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Abstract: - For Time-varying, Time-invariant, and steady-state systems, Kalman Filter can be implemented as a 
prediction algorithm, since it produces the state prediction and the corresponding prediction error covariance 
matrix via the state estimation and the corresponding estimation error covariance matrix. Lainiotis Filter is 
equivalent to Kalman Filter and can be used to compute the prediction. In this paper, for Time-varying, Time-
invariant and steady state systems, estimation-free Prediction Algorithms are derived via Kalman and Lainiotis 
filters; they are equivalent and compute iteratively the prediction and the corresponding prediction error 
covariance matrix. The estimation and the corresponding estimation error covariance matrix are not needed and 
are not computed. The proposed estimation-free prediction algorithms are faster than the Kalman filter.  
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1   Introduction 
Prediction and estimation play an important role in 
many fields of science: applications to the aerospace 
industry, chemical process, communication systems 
design, control, civil engineering, filtering noise 
from 2-dimensional images, pollution prediction, 
and power systems are mentioned in [1]. The 
estimation problem arises in linear estimation and is 
associated with discrete-time systems described by 
the following state space equations: 
 

{
𝑥(𝑘 + 1) = 𝐹(𝑘 + 1)𝑥(𝑘) + 𝑤(𝑘)

𝑧(𝑘) = 𝐻(𝑘)𝑥(𝑘) + 𝑣(𝑘)                
}             (1) 

 
where 𝑥(𝑘) is the 𝑛 × 1 state vector, 𝑧(𝑘) is the 
𝑚 × 1 measurement vector, 𝐹(𝑘 + 1) is the 𝑛 × 𝑛 
transition matrix, 𝐻(𝑘) is the 𝑚 × 𝑛 output matrix, 
𝑤(𝑘) is the 𝑛 × 1 state noise and 𝑣(𝑘) is the 𝑚 × 1 
measurement noise at time 𝑘 ≥ 0. 

The statistical model expresses the nature of the 
state and the measurements. The basic assumption is 
that the state noise {w(k)} and the measurement 
noise {v(k)} are white noises, i.e. a stochastic 
process with uncorrelated successive values: {w(k)} 
is a zero mean, Gaussian process with known 

covariance Q(k) of dimension n × n and {v(k)} is a 
zero mean, Gaussian process with known 
covariance R(k) of dimension m×m. The 
following assumptions also hold: (a) the initial value 
of the state x(0) is a Gaussian random variable with 
mean x0 and covariance P0; (b) the stochastic 
processes {w(k)}, {v(k)} and the random variable 
x(0) are independent. 

The discrete-time Kalman filter, [1] and Lainiotis 
filter, [2] are well-known algorithms that solve the 
filtering problem, producing the state estimation 
𝑥(𝑘/𝑘) and the corresponding estimation error 
covariance matrix 𝑃(𝑘/𝑘). The filters can be Time-
Varying(TV), Time-invariant (TI) or Steady State 
(SS). Kalman filter can be seen as a prediction 
algorithm as well, because it produces the state 
prediction 𝑥(𝑘 + 1/𝑘) and the corresponding 
prediction error covariance matrix 𝑃(𝑘 + 1/𝑘). 

The importance of filtering algorithms is without 
doubt: Kalman filter has been used in electric load 
estimation, [3], power generation prediction, [4], 
weather forecasts, [5], cases and deaths prediction 
of Covid-19, [6], satellite orbit determination, [7], 
multi-observation fusion applications related to 
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timescale, [8] which is widely used in satellite 
navigation, [9]. 

In this paper estimation-free Prediction 
Algorithms are derived via Kalman and Lainiotis 
filters, for Time-varying, Time-invariant, and steady 
state cases. The proposed algorithms can be applied 
in many applications that require computation of 
prediction: short-term electric load forecasting, [10], 
weather prediction, [11], prediction of air pollution 
levels, [12], stock price prediction, [13], [14], 
prediction of the control effectiveness of the 
actuator on behalf of an actuator stuck fault incident 
occurring on airplanes, [15], Kalman filter 
prediction that accounts for measurement 
differences, for the case of time-correlated 
measurement errors, [16], Global Positioning 
System (GPS) and Inertial Navigation System (INS) 
integration during GPS outages using machine 
learning augmented with Kalman filter, [17]. 

The paper is organized as follows: Time-varying, 
Time-invariant and steady state Kalman and 
Lainiotis filters are summarized in section 2. Time-
varying, Time-invariant, and steady state 
estimation-free Prediction Algorithms are derived 
via Kalman filter in section 3. Time-varying, Time-
invariant and steady state estimation-free Prediction 
Algorithms are derived via Lainiotis filter in section 
4. It is established that the Kalman filter and the 
Lainiotis filter based prediction algorithms are 
equivalent concerning their behavior, since they 
produce the same predictions. In section 5 the FIR 
form of the steady state estimation-free prediction 
algorithms is presented. In section 6 the multiple 
steps prediction algorithms are derived. The 
computational requirements of estimation-free 
prediction algorithms are determined in section 7. It 
is shown that the estimation-free prediction 
algorithms are faster than Kalman filter. Finally, 
Section 8 summarizes the conclusions. 
 
 
2   Kalman and Lainiotis Filters  
Time-varying, Time-invariant and steady state 
Kalman and Lainiotis filters are summarized in this 
section. 
 

2.1  Kalman Filter 
Kalman filter produces the state estimation and the 
estimation error covariance, as well as the state 
prediction and the corresponding prediction error 
covariance matrix. 

For Time-varying systems, the Time-varying 
Kalman Filter is derived: 

 

Time-varying Kalman Filter (TVKF) 
𝑥(𝑘 + 1/𝑘) = 𝐹(𝑘 + 1)𝑥(𝑘/𝑘) 
𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) + 𝐹(𝑘 + 1)𝑃(𝑘/𝑘)𝐹𝑇(𝑘 + 1) 
𝐾(𝑘 + 1) = 𝑃(𝑘 + 1/𝑘)𝐻𝑇(𝑘 + 1) 
              [𝐻(𝑘 + 1)𝑃(𝑘 + 1/𝑘)𝐻𝑇(𝑘 + 1) + 𝑅(𝑘 + 1)]−1 
𝑥(𝑘 + 1/𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]𝑥(𝑘 + 1/𝑘) 
                            +𝐾(𝑘 + 1)𝑧(𝑘 + 1) 
𝑃(𝑘 + 1/𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]𝑃(𝑘 + 1/𝑘) 

 
 

(2) 

 
for 𝑘 = 0,1, …, with initial conditions 𝑥(0/0), 
𝑃(0/0). 
 
The notation 𝑀𝑇 is used for the transpose matrix of 
matrix 𝑀.  
 
The notation 𝐼 is used for the identity matrix. 
 
Note that these initial conditions are connected to 
classically used initial conditions, [2] 
𝑥(0/−1) = 𝑥0, 𝑃(0/−1) = 𝑃0 through the 
following equations: 
𝑥(0/0) = [𝐼 − 𝐾(0)𝐻(0)]𝑥0 + 𝐾(0)𝑧(0) 
𝑃(0/0) = [𝐼 − 𝐾(0)𝐻(0)]𝑃0 
𝐾(0) = 𝑃0𝐻

𝑇(0)[𝐻(0)𝑃0𝐻
𝑇(0) + 𝑅(0)]−1 

 
The choice of these initial conditions is due to 

reasons of uniformity concerning all algorithms of 
this paper. 

For Time-invariant systems, where the transition 
matrix F = F(k + 1), the output matrix H = H(k), 
as well as the plant and measurement noise 
covariance matrices Q = Q(k) and R = R(k) are 
constant matrices, the Time-invariant Kalman Filter 
is derived: 

 
Time-invariant Kalman Filter (TIKF) 
𝑥(𝑘 + 1/𝑘) = 𝐹𝑥(𝑘/𝑘) 
𝑃(𝑘 + 1/𝑘) = 𝑄 + 𝐹𝑃(𝑘/𝑘)𝐹𝑇 
𝐾(𝑘 + 1) = 𝑃(𝑘 + 1/𝑘)𝐻𝑇[𝐻𝑃(𝑘 + 1/𝑘)𝐻𝑇 + 𝑅]−1 
𝑥(𝑘 + 1/𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐻]𝑥(𝑘 + 1/𝑘) 
                           +𝐾(𝑘 + 1)𝑧(𝑘 + 1) 
𝑃(𝑘 + 1/𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐻]𝑃(𝑘 + 1/𝑘) 

 
 

(3) 

 
for 𝑘 = 0,1, …, with initial conditions 𝑥(0/0), 
𝑃(0/0) 
 
Note that these initial conditions are connected to 
classically used initial conditions, [2] 
𝑥(0/−1) = 𝑥0, 𝑃(0/−1) = 𝑃0 through the  
following equations: 
𝑥(0/0) = [𝐼 − 𝐾(0)𝐻]𝑥0 + 𝐾(0)𝑧(0) 
𝑃(0/0) = [𝐼 − 𝐾(0)𝐻]𝑃0 
𝐾(0) = 𝑃0𝐻

𝑇[𝐻𝑃0𝐻
𝑇 + 𝑅]−1 

 
For Time-invariant systems, it is well known, 

[1], that if the signal process model is 
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asymptotically stable, then there exists a steady state 
value Pp of the prediction error covariance matrix. 
This value remains constant after the steady state 
time is reached. The Steady State Kalman Filter is 
derived: 

 
Steady State Kalman Filter (SSKF) 
𝑥(𝑘 + 1/𝑘 + 1) = 𝐴𝐾𝐹𝑥(𝑘/𝑘) + 𝐵𝐾𝐹𝑧(𝑘 + 1) (4) 
 
for 𝑘 = 0,1, …, with initial condition 𝑥(0/0)  
 
where 

{
𝐴𝐾𝐹 = [𝐼 − 𝐾𝐻]𝐹
𝐵𝐾𝐹 = 𝐾                 

}         (5) 

 
and  
𝐾 = 𝑃𝑝𝐻

𝑇[𝐻𝑃𝑝𝐻
𝑇 + 𝑅]

−1    (6) 
 
is the steady state Kalman Filter gain 
and 𝑃𝑝 is the solution of the Riccati equation  
𝑃𝑝 = 𝑄 + 𝐹𝑃𝑝𝐹

𝑇 − 𝐹𝑃𝑝𝐻
𝑇[𝐻𝑃𝑝𝐻

𝑇 + 𝑅]
−1
𝐻𝑃𝑝𝐹

𝑇 (7) 
 

The steady state coefficients in (5) are 
calculated offline by first solving the corresponding 
discrete-time Riccati equation emanating from the 
Kalman filter, [1]. 

Steady State Kalman Filter can be seen as a 
prediction algorithm as well by computing the 
prediction 𝑥(𝑘 + 1/𝑘) = 𝐹𝑥(𝑘/𝑘). 

Note that this initial condition is connected to 
classically used initial conditions, [2] 
𝑥(0/−1) = 𝑥0, 𝑃(0/−1) = 𝑃0 through the 
following equations: 
𝑥(0/0) = [𝐼 − 𝐾(0)𝐻]𝑥0 + 𝐾(0)𝑧(0) 
𝐾(0) = 𝑃0𝐻

𝑇[𝐻𝑃0𝐻
𝑇 + 𝑅]−1 

 
2.2  Lainiotis Filter 
Lainiotis filter produces the state estimation and the 
estimation error covariance. It can be used to 
compute the state prediction and the prediction error 
covariance, using Kalman filter equations. 

For Time-varying systems, the Time-varying 
Lainiotis Filter is derived: 

 
Time-varying Lainiotis Filter (TVLF) 
𝑥(𝑘 + 1/𝑘 + 1) = 𝐾𝑛(𝑘 + 1)𝑧(𝑘 + 1) 

+𝐹𝑛(𝑘 + 1)[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛(𝑘 + 1)]
−1 

                
 

[𝑃(𝑘/𝑘)𝐾𝑚(𝑘 + 1)𝑧(𝑘 + 1) + 𝑥(𝑘/𝑘)] 
𝑃(𝑘 + 1/𝑘 + 1) = 𝑃𝑛(𝑘 + 1) 
               +𝐹𝑛(𝑘 + 1)[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛(𝑘 + 1)]−1 
                𝑃(𝑘/𝑘)𝐹𝑛𝑇(𝑘 + 1) 

 
 

(8) 

 
for 𝑘 = 0,1, …, with initial conditions 𝑥(0/0), 
𝑃(0/0), 

where 
𝐿(𝑘 + 1) = [𝐻(𝑘 + 1)𝑄(𝑘)𝐻𝑇(𝑘 + 1) + 𝑅(𝑘 + 1)]−1 
𝐾𝑛(𝑘 + 1) = 𝑄(𝑘)𝐻

𝑇(𝑘 + 1)𝐿(𝑘 + 1) 
𝐾𝑚(𝑘 + 1) = 𝐹

𝑇(𝑘 + 1)𝐻𝑇(𝑘 + 1)𝐿(𝑘 + 1) 
𝑃𝑛(𝑘 + 1) = [𝐼 − 𝐾𝑛(𝑘 + 1)𝐻(𝑘 + 1)]𝑄(𝑘) 
𝐹𝑛(𝑘 + 1) = [𝐼 − 𝐾𝑛(𝑘 + 1)𝐻(𝑘 + 1)]𝐹(𝑘 + 1) 
𝑂𝑛(𝑘 + 1) = 𝐹

𝑇(𝑘 + 1)𝐻𝑇(𝑘 + 1) 
                      𝐿(𝑘 + 1)𝐻(𝑘 + 1)𝐹(𝑘 + 1) 

 
 

(9) 

 
Note that these initial conditions are connected 

to classically used initial conditions, [2]  
𝑥(0/−1) = 𝑥0, 𝑃(0/−1) = 𝑃0 through the 
following equations: 
𝑥(0/0) = [𝐼 − 𝐾(0)𝐻(0)]𝑥0 + 𝐾(0)𝑧(0) 
𝑃(0/0) = [𝐼 − 𝐾(0)𝐻(0)]𝑃0 
𝐾(0) = 𝑃0𝐻

𝑇(0)[𝐻(0)𝑃0𝐻
𝑇(0) + 𝑅(0)]−1 

 
The choice of these initial conditions is due to 

reasons of uniformity concerning all algorithms of 
this paper. 

Time-varying Kalman and Lainiotis filters are 
equivalent with respect to their behavior, since they 
produce the same estimations and the same 
estimation error covariance matrices, [2].  

Time-varying Lainiotis Filter can be used to 
compute the state prediction and the prediction error 
covariance, using Kalman filter equations. 
𝑥(𝑘 + 1/𝑘) = 𝐹(𝑘 + 1)𝑥(𝑘/𝑘) 
𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) 
                       +𝐹(𝑘 + 1)𝑃(𝑘/𝑘) 𝐹𝑇(𝑘 + 1)   
 
Remark 1. 
Time-varying Kalman and Lainiotis filters have the 
same structure: 
 
From (2) we get: 
 

{
 

 
𝑥(𝑘 + 1/𝑘 + 1) = 𝐴𝐾𝐹(𝑘 + 1)𝑥(𝑘/𝑘)

+𝐵𝐾𝐹(𝑘 + 1)𝑧(𝑘 + 1)
                  

𝐴𝐾𝐹(𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]𝐹(𝑘 + 1)

𝐵𝐾𝐹(𝑘 + 1) = 𝐾(𝑘 + 1)                                             }
 

 

         (10) 

 
while from (8) we get: 

{
 
 

 
 

𝑥(𝑘 + 1/𝑘 + 1) = 𝐴𝐿𝐹(𝑘 + 1)𝑥(𝑘/𝑘)

                +𝐵𝐿𝐹(𝑘 + 1)𝑧(𝑘 + 1)
                  

𝐴𝐿𝐹(𝑘 + 1) = 𝐹𝑛(𝑘 + 1)[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛(𝑘 + 1)]
−1

𝐵𝐿𝐹(𝑘 + 1) = 𝐾𝑛(𝑘 + 1)

+𝐹𝑛(𝑘 + 1)[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛(𝑘 + 1)]
−1𝑃(𝑘/𝑘)𝐾𝑚(𝑘 + 1)

 
}
 
 

 
 

   (11)   

 
Due to the fact that the two filters are equivalent, we 
obtain: 

{
𝐴𝐾𝐹(𝑘 + 1) = 𝐴𝐿𝐹(𝑘 + 1)
𝐵𝐾𝐹(𝑘 + 1) = 𝐵𝐿𝐹(𝑘 + 1) 

}                          (12) 

 
For Time-invariant systems, where the 

transition matrix 𝐹 = 𝐹(𝑘 + 1), the output matrix 
𝐻 = 𝐻(𝑘), as well as the plant and measurement 
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noise covariance matrices 𝑄 = 𝑄(𝑘) and 𝑅 = 𝑅(𝑘) 
are constant matrices, the Time-invariant Lainiotis 
Filter is derived: 
 
Time-invariant Lainiotis Filter (TILF) 
𝑥(𝑘 + 1/𝑘 + 1) = 𝐾𝑛𝑧(𝑘 + 1) + 𝐹𝑛[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛]

−1  
[𝑃(𝑘/𝑘)𝐾𝑚𝑧(𝑘 + 1) + 𝑥(𝑘/𝑘)] 

𝑃(𝑘 + 1/𝑘 + 1) = 𝑃𝑛
+ 𝐹𝑛[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛]

−1𝑃(𝑘/𝑘)𝐹𝑛
𝑇 

 
(13) 

 
for 𝑘 = 0,1, … 
with initial conditions 𝑥(0/0) = 𝑥0, 𝑃(0/0) = 𝑃0. 

W  
where 
𝐿 = [𝐻𝑄𝐻𝑇 + 𝑅]−1 
𝐾𝑛 = 𝑄𝐻

𝑇𝐿 
𝐾𝑚 = 𝐹𝑇𝐻𝑇𝐿 
𝑃𝑛 = [𝐼 − 𝐾𝑛𝐻]𝑄 
𝐹𝑛 = [𝐼 − 𝐾𝑛𝐻]𝐹 
𝑂𝑛 = 𝐹

𝑇𝐻𝑇𝐿𝐻𝐹 

 
 

(14) 

 
Obviously, the constant matrices in (14) are 

computed off-line. 
Note that these initial conditions are connected 

to classically used initial conditions, [2] 
𝑥(0/−1) = 𝑥0, 𝑃(0/−1) = 𝑃0 through the 
following equations: 
𝑥(0/0) = [𝐼 − 𝐾(0)𝐻]𝑥0 + 𝐾(0)𝑧(0) 
𝑃(0/0) = [𝐼 − 𝐾(0)𝐻]𝑃0 
𝐾(0) = 𝑃0𝐻

𝑇[𝐻𝑃0𝐻
𝑇𝑅]−1 

 
Time-invariant Kalman and Lainiotis filters are 

equivalent concerning their behavior, since they 
produce the same estimations and the same 
estimation error covariance matrices, [2].  

Time-invariant Lainiotis Filter can be used to 
compute the state prediction and the prediction error 
covariance, using Kalman filter equations. 
𝑥(𝑘 + 1/𝑘) = 𝐹𝑥(𝑘/𝑘) 
𝑃(𝑘 + 1/𝑘) = 𝑄 + 𝐹𝑃(𝑘/𝑘) 𝐹𝑇   
 
Remark 2. 
Time-invariant Kalman and Lainiotis filters have the 
same structure. 
 
From (3) we get: 

{
 

 
𝑥(𝑘 + 1/𝑘 + 1) = 𝐴𝐾𝐹(𝑘 + 1)𝑥(𝑘/𝑘)

+𝐵𝐾𝐹(𝑘 + 1)𝑧(𝑘 + 1)

𝐴𝐾𝐹(𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐻]𝐹       

𝐵𝐾𝐹(𝑘 + 1) = 𝐾(𝑘 + 1)                       }
 

 
         (15) 

while from (13) we get: 

{
 
 

 
 
𝑥(𝑘 + 1/𝑘 + 1) = 𝐴𝐿𝐹(𝑘 + 1)𝑥(𝑘/𝑘)

+𝐵𝐿𝐹(𝑘 + 1)𝑧(𝑘 + 1)

𝐴𝐿𝐹(𝑘 + 1) = 𝐹𝑛[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛]
−1

𝐵𝐿𝐹(𝑘 + 1) = 𝐾𝑛 +

+𝐹𝑛[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛]
−1𝑃(𝑘/𝑘)𝐾𝑚

 
}
 
 

 
 

         (16) 

 
Because the two filters are equivalent, we obtain: 

{
𝐴𝐾𝐹(𝑘 + 1) = 𝐴𝐿𝐹(𝑘 + 1)
𝐵𝐾𝐹(𝑘 + 1) = 𝐵𝐿𝐹(𝑘 + 1) 

}                (17) 

 
For Time-invariant systems, it is well known, 

[1], that if the signal process model is 
asymptotically stable, then there exists a steady state 
value 𝑃𝑒 of the estimation error covariance matrix. 
This value remains constant after the steady state 
time is reached. The Steady State Lainiotis Filter is 
derived: 
 
Steady State Lainiotis Filter (SSLF) 

𝑥(𝑘 + 1/𝑘 + 1) = 𝐴𝐿𝐹𝑥(𝑘/𝑘) + 𝐵𝐿𝐹𝑧(𝑘 + 1) (18) 
 
for 𝑘 = 0,1, …, with initial condition 𝑥(0/0) = 𝑥0,  
 
where 

{
𝐴𝐿𝐹 = 𝐹𝑛[𝐼 + 𝑃𝑒𝑂𝑛]

−1                     

𝐵𝐿𝐹 = 𝐾𝑛 + 𝐹𝑛[𝐼 + 𝑃𝑒𝑂𝑛]
−1𝑃𝑒𝐾𝑚 

}                   (19) 

 
and 𝑃𝑒 is the solution of the Riccati equation  
𝑃𝑒 = 𝑃𝑛 + 𝐹𝑛[𝐼 + 𝑃𝑒𝑂𝑛]

−1𝑃𝑒𝐹𝑛
𝑇              (20) 

  
The steady state coefficients in (19) are 

calculated off-line by first solving the corresponding 
discrete-time Riccati equation emanating from the 
Lainiotis filter, [18]. 

Steady State Lainiotis filter can be seen as a 
prediction algorithm as well by computing the 
prediction 𝑥(𝑘 + 1/𝑘) = 𝐹𝑥(𝑘/𝑘). The steady state 
prediction error covariance can be computed by the 
steady state estimation error covariance: 
𝑃𝑝 = 𝑄 + 𝐹𝑃𝑒 𝐹

𝑇 
 
Note that this initial condition is connected to 
classically used initial conditions, [2] 
𝑥(0/−1) = 𝑥0, 𝑃(0/−1) = 𝑃0 through the  
following equations: 
𝑥(0/0) = [𝐼 − 𝐾(0)𝐻]𝑥0 + 𝐾(0)𝑧(0) 
𝐾(0) = 𝑃0𝐻

𝑇[𝐻𝑃0𝐻
𝑇𝑅]−1 

 
The Steady State Kalman Filter (SSKF) and the 

Steady State Lainiotis Filter (SSLF) are equivalent 
since they produce the same estimations, [2]. 
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Remark 3.  
Steady State Kalman and Lainiotis filters have the 
same structure. 
 
Due to the fact that the two filters are equivalent, we 
obtain, [2]: 

{
AKF = ALF
BKF = BLF 

}                  (21) 

 
 
3 Estimation-free Prediction 

 Algorithms via Kalman Filter 
Estimation-free Prediction Algorithms are derived 
via Kalman filter for Time-varying, Time-invariant 
and steady state systems. The prediction and the 
corresponding prediction error covariance are 
computed iteratively; the estimation and the 
corresponding estimation error covariance are not 
needed and are not computed. 
 
3.1 Time-varying Prediction Algorithm via 

KF 
The Time-varying Prediction Algorithm via KF is 
derived from Time-varying Kalman Filter equations. 
 
Time-varying Prediction Algorithm via KF 

(TVPAKF) 

𝐾(𝑘) = 𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝑘) 
[𝐻(𝑘)𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝑘) + 𝑅(𝑘)]−1 

𝐷𝐾𝐹(𝑘) = 𝐹(𝑘 + 1)𝐾(𝑘) 
𝐶𝐾𝐹(𝑘) = 𝐹(𝑘 + 1) − 𝐷𝐾𝐹(𝑘)𝐻(𝑘) 
𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) 
                    +𝐶𝐾𝐹(𝑘)𝑃(𝑘/𝑘 − 1) 𝐹𝑇(𝑘 + 1) 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 

 
(22) 

 
for 𝑘 = 0,1, …, with initial conditions 𝑥(0/−1) =
𝑥0, 𝑃(0/−1) = 𝑃0. 
 
Proof. 

From Time-varying Kalman Filter equations we can 
write the Kalman Filter gain as: 
𝐾(𝑘) = 𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝑘) 

[𝐻(𝑘)𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝑘) + 𝑅(𝑘)]−1 
 
Concerning the prediction, from (2) we have: 
𝑥(𝑘 + 1/𝑘) = 𝐹(𝑘 + 1)𝑥(𝑘/𝑘) 
= 𝐹(𝑘 + 1) 
       {[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝑥(𝑘/𝑘 − 1) + 𝐾(𝑘)𝑧(𝑘)} 
= 𝐹(𝑘 + 1)[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝑥(𝑘/𝑘 − 1)

+ 𝐹(𝑘 + 1, 𝑘)𝐾(𝑘)𝑧(𝑘) 
= [𝐹(𝑘 + 1) − 𝐹(𝑘 + 1)𝐾(𝑘)𝐻(𝑘)]𝑥(𝑘/𝑘 − 1)

+ [𝐹(𝑘 + 1)𝐾(𝑘)]𝑧(𝑘) 
 
 

Setting 
𝐷𝐾𝐹(𝑘) = 𝐹(𝑘 + 1)𝐾(𝑘) 
𝐶𝐾𝐹(𝑘) = 𝐹(𝑘 + 1) − 𝐷𝐾𝐹(𝑘)𝐻(𝑘) 
 
we get 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 
 
Concerning the prediction error covariance, from (2) 
we have: 
𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) + 𝐹(𝑘 + 1)𝑃(𝑘/𝑘) 𝐹𝑇(𝑘 + 1) 
= 𝑄(𝑘) + 𝐹(𝑘 + 1) 
         [𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝑃(𝑘/𝑘 − 1) 𝐹𝑇(𝑘 + 1) 
= 𝑄(𝑘) + 𝐹(𝑘 + 1)𝑃(𝑘/𝑘 − 1) 𝐹𝑇(𝑘 + 1) 
         −𝐹(𝑘 + 1)𝐾(𝑘)𝐻(𝑘)𝑃(𝑘/𝑘 − 1) 𝐹𝑇(𝑘 + 1) 
= 𝑄(𝑘) + [𝐹(𝑘 + 1) − 𝐹(𝑘 + 1)𝐾(𝑘)𝐻(𝑘)] 
         𝑃(𝑘/𝑘 − 1) 𝐹𝑇(𝑘 + 1) 
= 𝑄(𝑘) + 𝐶𝐾𝐹(𝑘)𝑃(𝑘/𝑘 − 1) 𝐹

𝑇(𝑘 + 1) 
 
3.2 Time-invariant Prediction Algorithm via 

KF 
For Time-invariant systems, where the transition 
matrix 𝐹 = 𝐹(𝑘 + 1), the output matrix 𝐻 = 𝐻(𝑘), 
as well as the plant and measurement noise 
covariance matrices 𝑄 = 𝑄(𝑘) and 𝑅 = 𝑅(𝑘) are 
constant matrices, the Time-invariant Prediction 
Algorithm via KF is derived. 
 
Time-invariant Prediction Algorithm via KF 

(TIPAKF) 

𝐾(𝑘) = 𝑃(𝑘/𝑘 − 1)𝐻𝑇[𝐻𝑃(𝑘/𝑘 − 1)𝐻𝑇 + 𝑅]−1 
𝐷𝐾𝐹(𝑘) = 𝐹𝐾(𝑘) 
𝐶𝐾𝐹(𝑘) = 𝐹 − 𝐷𝐾𝐹(𝑘)𝐻(𝑘) 
𝑃(𝑘 + 1/𝑘) = 𝑄 + 𝐶𝐾𝐹(𝑘)𝑃(𝑘/𝑘 − 1) 𝐹

𝑇  
𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 

 
(23) 

for 𝑘 = 0,1, …, with initial conditions 𝑥(0/−1) =
𝑥0, 𝑃(0/−1) = 𝑃0. 
 
3.3 Steady State Prediction Algorithm via 

KF 
For Time-invariant systems, it is well known, [1], 
that if the signal process model is asymptotically 
stable, then there exists a steady state value 𝑃𝑝 of the 
prediction error covariance matrix. This value 
remains constant after the steady state time is 
reached. The Steady State Prediction Algorithm via 
KF is derived. 
 
Steady State Prediction Algorithm via KF 

(SSPAKF) 

𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹(𝑘)𝑧(𝑘) (24) 
 
for 𝑘 = 0,1, …, with initial condition 
𝑥(0/−1)) = 𝑥0 
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where 

{
𝐷𝐾𝐹 = 𝐹𝐾           
𝐶𝐾𝐹 = 𝐹 − 𝐷𝐾𝐹𝐻

}                  (25) 

 
and  
𝐾 = 𝑃𝑝𝐻

𝑇[𝐻𝑃𝑝𝐻
𝑇 + 𝑅]

−1is the steady state 
Kalman Filter gain and 𝑃𝑝 is the solution of the 
Riccati equation:  
𝑃𝑝 = 𝑄 + 𝐹𝑃𝑝𝐹

𝑇 − 𝐹𝑃𝑝𝐻
𝑇[𝐻𝑃𝑝𝐻

𝑇 + 𝑅]
−1
𝐻𝑃𝑝𝐹

𝑇. 
 

The steady state coefficients in (25) are 
calculated off-line by first solving the corresponding 
discrete time Riccati equation emanating from 
Kalman filter [1]. 

 
 

4 Estimation-free Prediction 

 Algorithms via Lainiotis Filter 
Estimation-free Prediction Algorithms are derived 
via Lainiotis filter for Time-varying, Time-invariant 
and steady state systems. The prediction and the 
corresponding prediction error covariance are 
computed iteratively; the estimation and the 
corresponding estimation error covariance are not 
needed and are not computed. 
 
4.1 Time-varying Prediction Algorithm via 

LF 
The Time-varying Prediction Algorithm via LF is 
derived from Time-varying Lainiotis Filter 
equations. 
 
Time-varying Prediction Algorithm via LF 

(TVPALF) 
𝐶𝐿𝐹(𝑘) = 𝐹(𝑘 + 1)𝐹𝑛(𝑘 + 1) 
    [𝐼 + 𝐹−1(𝑘)[𝑃(𝑘/𝑘 − 1) − 𝑄(𝑘 − 1)]𝐹−𝑇(𝑘)𝑂𝑛(𝑘) ]

−1𝐹−1(𝑘) 
𝐷𝐿𝐹(𝑘) = 𝐾𝑛(𝑘) + 𝐹(𝑘 + 1)𝐹𝑛(𝑘 + 1) 
    [𝐼 + 𝐹−1(𝑘)[𝑃(𝑘/𝑘 − 1) − 𝑄(𝑘 − 1)]𝐹−𝑇(𝑘)𝑂𝑛(𝑘) ]−1𝐾𝑚(𝑘) 
𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) + 𝐶𝐿𝐹(𝑘)𝑃(𝑘/𝑘 − 1) 𝐹

𝑇(𝑘 + 1) 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐿𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐿𝐹(𝑘)𝑧(𝑘) 

 
(26) 

for 𝑘 = 0,1, …, with initial conditions 𝑥(0/−1) =
𝑥0, 𝑃(0/−1) = 𝑃0. 
 
Proof. 

Concerning the prediction, due to the fact that 
Kalman and Lainiotis filters are equivalent, [2], 
from Time-varying Kalman Filter equations we 
have: 
x(𝑘 + 1/𝑘) = 𝐹(𝑘 + 1)𝑥(𝑘/𝑘) ⇒ 𝑥(𝑘/𝑘) =
𝐹−1(𝑘 + 1)𝑥(𝑘 + 1/𝑘) 
 
with the assumption that the matrices 𝐹(𝑘 + 1, 𝑘) 
are nonsigular. 
 
 

Then from (8) we have: 
𝑥(𝑘/𝑘) = 𝐴𝐿𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐵𝐿𝐹(𝑘)𝑧(𝑘) 
⇒ 𝐹−1(𝑘 + 1)𝑥(𝑘 + 1/𝑘)  

= 𝐴𝐿𝐹(𝑘)𝐹
−1(𝑘 + 1)𝑥(𝑘/𝑘 − 1)

+ 𝐵𝐿𝐹(𝑘)𝑧(𝑘) 
⇒ 𝑥(𝑘 + 1/𝑘) = 

𝐹(𝑘 + 1)𝐴𝐿𝐹(𝑘)𝐹
−1(𝑘 + 1)𝑥(𝑘/𝑘 − 1) 

+𝐹(𝑘 + 1)𝐵𝐿𝐹(𝑘)𝑧(𝑘) 
 
Thus 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐿𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐿𝐹(𝑘)𝑧(𝑘)  
 
where 
𝐶𝐿𝐹(𝑘) = 𝐹(𝑘 + 1)𝐴𝐿𝐹(𝑘)𝐹

−1(𝑘 + 1) 
= 𝐹(𝑘 + 1)𝐹𝑛(𝑘 + 1)  

[𝐼 + 𝑃(𝑘 − 1/𝑘 − 1)𝑂𝑛(𝑘)]
−1𝐹−1(𝑘) 

= 𝐹(𝑘 + 1)𝐹𝑛(𝑘 + 1) 
[𝑃−1(𝑘 − 1/𝑘 − 1) + 𝑂𝑛(𝑘)]

−1 
𝑃−1(𝑘 − 1/𝑘 − 1)𝐹−1(𝑘) 

𝐷𝐿𝐹(𝑘) = 𝐾𝑛(𝑘) + 𝐹(𝑘 + 1)𝐵𝐿𝐹(𝑘) 
= 𝐹(𝑘 + 1)𝐹𝑛(𝑘 + 1) 

[𝐼 + 𝑃(𝑘 − 1/𝑘 − 1)𝑂𝑛(𝑘)]
−1 

𝑃(𝑘 − 1/𝑘 − 1)𝐾𝑚(𝑘) 
= 𝐾𝑛(𝑘) + 𝐹(𝑘 + 1)𝐹𝑛(𝑘 + 1) 
[𝑃−1(𝑘 − 1/𝑘 − 1) + 𝑂𝑛(𝑘)]

−1𝐾𝑚(𝑘) 
 
and 
𝑃(𝑘/𝑘 − 1) = 𝑄(𝑘 − 1) 

+𝐹(𝑘)𝑃(𝑘 − 1/𝑘 − 1)𝐹𝑇(𝑘) 
⇒ 𝑃(𝑘 − 1/𝑘 − 1) 
= 𝐹−1(𝑘)[𝑃(𝑘/𝑘 − 1) − 𝑄(𝑘 − 1)]𝐹−𝑇(𝑘) 
 
Thus 
𝐶𝐿𝐹(𝑘) = 𝐹(𝑘 + 1)𝐹𝑛(𝑘 + 1) 

                [

𝐼 + 𝐹−1(𝑘)
[𝑃(𝑘/𝑘 − 1) − 𝑄(𝑘 − 1)]

𝐹−𝑇(𝑘)𝑂𝑛(𝑘) 

]

−1

𝐹−1(𝑘) 

𝐷𝐿𝐹(𝑘) = 𝐾𝑛(𝑘) + 𝐹(𝑘 + 1)𝐹𝑛(𝑘 + 1) 

                [

𝐼 + 𝐹−1(𝑘)
[𝑃(𝑘/𝑘 − 1) − 𝑄(𝑘 − 1)]

𝐹−𝑇(𝑘)𝑂𝑛(𝑘) 

]

−1

𝐾𝑚(𝑘) 

 
Furthermore, recall (12) and hence: 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐿𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐿𝐹(𝑘)𝑧(𝑘) 
= 𝐹(𝑘 + 1)𝐴𝐿𝐹(𝑘)𝐹

−1(𝑘 + 1)𝑥(𝑘/𝑘 − 1)
+ 𝐹(𝑘 + 1)𝐵𝐿𝐹(𝑘)𝑧(𝑘) 

= 𝐹(𝑘 + 1)𝐴𝐾𝐹(𝑘)𝐹
−1(𝑘 + 1)𝑥(𝑘/𝑘 − 1)

+ 𝐹(𝑘 + 1)𝐵𝐾𝐹(𝑘)𝑧(𝑘) 
= 𝐹(𝑘 + 1)[𝐼 − 𝐾(𝑘)𝐻(𝑘)] 

𝐹(𝑘)𝐹−1(𝑘 + 1)𝑥(𝑘/𝑘 − 1) 
+𝐹(𝑘 + 1)𝐾(𝑘)𝑧(𝑘) 

= 𝐹(𝑘 + 1)[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝑥(𝑘/𝑘 − 1)
+ 𝐹(𝑘 + 1)𝐾(𝑘)𝑧(𝑘) 
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= 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 
 
Concerning the prediction error covariance, from (8) 
we have: 
𝑃(𝑘 + 1/𝑘 + 1) = 𝑃𝑛(𝑘 + 1) 
+𝐹𝑛(𝑘 + 1)[𝐼 + 𝑃(𝑘/𝑘)𝑂𝑛(𝑘 + 1)]

−1 
𝑃(𝑘/𝑘)𝐹𝑛

𝑇(𝑘 + 1) 
= 𝑃𝑛(𝑘 + 1) + 𝐹𝑛(𝑘 + 1) 

[𝑃−1(𝑘/𝑘) + 𝑂𝑛(𝑘 + 1)]
−1 

𝑃(𝑘/𝑘)𝐹𝑛
𝑇(𝑘 + 1) 

 
From (2) we have: 
𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) + 𝐹(𝑘 + 1)𝑃(𝑘/𝑘) 𝐹𝑇(𝑘 + 1) 
= 𝑄(𝑘) + 𝐹(𝑘 + 1) 
[𝑃−1(𝑘/𝑘 − 1) + 𝐻𝑇(𝑘)𝑅−1(𝑘)𝐻(𝑘)]−1 𝐹𝑇(𝑘 + 1) 
= 𝑄(𝑘) + 𝐹(𝑘 + 1)  

𝑃(𝑘/𝑘 − 1) − 𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝑘) 
[𝐻(𝑘)𝑃(𝑘/𝑘 − 1)𝐻𝑇(𝑘) + 𝑅(𝑘)]−1𝐻(𝑘)𝑃(𝑘/𝑘 − 1) 

     𝐹𝑇(𝑘 + 1) 
= 𝑄(𝑘) + 𝐹(𝑘 + 1) 
   {[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝑃(𝑘/𝑘 − 1)} 𝐹𝑇(𝑘 + 1) 
= 𝑄(𝑘) + 𝐹(𝑘 + 1) 𝐹−1(𝑘 + 1) 
   𝐶𝐾𝐹(𝑘)𝑃(𝑘/𝑘 − 1)𝐹

𝑇(𝑘 + 1) 
= 𝑄(𝑘) + 𝐶𝐾𝐹(𝑘)𝑃(𝑘/𝑘 − 1)𝐹

𝑇(𝑘 + 1) 
 
But 
𝐶𝐾𝐹(𝑘) = 𝐹(𝑘 + 1)𝐴𝐾𝐹(𝑘)𝐹

−1(𝑘 + 1) 
               = 𝐹(𝑘 + 1)𝐴𝐿𝐹(𝑘)𝐹

−1(𝑘 + 1) = 𝐶𝐿𝐹(𝑘) 
𝐷𝐾𝐹(𝑘) = 𝐹(𝑘 + 1)𝐵𝐾𝐹 = 𝐹(𝑘 + 1)𝐵𝐿𝐹 = 𝐷𝐿𝐹(𝑘) 
 
Then 
𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) 
     +𝐶𝐿𝐹(𝑘)𝑃(𝑘/𝑘 − 1) 𝐹𝑇(𝑘 + 1) 
 
Remark 4. 
Time-varying Prediction Algorithm via KF and 
Time-varying Prediction Algorithm via LF have the 
same structure: 
 
From (22) we get: 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 
 
while from (26) we get: 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐿𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐿𝐹(𝑘)𝑧(𝑘) 
 
Due to the fact that the two filters are equivalent, we 
obtain: 

{
𝐶𝐾𝐹(𝑘 + 1) = 𝐶𝐿𝐹(𝑘 + 1)
𝐷𝐾𝐹(𝑘 + 1) = 𝐷𝐿𝐹(𝑘 + 1) 

}                              (27) 

 
Remark 5. 
The following relations between estimation and 
prediction coefficients hold: 

{
𝐷𝐾𝐹(𝑘) = 𝐹(𝑘 + 1)𝐵𝐾𝐹(𝑘)                             

𝐶𝐾𝐹(𝑘) = 𝐹(𝑘 + 1)𝐴𝐾𝐹(𝑘 + 1)𝐹
−1(𝑘 + 1) 

}  (28) 

 
4.2 Time-invariant Prediction Algorithm via 

LF 
For Time-invariant systems, where the transition 
matrix 𝐹 = 𝐹(𝑘 + 1), the output matrix 𝐻 = 𝐻(𝑘), 
as well as the plant and measurement noise 
covariance matrices 𝑄 = 𝑄(𝑘) and 𝑅 = 𝑅(𝑘) are 
constant matrices, the Time-invariant Prediction 
Algorithm via LF is derived. 
 
Time-invariant Prediction Algorithm via LF 

(TIPALF) 
𝐶𝐿𝐹(𝑘) = 𝐹𝐹𝑛   [𝐼 + 𝐹

−1[𝑃(𝑘/𝑘 − 1) − 𝑄]𝐹−𝑇𝑂𝑛 ]
−1𝐹−1 

𝐷𝐿𝐹(𝑘) = 𝐾𝑛 + 𝐹𝐹𝑛[𝐹
𝑇[𝑃(𝑘/𝑘 − 1) − 𝑄]−1𝐹 + 𝑂𝑛 ]

−1𝐾𝑚 
𝑃(𝑘 + 1/𝑘) = 𝑄 + 𝐶𝐿𝐹(𝑘)𝑃(𝑘/𝑘 − 1) 𝐹

𝑇 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐿𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐿𝐹(𝑘)𝑧(𝑘) 

 
(29) 

 
for 𝑘 = 0,1, …, with initial conditions 𝑥(0/−1) =
𝑥0, 𝑃(0/−1) = 𝑃0. 
 
Remark 6. 
Time-invariant Prediction Algorithm via KF and 
Time-invariant Prediction Algorithm via LF have 
the same structure: 
 
From (23) we get: 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 
 
while from (29) we get: 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐿𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐿𝐹(𝑘)𝑧(𝑘) 
 
Due to the fact that the two filters are equivalent, we 
obtain: 

{
𝐶𝐾𝐹(𝑘 + 1) = 𝐶𝐿𝐹(𝑘 + 1)
𝐷𝐾𝐹(𝑘 + 1) = 𝐷𝐿𝐹(𝑘 + 1) 

}                (30) 

 
4.3 Steady State Prediction Algorithm via LF 
For Time-invariant systems, it is well known [1] 
that if the signal process model is asymptotically 
stable, then there exists a steady state value 𝑃𝑝 of the 
prediction error covariance matrix. This value 
remains constant after the steady state time is 
reached. The Steady State Prediction Algorithm via 
LF is derived. 
 
Steady State Prediction Algorithm via LF 

(SSPALF) 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐿𝐹(𝑘)𝑥(𝑘/𝑘 − 1) + 𝐷𝐿𝐹(𝑘)𝑧(𝑘) (31) 
 
for 𝑘 = 0,1, …, with initial condition 
𝑥(0/−1) = 𝑥0. 
 
where 
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{
𝐶𝐿𝐹 = 𝐹𝐹𝑛   [𝐼 + 𝐹

−1[𝑃𝑝 − 𝑄]𝐹
−𝑇𝑂𝑛 ]

−1
𝐹−1      

𝐷𝐿𝐹 = 𝐾𝑛 + 𝐹𝐹𝑛[𝐹
−1[𝑃𝑝 − 𝑄]𝐹

−𝑇 + 𝑂𝑛 ]
−1
𝐾𝑚  

}     (32) 

 
and 𝑃𝑝 is the solution of the Riccati equation: 
 𝑃𝑝 = 𝑄 + 𝐹𝑃𝑝𝐹𝑇 − 𝐹𝑃𝑝𝐻𝑇[𝐻𝑃𝑝𝐻𝑇 + 𝑅]

−1
𝐻𝑃𝑝𝐹

𝑇. 
  

The steady state coefficients in (32) are 
calculated off-line by first solving the corresponding 
discrete time Riccati equation emanating from 
Kalman filter, [1]. 

 
Remark 7. 
Steady State Prediction Algorithm via KF and 
Steady State Prediction Algorithm via LF have the 
same structure: 
 
From (24) we get: 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 
while from (31) we get: 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐿𝐹𝑥(𝑘/𝑘 − 1) + 𝐷𝐿𝐹𝑧(𝑘) 
 
Due to the fact that the two filters are equivalent, we 
obtain: 

{
𝐶𝐾𝐹 = 𝐶𝐿𝐹 
𝐷𝐾𝐹 = 𝐷𝐿𝐹 

}                  (33) 

 
Remark 8. 
The following relations between steady state 
estimation and prediction coefficients hold: 

{
𝐷𝐾𝐹 = 𝐹𝐵𝐾𝐹       

𝐶𝐾𝐹 = 𝐹𝐴𝐾𝐹𝐹
−1 
}                (34) 

 
 
5 FIR Form of the Steady State 

Prediction Algorithms 
The FIR form of the steady state estimation-free 
prediction algorithms is presented in the following. 
From (24) we take: 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹𝑥(𝑘/𝑘 − 1) + 𝐷𝐾𝐹𝑧(𝑘) 
 
Then 
𝑥(1/0) = 𝐶𝐾𝐹𝑥(0/−1) + 𝐷𝐾𝐹𝑧(0) 
𝑥(2/1) = 𝐶𝐾𝐹𝑥(1/0) + 𝐷𝐾𝐹𝑧(1)

= 𝐶𝐾𝐹
2 𝑥(0/−1) + 𝐶𝐾𝐹𝐷𝐾𝐹𝑧(0)

+ 𝐷𝐾𝐹𝑧(1) 
… 
𝑥(𝑘 + 1/𝑘) = 𝐶𝐾𝐹

𝑘 𝑥(0/−1) + CKF
k−1DKFz(0)

+ CKF
k−2DKFz(1)…+ 𝐶𝐾𝐹𝐷𝐾𝐹𝑧(𝑘 − 1)

+ 𝐷𝐾𝐹𝑧(𝑘) 
 
If |𝐶𝐾𝐹| < 1, then lim

𝑘→∞
𝐶𝐾𝐹
𝑘 = 0, i.e there exists 

𝑙:𝐶𝐾𝐹𝑙−1 ≠ 0, 𝐶𝐾𝐹𝑙 = 0 

 
Thus, for 𝑘 > 𝑙 we take: 
𝑥(𝑘 + 1/𝑘) = CKF

k−1DKFz(0) + CKF
k−2DKFz(1)…

+ 𝐶𝐾𝐹𝐷𝐾𝐹𝑧(𝑘 − 1) + 𝐷𝐾𝐹𝑧(𝑘)

=∑{(CKF
k−iDKF)𝑧(𝑖)}

𝑘

𝑖=0

 

 
Hence we derive the following FIR form of the 
Steady State Prediction Algorithm via KF: 
 
FIR form of Steady State Prediction Algorithm 

via KF 

𝑥(𝑘 + 1/𝑘) =∑{𝑐(𝑖)𝑧(𝑖)}

𝑘

𝑖=0

 

𝑐(𝑖) = {
CKF
k−iDKF, 𝑖 ≥ 𝑘
0,         𝑖 < 𝑘

 

 
(35) 

 
Similarly, we derive the following FIR form of 

the Steady State Prediction Algorithm via LF: 
 
FIR form of Steady State Prediction Algorithm 

via LF 

𝑥(𝑘 + 1/𝑘) =∑{𝑐(𝑖)𝑧(𝑖)}

𝑘

𝑖=0

 

𝑐(𝑖) = {
CLF
k−iDLF, 𝑖 ≥ 𝑘
0,         𝑖 < 𝑘

 

 
(36) 

 

Remark 9. 
The FIR Steady State Prediction Algorithm 
coefficients are calculated a-priori.  
Remark 10.  

The prediction depends only on a well-defined 
set of measurements. 
 
 
6 Multiple Steps Prediction 

 Algorithms 
All the presented estimation-free prediction 
algorithms compute the one step prediction 𝑥(𝑘 +
1/𝑘) and the corresponding one step prediction 
error covariance 𝑃(𝑘 + 1/𝑘) and can be used to 
compute multiple steps prediction and the 
corresponding multiple step prediction error 
covariance. 
 
For Time-varying systems, we derive: 

{
𝑥(ℓ/𝑘) = 𝐹(ℓ, 𝑘)𝑥(𝑘/𝑘)                               

𝑃(ℓ/𝑘) = 𝑄(ℓ − 1) + 𝐹(ℓ)𝑃(𝑘/𝑘)𝐹𝑇(ℓ) 
}     (37) 

 
where 
𝐹(ℓ, 𝑘) = 𝐹(ℓ)𝐹(ℓ − 1)…𝐹(𝑘 + 1)             (38) 
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For Time-invariant systems, we derive: 

{
𝑥(ℓ/𝑘) = 𝐹𝑘−ℓ+2𝑥(𝑘/𝑘)    

𝑃(ℓ/𝑘) = ∑ {𝐹𝑖𝑄(𝐹𝑇)𝑖}ℓ−𝑘
𝑖=0

}                            (39) 

 
For steady state systems, we derive: 
𝑥(ℓ/𝑘) = 𝐹𝑘−ℓ+2𝑥(𝑘/𝑘)              (40) 
 
 
7   Computational Requirements 
Kalman Filter is the classical prediction algorithm: 
it uses estimation on order to compute estimation. It 
is established that Kalman and Lainiotis filters are 
equivalent and can be used to compute the 
prediction. 

Estimation-free prediction algorithms were 
derived by Kalman and Lainiotis filters; they are 
equivalent and compute the prediction. 

In order to investigate possible computational 
advantages of estimation-free prediction algorithms 
versus classical Kalman filters, we are going to 
compare estimation-free Prediction Algorithm via 
KF to Kalman Filter, for Time-varying, Time-
invariant and steady state systems. All algorithms 
are iterative. Then, it is reasonable to assume that 
they compute the prediction and the prediction error 
covariance executing the same number of iterations. 
Thus, in order to compare the algorithms with 
respect to their computational time, we have to 
compare their per step (iteration) calculation burden 
(CB) required for the on-line calculations; the 
calculation burden of the off-line calculations 
(initialization process for Time-invariant and steady 
state algorithms) is not taken into account. 

Scalar operations are involved in matrix 
manipulation operations, which are needed for the 
implementation of the filtering algorithms. Table 1 
summarizes the calculation burden of needed matrix 
operations. Note that a symmetric matrix is denoted 
by 𝑆. The details are given in [2].  
 

Table 1. Calculation burden of matrix operations 
Matrix  

Operation 

Matrix  

Dimensions 

Calculation  

Burden 

𝐶 = 𝐴 + 𝐵 (𝑛 × 𝑚) + (𝑛 ×𝑚) 𝑛𝑚 

𝑆 = 𝐴 + 𝐵 (𝑛 × 𝑛) + (𝑛 × 𝑛) 1

2
𝑛2 +

1

2
𝑛 

𝐵 = 𝐼 + 𝐴 (𝑛 × 𝑛) + (𝑛 × 𝑛) 𝑛 
𝐶 = 𝐴 ∙ 𝐵 (𝑛 × 𝑚) ∙ (𝑚 × ℓ) 2𝑛𝑚ℓ − 𝑛ℓ 
𝑆 = 𝐴 ∙ 𝐵 (𝑛 × 𝑚) ∙ (𝑚 × 𝑛) 𝑛2𝑚+ 𝑛𝑚 −

1

2
𝑛2 −

1

2
𝑛 

𝐵 = 𝐴−1 𝑛 × 𝑛, 𝑛 ≥ 2  1

6
(16𝑛3 − 3𝑛2 − 𝑛) 

 
The per iteration calculation burdens of the 

classical prediction algorithm Kalman Filter (KF) 
and the proposed prediction algorithm estimation-

free Prediction Algorithm via Kalman Filter (PAKF) 
are analytically calculated in the Appendix and 
summarized in Table 2. 
 

Table 2. Per iteration calculation burden of 
prediction algorithms:  

Kalman Filter (KF) and estimation-free Prediction 
Algorithm via Kalman Filter (PAKF) 

System Algorithm Calculation Burden 

Time  
Varying KF 

𝐶𝐵𝑇𝑉𝐾𝐹 =
1

2
(8𝑛3 + 7𝑛2 − 3𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 −𝑚) 

+4𝑛2𝑚 + 3𝑛𝑚2 + 𝑛𝑚 

Time  
Varying PAKF 

𝐶𝐵𝑇𝑉𝑃𝐴𝐾𝐹 = (3𝑛
3 + 3𝑛2 − 𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 −𝑚) 

+4𝑛2𝑚 + 3𝑛𝑚2 

Time  
Invariant KF 

𝐶𝐵𝑇𝐼𝐾𝐹 =
1

2
(8𝑛3 + 7𝑛2 − 3𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 −𝑚) 

+4𝑛2𝑚 + 3𝑛𝑚2 + 𝑛𝑚 

Time  
Invariant PAKF 

𝐶𝐵𝑇𝐼𝑃𝐴𝐾𝐹 = (3𝑛
3 + 3𝑛2 − 𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 −𝑚) 

+4𝑛2𝑚 + 3𝑛𝑚2 
Steady 
State KF 𝐶𝐵𝑆𝑆𝐾𝐹 = 2𝑛

2 + 2𝑛𝑚 − 𝑛 

Steady 
State PAKF 𝐶𝐵𝑆𝑆𝑃𝐴𝐾𝐹 = 2𝑛

2 + 2𝑛𝑚 − 𝑛 

 
From Table 2, it is clear that: 
 for Time-varying and Time-invariant systems, 

the estimation-free prediction algorithms are 
faster than Kalman filter, since 
𝐶𝐵𝑇𝑉𝐾𝐹 − 𝐶𝐵𝑇𝑉𝑃𝐴𝐾𝐹 = 𝐶𝐵𝑇𝐼𝐾𝐹 − 𝐶𝐵𝑇𝐼𝑃𝐴𝐾𝐹  
= 𝑛3 +

1

2
𝑛2 −

1

2
𝑛 + 𝑛𝑚 

= 1

2
𝑛(2𝑛2 + 𝑛 − 1) + 𝑛𝑚 > 0                     (41) 

 for steady state systems, the estimation-free 
prediction algorithm is faster than Kalman 
filter, since Steady State Kalman Filter can be 
seen as a prediction algorithm as well by 
additionally computing the prediction 𝑥(𝑘 +
1/𝑘) = 𝐹𝑥(𝑘/𝑘). 
 
 

8   Conclusion 

Many applications require computation of 
prediction instead of estimation. For Time-varying, 
Time-invariant and steady state systems, Kalman 
Filter can be implemented as a classical prediction 
algorithm, since it produces the state prediction and 
the corresponding prediction error covariance 
matrix via the state estimation and the 
corresponding estimation covariance matrix. 
Lainiotis Filter is equivalent to Kalman Filter and 
can be used to compute the prediction.  

In this paper, for Time-varying, Time-invariant 
and steady state systems, estimation-free Prediction 
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Algorithms are derived via Kalman and Lainiotis 
filters; they are equivalent and compute iteratively 
the prediction and the corresponding prediction 
error covariance matrix. The estimation and the 
corresponding estimation error covariance are not 
needed and are not computed.  

The FIR form of the steady state estimation-free 
prediction algorithms is derived.  

The multiple steps prediction algorithms are 
derived. 

The computational requirements of estimation-
free prediction algorithms are determined and it 
shown that the proposed estimation-free prediction 
algorithms are faster than Kalman filter; this is the 
main advantage of the proposed algorithms over the 
classical Kalman filter. 

A subject of future research is to investigate the 
application the proposed estimation free prediction 
algorithms to dynamical continuous-time systems, 
[19], to Linear Quadratic Regulator (LQR), [20]. 
Another area of future research may be the use of 
the proposed algorithms in the derivation of Time-
varying and Time-invariant information filters, 
using the inverse of the prediction error covariance 
matrix. 
 
 
References: 
[1] B. D. O. Anderson and J. B. Moore, Optimal 

Filtering, Dover Publications, New York, 
2005. 

[2] N. Assimakis and M. Adam, Discrete time 
Kalman and Lainiotis filters comparison, Int. 

Journal of Mathematical Analysis (IJMA) 
1(13) (2007) 635-659. 

[3] R. Shankar, K. Chatterjee and T.K. Chatterjee, 
A Very Short-Term Load forecasting using 
Kalman filter for Load Frequency Control 
with Economic Load Dispatch, Journal of 

Engineering Science and Technology Review, 
vol. 5, no 1, pp. 97-103, 2012. 

[4] Y. Yang, T. Yu, W. Zhao, X. Zhu, Kalman 
Filter Photovoltaic Power Prediction Model 
Based on Forecasting Experience, Front. 

Energy Res., Sec. Smart Grids, vol. 9, 2021, 
https://doi.org/10.3389/fenrg.2021.682852. 

[5] G. Giunta, R. Vernazza, R. Salerno, A. Ceppi, 
G. Ercolani, M. Mancini, Hourly weather 
forecasts for gasturbine power generation, 
Meteorol. Z. 26 (2017) 307–317. 

[6] Rao V. C. S., Devi B. G., Pratapagiri S., 
Srinivas C., Venkatramulu S., 
Raghavakumari, D., Prediction of Covid-19 
using Kalman filter algorithm, 2021 

International Conference on Research in 

Sciences, Engineering and Technology, 

ICRSET 2021, AIP Conference Proceedings, 
vol. 2418, Issue 1, id.030067, 8 pp., 2022, 
DOI: 10.1063/5.0081995. 

[7] X. Ren, Y. Yang, J. Zhu, T. Xu, Comparing 
satellite orbit determination by batch 
processing and extended Kalman filtering 
using inter-satellite link measurements of the 
next-generation beidou satellites. Gps 

Solutions 23(1), 25 (2019). 
[8] X. Wang, Y. Yang, B. Wang, Y. Lin, C. Han, 

Resilient timekeeping algorithm with multi-
observation fusion Kalman filter, Satellite 

Navigation 4(1), 25 (2023). 
[9] C. Han, L. Liu, Z. Cai, Y. Lin, The space–

time references of beidou navigation satellite 
system. Satellite navigation 2, 1–10 (2021). 

[10] H.M. Al-Hamadi, S.A. Soliman, Short-term 
electric load forecasting based on Kalman 
filtering algorithm with moving window 
weather and load model, Electric Power 

Systems Research 68 (2004) 47-59. 
[11] G. Galanis, P. Louka, P. Katsafados, I. 

Pytharoulis, and G. Kallos, Applications of 
Kalman filters based on non-linear functions 
to numerical weather predictions, Ann. 

Geophys. 24 (2006) 2451–2460. 
[12] Y. Sawaragi, T. Soeda, T. Yoshimura, S. Ohe, 

Y. Chujo, H. Ishihara, The predictions of air 
pollution levels by nonphysical models based 
on Kalman filtering method, J. Dynamic Syst., 

Meas. And Contr. 98(12) (1976). 
[13] C.Y. Tang, J.B. Peng, Y.H. Deng, Application 

of a real-time tracking model based on 
Kalman filter in the prediction of stock price. 
Computer Simulation 22(9), 218–221 (2005). 

[14] X. Yan, Z. Guosheng, Application of Kalman 
filter in the prediction of stock price, 5th 

International Symposium on Knowledge 

Acquisition and Modeling (KAM 2015), pp. 
197–198. Atlantis press (2015). 

[15] A. Guven and C. Hajiyev, Two-Stage Kalman 
Filter Based Estimation of Boeing 747 
Actuator/Control Surface Stuck Faults, 
WSEAS Transactions on Signal Processing, 
vol. 19, 2023, pp. 32-40, DOI: 
10.37394/232014.2023.19.4 

[16] C. Hajiyev and U. Hacizade, A Covariance 
Matching-Based Adaptive Measurement 
Differencing Kalman Filter for INS’s Error 
Compensation, WSEAS Transactions on 

Systems and Control, vol. 18, 2023, pp. 478-
486, 
https://doi.org/10.37394/23203.2023.18.51. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.59

Nicholas Assimakis, Maria Adam, 
Christos Tsinos, Athanasios Polyzos

E-ISSN: 2224-2856 578 Volume 18, 2023

https://doi.org/10.3389/fenrg.2021.682852
https://doi.org/10.37394/23203.2023.18.51


[17] R. Verma, L. Shrinivasan and K. 
Shreedarshan, GPS/INS integration during 
GPS outages using machine learning 
augmented with Kalman filter, WSEAS 

Transactions on Systems and Control, vol. 16, 
2021, pp. 294-301, DOI: 
10.37394/23203.2021.16.25 

[18] D. G. Lainiotis, N. D. Assimakis, S. K. 
Katsikas, Fast and numerically robust 
recursive algorithms for solving the discrete 
time Riccati equation: The case of nonsingular 
plant noise covariance matrix, Neural, 

Parallel, and Scientific Computations 3(4) 
(1995) 565-584. 

[19] Z.-P. Jiang, T. Bian, and W. Gao, Learning-
Based Control: A Tutorial and Some Recent 
Results, Foundations, and Trends in Systems 

and Control, vol. 8(3), 2022, pp. 985–1007, 
(176-284). 

[20] M.T. Augustine, A note on linear quadratic 
regulator and Kalman filter, 2023, 
http://dx.doi.org/10.48550/arXiv.2308.15798. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

APPENDIX 
 

A. Calculation Burden of Kalman Filter 

 

1. Time-varying Kalman Filter 

The computation burden of Time-varying Kalman 
Filter (eq. 2) is analytically calculated: 
 

Matrix Operation Calculation Burden 

𝑥(𝑘 + 1/𝑘) = 𝐹(𝑘 + 1)𝑥(𝑘/𝑘) 2𝑛2 − 𝑛  
𝑊1(𝑘) = 𝐹(𝑘 + 1)𝑃(𝑘/𝑘) 2𝑛3 − 𝑛2 
𝑊2(𝑘) = 𝑊1(𝑘) 𝐹

𝑇(𝑘 + 1) 𝑛3 +
1

2
𝑛2 −

1

2
𝑛  

𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) +𝑊2(𝑘) 
1

2
𝑛2 +

1

2
𝑛  

𝑊3(𝑘) = 𝐻(𝑘 + 1)𝑃(𝑘 + 1/𝑘) 2𝑛2𝑚− 𝑛𝑚 
𝑊4(𝑘) = 𝑊3(𝑘)𝐻

𝑇(𝑘 + 1) 𝑛𝑚2 + 𝑛𝑚 −
1

2
𝑚2 −

1

2
𝑚  

𝑊5(𝑘) = 𝑊4(𝑘) + 𝑅(𝑘 + 1) 
1

2
𝑚2 +

1

2
𝑚 

𝑊6(𝑘) = [𝑊5(𝑘)]
−1 1

6
(16𝑚3 − 3𝑚2 −𝑚) 

𝐾(𝑘 + 1) = [𝑊3(𝑘)]
𝑇𝑊6(𝑘) 2𝑛𝑚2 − 𝑛𝑚 

𝑊7(𝑘) = 𝐾(𝑘 + 1) 𝐻(𝑘 + 1) 2𝑛2𝑚 − 𝑛2 
𝑊8(𝑘) = 𝐼 −𝑊7(𝑘) 𝑛  
𝑊9(𝑘) = 𝑊8(𝑘)𝑥(𝑘 + 1/𝑘) 2𝑛2 − 𝑛  
𝑊10(𝑘) = 𝐾(𝑘 + 1)𝑧(𝑘 + 1) 2𝑛𝑚 − 𝑛 
𝑥(𝑘 + 1/𝑘 + 1) = 𝑊9(𝑘) +𝑊10(𝑘) 𝑛  
𝑃(𝑘 + 1/𝑘 + 1) = 𝑊8(𝑘)𝑃(𝑘 + 1/𝑘) 𝑛3 +

1

2
𝑛2 −

1

2
𝑛 

𝐶𝐵𝑇𝑉𝐾𝐹 =
1

2
(8𝑛3 + 7𝑛2 − 3𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 −𝑚) 

+4𝑛2𝑚 + 3𝑛𝑚2 + 𝑛𝑚 
 
2. Time-invariant Kalman Filter 

The computation burden of Time-invariant Kalman 
Filter (eq. 3) is equal to the computation burden of 
Time-varying Kalman Filter (eq. 2): 
CBTIKF = CBTVKF 
 
3. Steady State Kalman Filter 

The computation burden of Steady State Kalman 
Filter (eq. 4) is analytically calculated: 
 

Matrix Operation Calculation Burden 

𝑊1(𝑘) = 𝐴𝐾𝐹(𝑘)𝑥(𝑘/𝑘) 2𝑛2 − 𝑛  
𝑊2(𝑘) = 𝐵𝐾𝐹(𝑘)𝑧(𝑘 + 1) 2𝑛𝑚 − 𝑛 
𝑥(𝑘 + 1/𝑘 + 1) = 𝑊1(𝑘) +𝑊2(𝑘) 𝑛  

𝐶𝐵𝑆𝑆𝐾𝐹 = 2𝑛2 + 2𝑛𝑚 − 𝑛 

 

B. Calculation Burden of Estimation-Free 

Prediction Algorithms via Kalman Filter 

 

1. Time-varying Prediction Algorithm via 

Kalman Filter 

The computation burden of Time-varying Prediction 
Algorithm via Kalman Filter (TVPAKF) Kalman 
Filter (eq. 22) is analytically calculated: 
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Matrix Operation Calculation Burden 

𝑊1(𝑘) = 𝐻(𝑘)𝑃(𝑘/𝑘 − 1) 2𝑛2𝑚 − 𝑛𝑚 
𝑊2(𝑘) = 𝑊1(𝑘)𝐻

𝑇(𝑘) 𝑛𝑚2 + 𝑛𝑚 −
1

2
𝑚2 −

1

2
𝑚  

𝑊3(𝑘) = 𝑊2(𝑘) + 𝑅(𝑘) 
1

2
𝑚2 +

1

2
𝑚 

𝑊4(𝑘) = [𝑊3(𝑘)]
−1 1

6
(16𝑚3 − 3𝑚2 −𝑚) 

𝐾(𝑘) = [𝑊1(𝑘)]
𝑇𝑊4(𝑘) 2𝑛𝑚2 − 𝑛𝑚 

𝐷𝐾𝐹(𝑘) = 𝐹(𝑘 + 1)𝐾(𝑘) 2𝑛2𝑚 − 𝑛𝑚 
𝐶𝐾𝐹(𝑘) = 𝐹(𝑘 + 1) − 𝐷𝐾𝐹(𝑘)𝐻(𝑘) 𝑛2  
𝑊5(𝑘) = 𝐶𝐾𝐹(𝑘)𝑃(𝑘/𝑘 − 1) 2𝑛3 − 𝑛2 
𝑊6(𝑘) = 𝑊5(𝑘)𝐹

𝑇(𝑘 + 1, 𝑘) 𝑛3 +
1

2
𝑛2 −

1

2
𝑛  

𝑃(𝑘 + 1/𝑘) = 𝑄(𝑘) +𝑊6(𝑘) 
1

2
𝑛2 +

1

2
𝑛  

𝑊7(𝑘) = 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) 2𝑛2 − 𝑛  
𝑊8(𝑘) = 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 2𝑛𝑚 − 𝑛 
𝑥(𝑘 + 1/𝑘) = 𝑊7(𝑘) +𝑊8(𝑘) 𝑛  

𝐶𝐵𝑇𝑉𝑃𝐴𝐾𝐹 = (3𝑛
3 + 3𝑛2 − 𝑛) 

+
1

6
(16𝑚3 − 3𝑚2 −𝑚) 
+4𝑛2𝑚 + 3𝑛𝑚2 

 

2. Time-invariant Prediction Algorithm via 

Kalman Filter 

The computation burden of Time-invariant 
Prediction Algorithm via Kalman Filter (eq. 23) is 
equal to the computation burden of Time-varying 
Prediction Algorithm via Kalman Filter (eq. 22): 
𝐶𝐵𝑇𝐼𝑃𝐴𝐾𝐹 = 𝐶𝐵𝑇𝑉𝑃𝐴𝐾𝐹 
 
3. Steady State Prediction Algorithm via Kalman 

Filter 

The computation burden of the Steady State 
Prediction Algorithm via Kalman Filter (eq. 24) is 
analytically calculated: 
 

Matrix Operation Calculation Burden 

𝑊1(𝑘) = 𝐶𝐾𝐹(𝑘)𝑥(𝑘/𝑘 − 1) 2𝑛2 − 𝑛  
𝑊2(𝑘) = 𝐷𝐾𝐹(𝑘)𝑧(𝑘) 2𝑛𝑚 − 𝑛 
𝑥(𝑘 + 1/𝑘) = 𝑊1(𝑘) +𝑊2(𝑘) 𝑛  

𝐶𝐵𝑃𝐴𝐾𝐹 = 2𝑛
2 + 2𝑛𝑚 − 𝑛 
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