotes 
the identity matrix, and K(k) is the Kalman filter 
gain. Note that the existence of the inverse of O(k) 
is ensured assuming that R is positive definite (this 
has the reasonable meaning that no measurement is 
accurate).  

It is well known, [1], that P(k/k − 1) can be 
computed independently of the measurements, using 
the discrete algebraic Riccati equation: 

 
P(k + 1/k) = Q + FP(k/k − 1)FT 
−FP(k/k − 1)HT 
[HP(k/k − 1)HT + R]−1FP(k/k − 1)FT              (7) 

 
In the infinite measurement noise covariance 

case, where R = ∞, the discrete algebraic Riccati 
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equation takes the form of the algebraic Lyapunov 
equation: 

 
P(k + 1/k) = Q + FP(k/k − 1)FT   (8) 

 
In addition, if the model is asymptotically stable, 

then there is a unique steady state prediction error 
covariance P, which satisfies the discrete algebraic 
Riccati equation:  

 
P = Q + FPFT − FPHT[HPHT + R]−1HPFT        (9) 

 
In the case R = ∞, if the model is asymptotically 

stable, then there is a unique steady state prediction 
error covariance matrix P, which satisfies the 
algebraic Lyapunov equation:  

 
P = Q + FPFT                              (10) 

 
Due to the importance of the Riccati equation, 

significant bibliography exists about iterative or 
algebraic solutions, [1], [3], [4], [5], [6], [7]. 
Chandrasekhar-type algorithms have been part of 
the folklore associated with the Riccati equation, 
[1]. Methods are described in [8], based on the 
solution of so-called Chandrasekhar-type equations 
than the classical Riccati-type equation. An 
important advantage of this method is the reduction 
in computational burden, when the state dimension 
is much greater than the measurement dimension, 
[1]. Chandrasekhar-type algorithms can be used to 
iteratively compute the prediction error covariance, 
[1], [8] or to compute the steady state solution of the 
Riccati equation. Chandrasekhar-type algorithms are 
applicable to Kalman filters, [9], [10] and to time 
varying as well as time invariant distributed 
systems, [11]. 

All Chandrasekhar-type algorithms use the 
Kalman filter gain. Iterative and algebraic 
algorithms for the computation of the steady state 
Kalman filter gain have been derived in [12]. The 
basic idea of this work is to eliminate the Kalman 
filter gain from the Chandrasekhar-type algorithms’ 
equations, to reduce the computational effort, [10]. 

The Kalman filter gain elimination concept and 
the proposed variations of Chandrasekhar-type 
algorithms can find application in steady state 
Kalman filter design, where the Riccati equation 
solution is required. In addition, the proposed 
algorithms can be applied in control problems. The 
basic problems in control theory are (a) the 
controller design problem (control law design for 
the dynamical system) and (b) the state estimation 
problem (computation of the estimate of the states 
of the dynamical system). The Linear Quadratic 

Regulator (LQR) and the Kalman filter solve the 
associated problems, [13]. The proposed algorithms 
can be applied in the case of linear dynamical 
systems, to estimate the control effectiveness of the 
actuator on behalf of an actuator stuck fault incident 
occurring on airplanes, [14], to Kalman filter design 
that accounts for measurement differences, for the 
case of time-correlated measurement errors, [15], to 
Global Positioning System (GPS) and Inertial 
Navigation System (INS) integration during GPS 
outages using machine learning augmented with 
Kalman filter, [16]. 

The novelty of this work concerns: (a) the use of 
the Kalman filter gain elimination concept in the 
Riccati equation solution, (b) the derivation of 
Chandrasekhar-type algorithms with gain 
elimination, (c) the computation of the calculation 
burdens of the Chandrasekhar-type algorithms, (d) 
the determination of the faster Chandrasekhar-type 
algorithm via the system dimensions. 

The paper is organized as follows: Section 2 
summarizes the traditional Chandrasekhar-type 
algorithms. The Chandrasekhar-type algorithms 
based on Kalman filter gain elimination are derived 
in Section 3. In Section 4, the traditional and the 
proposed Chandrasekhar-type algorithms are 
compared concerning their calculation burdens. 
Section 5 summarizes the conclusions.  
 

 

2  Traditional Chandrasekhar-type 

Algorithms 
The basic idea in Chandrasekhar- type algorithms is 
to factorize the difference: 
 
δP(k) = P(k + 1/k) − P(k/k − 1)             (11) 
 
as 
 
δP(k) = Y(k)S(k)YT(k)              (12) 
 
where S(k) is square symmetric matrix with 
dimension equal to: 
 
 r = rank(δP(0))               (13) 
 
with  r ≤ n. 

 
There exist various equivalent Chandrasekhar-

type equation sets. In this section, we deal with two 
Chandrasekhar-type algorithms, which are well 
described in [1]; we refer to these algorithms as 
Chandrasekhar-type algorithm – version 1 and 
Chandrasekhar-type algorithm – version 2. 
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Chandrasekhar-type algorithm – version 1 

O(k + 1) = O(k) + HY(k)S(k)YT(k)HT      
K(k + 1) = [K(k)O(k) + Y(k)S(k)YT(k)HT]O−1(k + 1)  
Y(k + 1) = F[I − K(k + 1)H]Y(k) 
S(k + 1) = S(k) + S(k)YT(k)HTO−1(k)HY(k)S(k) 
P(k + 1/k) = P(k/k − 1) + Y(k)S(k)YT(k) 
 
for k = 0,1, … , with initial conditions 
P(0/−1) = P0 
O(0) = HP(0/−1)HT + R 
K(0) = P(0/−1)HTO−1(0) 
Y(0) and S(0) are derived by factoring  
 
δP(0) = Y(0)S(0)YT(0) = P(1/0) − P(0/−1)

= Q + FP(0/−1)FT

− FK(0)O(0)KT(0)FT − P(0/−1) 
 
The easiest initialization is proposed, P(0/−1) =
P0 = 0, as then the dimensions of  Y(0) and S(0) 
can be helpfully low, [1]. In this case: 
P(0/−1) = P0 = 0 
O(0) = R 
K(0) = 0 
Y(0) and S(0) are derived by factoring δP(0) =
Y(0)S(0)YT(0) = Q 
 

In particular, Chandrasekhar-type algorithms 
may be more attractive computationally for P(0/
−1) = P0 = 0 , [1]. 

In the case where P(0/−1) = P0 = 0 and Q has 
full rank, we get Y(0) = I and S(0) = Q. 
 
Chandrasekhar-type algorithm – version 2 

O(k + 1) = O(k) + HY(k)S(k)YT(k)HT 
Y(k + 1) = F[I − K(k)H]Y(k) 
S(k + 1) = S(k) − S(k)YT(k)HTO−1(k + 1)HY(k)S(k) 
K(k + 1) = K(k) + F−1Y(k + 1)S(k)YT(k)HTO−1(k + 1) 

P(k + 1/k) = P(k/k − 1) + Y(k)S(k)YT(k) 

 
for k = 0,1, … , with initial conditions 
P(0/−1) = P0 
O(0) = HP(0/−1)HT + R 
K(0) = P(0/−1)HTO−1(0) 
Y(0) and S(0) are derived by factoring 
  
δP(0) = Y(0)S(0)YT(0) = P(1/0) − P(0/−1)

= Q + FP(0/−1)FT

− FK(0)O(0)KT(0)FT − P(0/−1) 
 

It is known that if S(0) ≥ 0, then the version 1 
is preferred, while if S(0) ≤ 0, then the version 2 is 
preferred. In addition, if the initial condition  
P(0/−1) is equal to the solution of the algebraic 
Lyapunov equation (10), then S(0) ≤ 0, [1].  

Remark 1. 

The Lyapunov equation is a special case of the 
Riccati equation in the infinite measurement noise 
covariance case, where R = ∞. Then, form both the 
above two versions of Chandrasekhar-type 
algorithms we get the Chandrasekhar-type algorithm 
for the Lyapunov equation: 
 
Chandrasekhar-type algorithm – Lyapunov 

 equation 

Ψ(k + 1) = FΨ(k) 
P(k + 1/k) = P(k/k − 1) + Ψ(k)ΨT(k) 

 
for k = 0,1, … , with initial conditions 
P(0/−1) = P0 
Y(0) is derived by factoring  
δP(0) = Ψ(0)ΨT(0) = P(1/0) − P(0/−1)

= Q + FP(0/−1)FT − P(0/−1) 
 

Remark 2. 

Chandrasekhar-type algorithms can be applied to 
compute the steady state limiting solution of the 
Riccati equation. In this case, Chandrasekhar-type 
algorithms are implemented for k = 0,1, … , until 
‖P(k + 1/k) − P(k/k − 1)‖ < 𝜀, where ε is the 
convergence criterion and ‖M‖ denotes the norm of 
the matrix M. 
 
 
3 Chandrasekhar-type Algorithms 

with Gain Elimination 
The basic idea is to eliminate the Kalman filter gain 
from the equations of Chandrasekhar-type 
algorithms, working as in [17]. 

This can be achieved by defining the ratio Λ(k) 
(the term Ratio corresponds to the Greek term 
′Λόγος′): 

 
Λ(k) = [I − K(k)H)]−1K(k)                               (14) 

 
In this section we are going to develop two 

Chandrasekhar-type algorithms with gain 
elimination that correspond to the two versions of 
the traditional Chandrasekhar-type algorithms of the 
previous section; we refer to these algorithms as 
Chandrasekhar-type algorithm with gain elimination 
– version 1 and Chandrasekhar-type algorithm with 
gain elimination – version 2. 
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Chandrasekhar-type algorithm with gain 

elimination – version 1 

O(k + 1) = O(k) + HY(k)S(k)YT(k)HT 
Λ(k + 1) = Λ(k) + Y(k)S(k)YT(k)HTR−1 
Y(k + 1) = F[I + Λ(k + 1)H]−1Y(k) 
S(k + 1) = S(k) + S(k)YT(k)HTO−1(k)HY(k)S(k) 
P(k + 1/k) = P(k/k − 1) + Y(k)S(k)YT(k) 

 
for k = 0,1, … , with initial conditions 
P(0/−1) = P0 
O(0) = HP(0/−1)HT + R 
Λ(0) = P(0/−1)HTR−1 
Y(0) and S(0) are derived by factoring  
 
δP(0) = Y(0)S(0)YT(0) = P(1/0) − P(0/−1)

= Q + FP(0/−1)FT

− FK(0)O(0)KT(0)FT − P(0/−1) 
 
Proof. 
For the Kalman filter gain, from (3) and (4) we get: 
K(k) = P(k/k − 1)HT[HP(k/k − 1)HT + R]−1 
⇒ K(k)HP(k/k − 1)HT + K(k)R(k)

= P(k/k − 1)HT  
⇒ K(k)HP(k/k − 1)HT + K(k)

= P(k/k − 1)HTR−1 
⇒ K(k) = [I − K(k)H]P(k/k − 1)HTR−1  
 
Then using (14) we derive: 
Λ(k) = P(k/k − 1)HTR−1                                  (15) 
 
Then, using (15) and (4) we derive: 
K(k)O(k) = Λ(k)R                                              (16) 
 

Then we are able to eliminate the Kalman filter 
gain from the Chandrasekhar-type algorithm – 
version 1: 
K(k + 1) = 
[K(k)O(k) + Y(k)S(k)YT(k)HT]O−1(k + 1) 
⇒ K(k + 1)O(k + 1)

= K(k)O(k) + Y(k)S(k)YT(k)HT 
⇒ Λ(k + 1)R = Λ(k)R + Y(k)S(k)YT(k)HT 
 
Hence 
 
Λ(k + 1) = Λ(k) + Y(k)S(k)YT(k)HTR−1       (17) 
 

In addition, using (3), (4) and the Matrix 
Inversion Lemma1 we get: 
K(k) = P(k/k − 1)HT[HP(k/k − 1)HT + R]−1 
⇒ P(k/k − 1) − K(k)HP(k/k − 1)HT  
                                                 
1  
Let  A, C  be nonsingular matrices. Then,  
[A + BCD]−1 = A−1 − A−1B[C−1 + DA−1B]−1DA−1  

= P(k/k − 11) − P(k/k − 1)HT 
[HP(k/k − 1)HT + R]−1HP(k/k − 1) 
= [P−1(k/k − 1) + HTR−1H ]−1  
⇒ [I − K(k)H]P(k/k − 1)

= [P−1(k/k − 1) + HTR−1H]−1  
⇒ [I − K(k)H]  = [P−1(k/k − 1)

+ HTR−1H]−1P−1(k/k − 1)  
⇒ [I − K(k)H] = [I + P(k/k − 1)HTR−1H]−1  
 
Then using (14) we derive: 
 
[I − K(k)H] = [I + Λ(k)H]−1               (18) 
 

Hence, we are able to eliminate the Kalman 
filter gain from the Y(k + 1) equation of the 
Chandrasekhar-type algorithm – version 1: 

 
Y(k + 1) = F[I + Λ(k + 1)H]−1Y(k)              (19) 

 
It is obvious that equations (17) and (19) 

substitute equations for  K(k + 1) and Y(k + 1) of 
the Chandrasekhar-type algorithm – version 1, 
eliminating the use of Kalman filter gain. 

 
Chandrasekhar-type algorithm with gain 

elimination – version 2 

O(k + 1) = O(k) + HY(k)S(k)YT(k)HT 
Y(k + 1) = F[I + Λ(k)H]−1Y(k) 
S(k + 1) = S(k) − S(k)YT(k)HTO−1(k + 1)HY(k)S(k) 
Λ(k + 1) = Λ(k) + Y(k)S(k)YT(k)HTR−1 
P(k + 1/k) = P(k/k − 1) + Y(k)S(k)YT(k) 

 
for k = 0,1, … , with initial conditions 
P(0/−1) = P0 
O(0) = HP(0/−1)HT + R 
Λ(0) = P(0/−1)HTR−1 
Y(0) and S(0) are derived by factoring  
 
δP(0) = Y(0)S(0)YT(0) = P(1/0) − P(0/−1)

= Q + FP(0/−1)FT

− FK(0)O(0)KT(0)FT − P(0/−1) 
 
Proof. 
We are able to eliminate the Kalman filter gain from 
the Y(k + 1) equation of the Chandrasekhar-type 
algorithm – version 2, by using (18): 
 
Y(k + 1) = F[I + Λ(k)H]−1Y(k)              (20) 
 
In addition, are able to eliminate the Kalman filter 
gain from the Chandrasekhar-type algorithm – 
version 2: 
K(k + 1) = K(k) 
+F−1Y(k + 1)S(k)YT(k)HTO−1(k + 1) 
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K(k + 1)O(k + 1) = K(k)O(k + 1) 
+F−1Y(k + 1)S(k)YT(k)HT 
K(k + 1)O(k + 1) 
= K(k)[O(k) + HY(k)S(k)YT(k)HT] 
+F−1Y(k + 1)S(k)YT(k)HT 
K(k + 1)O(k + 1)

= K(k)O(k)
+ K(k)HY(k)S(k)YT(k)HT

+ F−1Y(k + 1)S(k)YT(k)HT 
Λ(k + 1)R = Λ(k)R + K(k)HY(k)S(k)YT(k)HT

+ F−1Y(k + 1)S(k)YT(k)HT 
Λ(k + 1)R = Λ(k)R + K(k)HY(k)S(k)YT(k)HT 
                 +F−1F[I + Λ(k)H]−1Y(k)S(k)YT(k)HT 
Λ(k + 1)R = Λ(k)R + K(k)HY(k)S(k)YT(k)HT

+ [I + Λ(k)H]−1Y(k)S(k)YT(k)HT 
Λ(k + 1)R = Λ(k)R 
          +{K(k)H + [I + Λ(k)H]−1}Y(k)S(k)YT(k)HT 
Λ(k + 1)R = Λ(k)R 
              +{K(k)H + I − K(k)H}Y(k)S(k)YT(k)HT 
Λ(k + 1)R = Λ(k)R + Y(k)S(k)YT(k)HT 
 
Hence 
Λ(k + 1) = Λ(k) + Y(k)S(k)YT(k)HTR−1        (21) 

 
It is obvious that equations (20) and (21) 

substitute equations for  K(k + 1) and Y(k + 1) of 
the Chandrasekhar-type algorithm – version 2, 
eliminating the use of Kalman filter gain. 
 

 

4   Comparison of the Algorithms 
It is established that the Chandrasekhar-type 
algorithms with gain elimination have been derived 
from the traditional Chandrasekhar-type algorithms. 
Thus the traditional as well as the proposed 
Chandrasekhar-type algorithms are equivalent 
algorithms concerning their behavior, since they 
compute theoretically the same prediction error 
covariances. Since all the algorithms are iterative, it 
is reasonable to compare the algorithms concerning 
their per iteration calculation burdens. 

Scalar operations are involved in matrix 
manipulation operations, which are needed for the 
implementation of the Chandrasekhar-type 
algorithms. Table 1 summarizes the calculation 
burden of needed matrix operations. Note that S 
denotes a symmetric matrix. The details for the 
multi-dimensional model n ≥ 2, m ≥ 2 are given in 
[17].  
 
 
 
 

Table 1. Calculation Burden of Matrix Operations 
Matrix  

Operation 
Matrix  

Dimensions 
Calculation 

Burden 
𝐶 = 𝐴 + 𝐵 (𝑛 × 𝑚) + (𝑛 × 𝑚) 𝑛𝑚 
𝑆 = 𝐴 + 𝐵 (𝑛 × 𝑛) + (𝑛 × 𝑛) 1

2
𝑛2 +

1

2
𝑛 

𝐵 = 𝐼 + 𝐴 (𝑛 × 𝑛) + (𝑛 × 𝑛) 𝑛 
𝐶 = 𝐴 ∙ 𝐵 (𝑛 × 𝑚) ∙ (𝑚 × ℓ) 2𝑛𝑚ℓ − 𝑛ℓ 
𝑆 = 𝐴 ∙ 𝐵 (𝑛 × 𝑚) ∙ (𝑚 × 𝑛) 𝑛2𝑚 + 𝑛𝑚 −

1

2
𝑛2 −

1

2
𝑛 

𝐵 = 𝐴−1 𝑛 × 𝑛 1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

 
The per iteration calculation burdens of the 

Chandrasekhar-type algorithms for the general 
multidimensional case, where n ≥ 2, m ≥ 2, are 
analytically calculated in the Appendix and 
summarized in Table 2. 

 
Table 2. Calculation Burden of Chandrasekhar-type 

algorithms 
Chandrasekhar-type  

algorithms 
Calculation 

Burden 

traditional 
(gain use) 
version1 

𝐶𝐵𝐶𝑇𝐴1 = 2𝑛3 − 𝑛2 + 𝑛 
+

2

6
(16𝑚3 − 3𝑚2 − 𝑚) 

+4𝑛2𝑚 − 2𝑛𝑚 + 5𝑛𝑚2 
+3𝑛2𝑟 − 𝑛𝑟 + 2𝑛𝑟2 

+2𝑚2𝑟 − 𝑚𝑟 + 𝑟2𝑚 + 𝑛𝑚𝑟 

traditional 
(gain use) 
version 2 

𝐶𝐵𝐶𝑇𝐴2 = 4𝑛3 − 2𝑛2 + 𝑛 
+

1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

+6𝑛2𝑚 − 3𝑛𝑚 + 5𝑛𝑚2 
+3𝑛2𝑟 − 𝑛𝑟 + 2𝑛𝑟2 

+2𝑚2𝑟 − 𝑚𝑟 + 𝑟2𝑚 + 𝑛𝑚𝑟 

proposed 
(gain elimination) 

version1 

𝐶𝐵𝐶𝑇𝐴𝐺𝐸1 = 2𝑛3 − 𝑛2 + 𝑛 
+

1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

+6𝑛2𝑚 − 𝑛𝑚 + 𝑛𝑚2 
+3𝑛2𝑟 − 𝑛𝑟 + 2𝑛𝑟2 

+2𝑚2𝑟 − 𝑚𝑟 + 𝑟2𝑚 + 𝑛𝑚𝑟 

proposed 
(gain elimination) 

version 2 

𝐶𝐵𝐶𝑇𝐴𝐺𝐸2 = 2𝑛3 − 𝑛2 + 𝑛 
+

1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

+6𝑛2𝑚 − 𝑛𝑚 + 𝑛𝑚2 
+3𝑛2𝑟 − 𝑛𝑟 + 2𝑛𝑟2 

+2𝑚2𝑟 − 𝑚𝑟 + 𝑟2𝑚 + 𝑛𝑚𝑟 
 

From Table 2 we realize that we are able to 
determine, which Chandrasekhar-type algorithm is 
faster: 
1. Chandrasekhar-type algorithms – version 1 
CBCTA1 − CBCTAGE1

=
1

6
{16m3 + (24n − 3)m2

− (12n2 + 6n + 1)m
− (16n3 − 3n2 − n)} 

 
The areas (wrt the model dimensions), where 

the proposed gain elimination algorithm or the 
traditional algorithm is faster, are shown in Figure 1. 
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The following Rule of Thumb is derived: The 
proposed Chandrasekhar-type algorithm with gain 
elimination is faster than the traditional 
Chandrasekhar-type algorithm, when m/n > 0.835 
 

 
Fig. 1: The faster Chandrasekhar-type algorithm – 
version 1  
 
2. Chandrasekhar-type algorithms – version 2 
CBCTA2 − CBCTAGE2

=
1

6
n{24m2 − 12m

− (4n2 + 3n − 1)} 
 

The areas (wrt the model dimensions) where the 
proposed gain elimination algorithm or the 
traditional algorithm is faster are shown in Figure 2.  
 

 
Fig. 2: The faster Chandrasekhar-type algorithm – 
version 2  
 

The following Rule of Thumb is derived: The 
proposed Chandrasekhar-type algorithm with gain 
elimination is faster than the traditional 
Chandrasekhar-type algorithm, when m/n > 0.412. 
 
3. Traditional Chandrasekhar-type algorithms 

CBCTA1 − CBCTA2

=
1

6
{16m3 − 3m2

− (12n2 − 6n + 1)m
− 6(2n3 − n2)} 

 
The areas (wrt the model dimensions) where 

version 1 or version 2 is faster, are shown in Figure 
3.  
The following Rule of Thumb is derived: version 1 
is faster than version 2, when m/n > 1.1738. 
 

 
Fig. 3: The faster traditional Chandrasekhar-type 
algorithm 

 
4. Proposed Chandrasekhar-type algorithms 
CBCTAGE1 = CBCTAGE2 
The proposed version 1 is as fast as version 2. 
 

Thus we conclude that which algorithm is faster 
depends on the state dimension n and the 
measurement dimension m and not on the 
dimension r defined in (13). Hence, the knowledge 
of the system dimensions n and m can determine, 
which Chandrasekhar-type algorithm is faster.  

Finally, the per iteration calculation burdens of 
the traditional Lyapunov equation and the 
Chandrasekhar-type algorithm for the Lyapunov 
equation, are analytically calculated in the Appendix 
and summarized in Table 3. 

 
Table 3. Calculation Burden of Algorithms  

for the Lyapunov equation solution 
Algorithms Calculation Burden 

traditional CBLE = 3n3 

Chandrasekhar-type CBCTALE = 3n2r 
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As in Table 3 appears the Chandrasekhar-type 
algorithm for the Lyapunov equation is faster than 
the traditional Lyapunov equation, when  r < 𝑛. 

Example. Consider the system dimensions n =
6, m = 3 for estimation of three-dimensional radar 
tracking [18]. Then  CBCTA2 − CBCTAGE2 > 0 and 
hence the proposed Chandrasekhar-type algorithm – 
version 2 is faster than the traditional one. 
 

 

5   Conclusions 
In this paper, new variations of Chandrasekhar-type 
algorithms eliminating the Kalman filter gain are 
proposed. The calculation burdens of the 
Chandrasekhar-type algorithms are derived. The 
proposed Chandrasekhar-type algorithms may be 
faster than the traditional ones, depending on the 
model dimensions. It has been shown that the 
determination of the faster Chandrasekhar-type 
algorithm can be achieved via the system 
dimensions. 

A subject of future research is to investigate the 
application of corresponding Chandrasekhar-type 
algorithms to dynamical continuous-time systems, 
[19], [20], [21], and to discrete-time anti-linear 
systems, [22]. Another area of future research may 
be the use of the derived Chandrasekhar-type 
algorithms with gain elimination in the derivation of 
time varying, time invariant, and steady state 
Kalman filters.  

 
 
References: 
[1] B. D .O Anderson, J. B. Moore, Optimal 

Filtering, Dover Publications, New York, 
2005. 

[2] R. E. Kalman, A new approach to linear 
filtering and prediction problems, J. Bas. 

Eng., Trans. ASME, Ser. D, vol. 8(1), 1960, 
pp. 34-45. 

[3] N. Komaroff, Iterative matrix bounds and 
computational solutions to the discrete 
algebraic Riccati equation, IEEE Trans. 

Autom. Control, vol. 39, 1994, pp. 1676–
1678. 

[4] L. Wang, An improved iterative method for 
solving the discrete algebraic Riccati 
equation, Mathematical Problems in 

Engineering, vol. 2020, Article ID 3283157, 6 
pages, https://doi.org/10.1155/2020/3283157. 

[5] J. Zhang and J. Liu, New upper and lower 
bounds, the iteration algorithm for the 
solution of the discrete algebraic Riccati 
equation, Advances in Difference Equations, 

vol. 313, 2015, pp. 1-17. 
[6] B. Zhou, On Linear Quadratic Optimal 

Control of Discrete-Time Complex-Valued 
Linear Systems, Optimal Control Applications 

and Methods, DOI: 10.1002/oca.2554, 2017. 
[7] J. Liu, Z. Wang, and Z. Xie, Iterative 

algorithms for reducing inversion of discrete 
algebraic Riccati matrix equation, IMA 

Journal of Mathematical Control and 

Information, vol. 39, 2022, pp. 985–1007. 
[8] M. Morf, G. S. Sidhu, T. Kailath, Some New 

Algorithms for Recursive Estimation in 
Constant, Linear, Discrete-time Systems, 
IEEE Trans. Automatic Control, vol. AC-19, 
no. 4, 1974, pp. 315–323. 

[9]  N. Assimakis, A. Kechriniotis, S. Voliotis, F. 
Tassis, M. Kousteri, Analysis of the time 
invariant Kalman filter implementation via 
general Chandrasekhar algorithm, 
International Journal of Signal and Imaging 

Systems Engineering, vol. 1(1), 2008, pp. 51-
57. 

[10] S. Nakamori, A. Hermoso-Carazo, J. Jiménez-
López and J. Linares-Pérez, Chandrasekhar-
type filter for a wide-sense stationary signal 
from uncertain observations using covariance 
information, Applied Mathematics and 

Computation, vol. 151(2), 2004, pp. 315-325, 
https://doi.org/10.1016/S0096-
3003(03)00343-6. 

[11] J.S. Baras and D.G. Lainiotis, Chandrasekhar 
algorithms for linear time varying distributed 
systems, Information Sciences, vol. 17(2), 
1979, pp. 153-167, 
https://doi.org/10.1016/0020-0255(79)90037-
9. 

[12]  J.U. Sevinov, S.O. Zaripova, A stable 
iterative algorithm for estimating the elements 
of the matrix gain of a Kalman filter, 
Electrical and Computer Engineering, 
Technical science and innovation, no 3, 2023, 
pp. 99-103, 
https://scienceweb.uz/publication/15804. 

[13] M.T. Augustine, A note on linear quadratic 
regulator and Kalman filter, 2023, 
DOI: 10.48550/arXiv.2308.15798. 

[14] A. Guven and C. Hajiyev, Two-Stage Kalman 
Filter Based Estimation of Boeing 747 
Actuator/Control Surface Stuck Faults, 
WSEAS Transactions on Signal Processing, 
vol. 19, 2023, pp. 32-40, 
https://doi.org/10.37394/232014.2023.19.4. 

[15] C. Hajiyev and U. Hacizade, A Covariance 
Matching-Based Adaptive Measurement 
Differencing Kalman Filter for INS’s Error 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.65 Nicholas Assimakis, Maria Adam

E-ISSN: 2224-2856 648 Volume 18, 2023

https://doi.org/10.1155/2020/3283157
https://doi.org/10.1016/S0096-3003(03)00343-6
https://doi.org/10.1016/S0096-3003(03)00343-6
https://doi.org/10.1016/0020-0255(79)90037-9
https://doi.org/10.1016/0020-0255(79)90037-9
https://scienceweb.uz/publication/15804
http://dx.doi.org/10.48550/arXiv.2308.15798
https://doi.org/10.37394/232014.2023.19.4


Compensation, WSEAS Transactions on 

Systems and Control, vol. 18, 2023, pp. 478-
486, 
https://doi.org/10.37394/23203.2023.18.51. 

[16] R. Verma, L. Shrinivasan and K. 
Shreedarshan, GPS/INS integration during 
GPS outages using machine learning 
augmented with Kalman filter, WSEAS 

Transactions on Systems and Control, vol. 16, 
2021, pp. 294-301, doi: 
10.37394/23203.2021.16.25 

[17] N. Assimakis, Kalman Filter Gain Elimination 
in Linear Estimation, International Journal of 

Computer and Information Engineering, vol. 
14(7), 2020, pp. 236-241. 

[18] P. Aditya, E. Apriliani, D. K. Arif and K. 
Baihaqi, Estimation of three-dimensional 
radar tracking using modified extended 
Kalman filter, Journal of Physics: Conf. 

Series 974, 2018, doi :10.1088/1742-
6596/974/1/012071 

[19] Z.-P. Jiang, T. Bian and W. Gao, Learning-
Based Control: A Tutorial and Some Recent 
Results, Foundations and Trends in Systems 

and Control, vol. 8(3), 2022, pp. 985–1007, 
(176-284). 

[20] J. Liu, Li Wang and Y. Bai, New estimates of 
upper bounds for the solutions of the 
continuous algebraic Riccati equation and the 
redundant control inputs problems, 
Automatica, vol. 116, 2020, 108936, 
https://doi.org/10.1016/j.automatica.2020.108
936. 

[21] T. Simos, V. Katsikis, S. Mourtas and P. 
Stanimirović, Unique non-negative definite 
solution of the time-varying algebraic Riccati 
equations with applications to stabilization of 
LTV systems, Mathematics and Computers in 

Simulation, vol. 202, 2022, pp. 164-180, 
 https://doi.org/10.1016/j.matcom.2022.05.033 
[22] C.-Y. Chiang and H.-Y. Fan, Inheritance 

properties of the conjugate discrete-time 
algebraic Riccati equation, Linear Algebra 

and its Applications,  
vol. 683, 2024, pp. 71-97, 
https://doi.org/10.1016/j.laa.2023.11.011. 

 
 

 

 

 

 

 

 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

The authors equally contributed in the present 
research, at all stages from the formulation of the 
problem to the final findings and solution. 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received for conducting this study. 
 

Conflict of Interest 

The authors have no conflicts of interest to declare. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.65 Nicholas Assimakis, Maria Adam

E-ISSN: 2224-2856 649 Volume 18, 2023

https://doi.org/10.37394/23203.2023.18.51
https://doi.org/10.1016/j.automatica.2020.108936
https://doi.org/10.1016/j.automatica.2020.108936
https://doi.org/10.1016/j.matcom.2022.05.033
https://doi.org/10.1016/j.laa.2023.11.011
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US


APPENDIX 
 
The per iteration calculation burdens of the 
Chandrasekhar-type algorithms for the general 
multidimensional case, where n ≥ 2, m ≥ 2, are 
analytically calculated in Table 4, Table 5, Table 6 
and Table 7. The per iteration calculation burdens of 
the traditional Lyapunov equation and the 
Chandrasekhar-type algorithm for the Lyapunov 
equation, are analytically calculated in Table 8 and 
Table 9. 
 
Table 4. Chandrasekhar-type algorithm – version 1 

Matrix Operation Calculation Burden 
𝑊1(𝑘) = 𝑌(𝑘)𝑆(𝑘) 2𝑛𝑟2 − 𝑛𝑟 
𝑊2(𝑘) = 𝑊1(𝑘)𝑌𝑇(𝑘) 𝑛2𝑟 + 𝑛𝑟 −

1

2
𝑛2 −

1

2
𝑛  

𝑊3(𝑘) = 𝑊2(𝑘)𝐻𝑇 2𝑛2𝑚 − 𝑛𝑚 
𝑊4(𝑘) = 𝐻𝑊3(𝑘) 𝑛𝑚2 + 𝑛𝑚 −

1

2
𝑚2 −

1

2
𝑚  

𝑂(𝑘 + 1) = 𝑂(𝑘) + 𝑊4(𝑘) 
1

2
𝑚2 +

1

2
𝑚  

𝐾(𝑘)𝑂(𝑘) 2𝑛𝑚2 − 𝑛𝑚 
𝑊5(𝑘) = 𝐾(𝑘)𝑂(𝑘) + 𝑊3(𝑘) 𝑛𝑚 
𝑂−1(𝑘 + 1) 

1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

𝐾(𝑘 + 1) = 𝑊5(𝑘)𝑂−1(𝑘 + 1) 2𝑛𝑚2 − 𝑛𝑚 
𝐾(𝑘 + 1)𝐻 2𝑛2𝑚 − 𝑛𝑚 
𝐼 − 𝐾(𝑘 + 1)𝐻 𝑛 
𝐹[𝐼 − 𝐾(𝑘 + 1)𝐻] 2𝑛3 − 𝑛2  
𝑌(𝑘 + 1) = 𝐹[𝐼 − 𝐾(𝑘 + 1)𝐻]𝑌(𝑘) 2𝑛2𝑟 − 𝑛𝑟 
𝑂−1(𝑘) 

1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

𝑊6(𝑘) = 𝐻𝑊1(𝑘) 𝑛𝑚𝑟 − 𝑚𝑟 
𝑊7(𝑘) = 𝑂−1(𝑘)𝑊6(𝑘) 2𝑚2𝑟 − 𝑚𝑟 
𝑊8(𝑘) = 𝑊6

𝑇(𝑘)𝑊7(𝑘) 𝑟2𝑚 + 𝑟𝑚 −
1

2
𝑟2 −

1

2
𝑟  

𝑆(𝑘 + 1) = 𝑆(𝑘) + 𝑊8(𝑘) 1

2
𝑟2 +

1

2
𝑟  

𝑃(𝑘 + 1/𝑘) = 𝑃(𝑘/𝑘 − 1) + 𝑊2(𝑘) 1

2
𝑛2 +

1

2
𝑛  

𝐶𝐵𝐶𝑇𝐴1 = 2𝑛3 − 𝑛2 + 𝑛 +
2

6
(16𝑚3 − 3𝑚2 − 𝑚) 

+4𝑛2𝑚 − 2𝑛𝑚 + 5𝑛𝑚2 
+3𝑛2𝑟 − 𝑛𝑟 + 2𝑛𝑟2 + 2𝑚2𝑟 − 𝑚𝑟 + 𝑟2𝑚 + 𝑛𝑚𝑟 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Chandrasekhar-type algorithm with gain 
elimination – version 1 

Matrix Operation Calculation Burden 
𝑊1(𝑘) = 𝑌(𝑘)𝑆(𝑘) 2𝑛𝑟2 − 𝑛𝑟 
𝑊2(𝑘) = 𝑊1(𝑘)𝑌𝑇(𝑘) 𝑛2𝑟 + 𝑛𝑟 −

1

2
𝑛2 −

1

2
𝑛  

𝑊3(𝑘) = 𝑊2(𝑘)𝐻𝑇 2𝑛2𝑚 − 𝑛𝑚 

𝑊4(𝑘) = 𝐻𝑊3(𝑘) 
𝑛𝑚2 + 𝑛𝑚 −

1

2
𝑚2 −

1

2
𝑚  

𝑂(𝑘 + 1) = 𝑂(𝑘) + 𝑊4(𝑘) 1

2
𝑚2 +

1

2
𝑚  

𝑊5(𝑘) = 𝑊2(𝑘)[𝐻𝑇𝑅−1] 2𝑛2𝑚 − 𝑛𝑚 
𝛬(𝑘 + 1) = 𝛬(𝑘) + 𝑊5(𝑘) 𝑛𝑚 
𝛬(𝑘 + 1)𝛨 2𝑛2𝑚 − 𝑛𝑚 
𝐼 + 𝛬(𝑘 + 1)𝐻 𝑛 
[𝐼 + 𝛬(𝑘 + 1)𝐻]−1 1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

𝐹[𝐼 + 𝛬(𝑘 + 1)𝐻]−1 2𝑛3 − 𝑛2  
𝑌(𝑘 + 1) = 𝐹[𝐼 + 𝛬(𝑘

+ 1)𝐻]−1𝑌(𝑘) 2𝑛2𝑟 − 𝑛𝑟 

𝑂−1(𝑘) 1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

𝑊6(𝑘) = 𝛨𝑊1(𝑘) 𝑛𝑚𝑟 − 𝑚𝑟 
𝑊7(𝑘) = 𝑂−1(𝑘)𝑊6(𝑘) 2𝑚2𝑟 − 𝑚𝑟 
𝑊8(𝑘) = 𝑊6

𝑇(𝑘)𝑊7(𝑘) 𝑟2𝑚 + 𝑟𝑚 −
1

2
𝑟2 −

1

2
𝑟  

𝑆(𝑘 + 1) = 𝑆(𝑘) + 𝑊8(𝑘) 1

2
𝑟2 +

1

2
𝑟  

𝑃(𝑘 + 1/𝑘) = 𝑃(𝑘/𝑘 − 1) + 𝑊2(𝑘) 1

2
𝑛2 +

1

2
𝑛  

𝐶𝐵𝐶𝑇𝐴𝐺𝐸1 = 2𝑛3 − 𝑛2 + 𝑛 +
1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 − 𝑚) + 6𝑛2𝑚 − 𝑛𝑚 + 𝑛𝑚2 

+3𝑛2𝑟 − 𝑛𝑟 + 2𝑛𝑟2 + 2𝑚2𝑟 − 𝑚𝑟 + 𝑟2𝑚 + 𝑛𝑚𝑟 

 
Table 6. Chandrasekhar-type algorithm – version 2 

Matrix Operation Calculation Burden 
𝑊1(𝑘) = 𝑌(𝑘)𝑆(𝑘) 2𝑛𝑟2 − 𝑛𝑟 
𝑊2(𝑘) = 𝑊1(𝑘)𝑌𝑇(𝑘) 𝑛2𝑟 + 𝑛𝑟 −

1

2
𝑛2 −

1

2
𝑛  

𝑊3(𝑘) = 𝑊2(𝑘)𝐻𝑇 2𝑛2𝑚 − 𝑛𝑚 
𝑊4(𝑘) = 𝐻𝑊3(𝑘) 𝑛𝑚2 + 𝑛𝑚 −

1

2
𝑚2 −

1

2
𝑚  

𝑂(𝑘 + 1) = 𝑂(𝑘) + 𝑊4(𝑘) 1

2
𝑚2 +

1

2
𝑚  

𝑂−1(𝑘 + 1) 1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

𝐾(𝑘)𝐻 2𝑛2𝑚 − 𝑛𝑚 
𝐼 − 𝐾(𝑘)𝐻 𝑛 
𝐹[𝐼 − 𝐾(𝑘)𝐻] 2𝑛3 − 𝑛2  
𝑌(𝑘 + 1) = 𝐹[𝐼 − 𝐾(𝑘)𝐻]𝑌(𝑘) 2𝑛2𝑟 − 𝑛𝑟 
𝑊5(𝑘) = 𝐻𝑊1(𝑘) 𝑛𝑚𝑟 − 𝑚𝑟 
𝑊6(𝑘) = 𝑂−1(𝑘 + 1)𝑊5(𝑘) 2𝑚2𝑟 − 𝑚𝑟 
𝑊7(𝑘) = 𝑊5

𝑇(𝑘)𝑊6(𝑘) 𝑟2𝑚 + 𝑟𝑚 −
1

2
𝑟2 −

1

2
𝑟  

𝑆(𝑘 + 1) = 𝑆(𝑘) − 𝑊7(𝑘) 1

2
𝑟2 +

1

2
𝑟  

𝐾(𝑘)𝑂(𝑘) 2𝑛𝑚2 − 𝑛𝑚 
𝑊8(𝑘) = 𝑊5

𝑇(𝑘)𝑂−1(𝑘 + 1) 2𝑛𝑚2 − 𝑛𝑚 
𝑊9(𝑘) = 𝐹−1𝑌(𝑘 + 1) 2𝑛3 − 𝑛2  
𝑊10(𝑘) = 𝑊9(𝑘)𝑊8(𝑘) 2𝑛2𝑚 − 𝑛𝑚  
𝐾(𝑘 + 1) = 𝐾(𝑘) + 𝑊10(𝑘) 𝑛𝑚 
𝑃(𝑘 + 1/𝑘) = 𝑃(𝑘/𝑘 − 1) + 𝑊2(𝑘) 1

2
𝑛2 +

1

2
𝑛  

𝐶𝐵𝐶𝑇𝐴2 = 4𝑛3 − 2𝑛2 + 𝑛 +
1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

+6𝑛2𝑚 − 3𝑛𝑚 + 5𝑛𝑚2 
+3𝑛2𝑟 − 𝑛𝑟 + 2𝑛𝑟2 + 2𝑚2𝑟 − 𝑚𝑟 + 𝑟2𝑚 + 𝑛𝑚𝑟 
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Table 7. Chandrasekhar-type algorithm with gain 
elimination – version 2 

Matrix Operation Calculation Burden 
𝑊1(𝑘) = 𝑌(𝑘)𝑆(𝑘) 2𝑛𝑟2 − 𝑛𝑟 
𝑊2(𝑘) = 𝑊1(𝑘)𝑌𝑇(𝑘) 𝑛2𝑟 + 𝑛𝑟 −

1

2
𝑛2 −

1

2
𝑛  

𝑊3(𝑘) = 𝑊2(𝑘)𝐻𝑇 2𝑛2𝑚 − 𝑛𝑚 
𝑊4(𝑘) = 𝐻𝑊3(𝑘) 𝑛𝑚2 + 𝑛𝑚 −

1

2
𝑚2 −

1

2
𝑚  

𝑂(𝑘 + 1) = 𝑂(𝑘) + 𝑊4(𝑘) 1

2
𝑚2 +

1

2
𝑚  

𝑊5(𝑘) = 𝑊2(𝑘)[𝐻𝑇𝑅−1] 2𝑛2𝑚 − 𝑛𝑚 
𝛬(𝑘 + 1) = 𝛬(𝑘) + 𝑊5(𝑘) 𝑛𝑚 
𝛬(𝑘)𝛨 2𝑛2𝑚 − 𝑛𝑚 
𝐼 + 𝛬(𝑘)𝐻 𝑛 
[𝐼 + 𝛬(𝑘)𝐻]−1 1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

𝐹[𝐼 + 𝛬(𝑘)𝐻]−1 2𝑛3 − 𝑛2  
𝑌(𝑘 + 1) = 𝐹[𝐼 + 𝛬(𝑘)𝐻]−1𝑌(𝑘) 2𝑛2𝑟 − 𝑛𝑟 
𝑂−1(𝑘 + 1) 1

6
(16𝑚3 − 3𝑚2 − 𝑚) 

𝑊6(𝑘) = 𝛨𝑊1(𝑘) 𝑛𝑚𝑟 − 𝑚𝑟 
𝑊7(𝑘) = 𝑂−1(𝑘 + 1)𝑊6(𝑘) 2𝑚2𝑟 − 𝑚𝑟 
𝑊8(𝑘) = 𝑊6

𝑇(𝑘)𝑊7(𝑘) 𝑟2𝑚 + 𝑟𝑚 −
1

2
𝑟2 −

1

2
𝑟  

𝑆(𝑘 + 1) = 𝑆(𝑘) − 𝑊8(𝑘) 1

2
𝑟2 +

1

2
𝑟  

𝑃(𝑘 + 1/𝑘) = 𝑃(𝑘/𝑘 − 1) + 𝑊2(𝑘) 1

2
𝑛2 +

1

2
𝑛  

𝐶𝐵𝐶𝑇𝐴𝐺𝐸2 = 2𝑛3 − 𝑛2 + 𝑛 +
1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 − 𝑚) + 6𝑛2𝑚 − 𝑛𝑚 + 𝑛𝑚2 

+3𝑛2𝑟 − 𝑛𝑟 + 2𝑛𝑟2 + 2𝑚2𝑟 − 𝑚𝑟 + 𝑟2𝑚 + 𝑛𝑚𝑟 

 
Table 8. Lyapunov equation 

Matrix Operation Calculation Burden 
𝐹𝑃(𝑘/𝑘 − 1) 2𝑛3 − 𝑛2 
𝐹𝑃(𝑘/𝑘 − 1)𝐹𝑇 𝑛3 +

1

2
𝑛2 −

1

2
𝑛  

𝑃(𝑘 + 1/𝑘) = 𝑄 + 𝐹𝑃(𝑘/𝑘 − 1)𝐹𝑇 1

2
𝑛2 +

1

2
𝑛  

𝐶𝐵𝐿𝐸 = 3𝑛3 

 
Table 9. Chandrasekhar-type algorithm – Lyapunov 

equation 
Matrix Operation Calculation Burden 

𝛹(𝑘 + 1) = 𝐹𝛹(𝑘) 2𝑛2𝑟 − 𝑛𝑟 
𝛹(𝑘)𝛹𝑇(𝑘) 𝑛2𝑟 + 𝑛𝑟 −

1

2
𝑛2 −

1

2
𝑛  

𝑃(𝑘 + 1/𝑘) = 𝑃(𝑘/𝑘 − 1) + 𝛹(𝑘)𝛹𝑇(𝑘) 1

2
𝑛2 +

1

2
𝑛  

𝐶𝐵𝐿𝐸 = 3𝑛2𝑟 
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