
Formal Verification of Dynamical Control Systems (Addressing

Integral Windup Phenomena Using Model-Checking)

MOHAMMED TLOUL, MICHAEL H. SCHWARZ, JOSEF BÖRCSÖK
Dept. Computer Architecture and System Programming

University of Kassel
Wilhelmshöher Allee 71, 34121 Kassel

GERMANY

Abstract: This paper investigates the utilization of model-checking as a potent method for verifying system
designs, emphasizing its early error detection capabilities, reducing failures, increasing safety, and saving costs.
The study explores the application of the UPPAAL tool and model-checking techniques within control systems.
A case study in the paper concentrates on formally verifying Proportional Integral Derivative (PID) controllers,
emphasizing integral windup issues. A model is constructed in UPPAAL for a control system that includes the
system dynamics and the actuator limitations. The model's accuracy is validated against the
MATLAB/Simulink® model. Formal requirements addressing integral windup are formulated, and a practical
model-checking example using UPPAAL illustrates its utility in control system verification.

Key-Words: Model-based Verification, Formal Verification, Model-checking, UPPAAL, Safety-critical

Systems, Control Systems Verification, Integral Windup, PID Controller.

 Received: January 12, 2023. Revised: September 14, 2023. Accepted: October 17, 2023. Published: November 15, 2023.

1 Introduction
In today's world, the escalating reliance on complex
computers, communication networks, and control
systems is conspicuous. These multifaceted systems
have pervaded diverse spheres of human existence,
spanning from handheld devices to nuclear facilities.
They constitute the bedrock of modern civilization,
underpinning critical functions encompassing power
generation, water distribution, transportation systems
...etc. Consequently, the imperative of guaranteeing
the accuracy, dependability, and safety of these
intricate systems is paramount, [1].
 Over the preceding half-century, a procession of
accidents and calamities has unfolded due to control
systems malfunctioning such as the Three Mile
Island Nuclear Accident (1979), the Chernobyl
Nuclear Disaster (1986), the Therac-25 Radiation
Therapy Accidents (1985-1987), the Ariane 5 Rocket
Failure (1996), and the Deepwater Horizon Oil Spill
(2010), among others, [1], [2], [3]. Insights from
these disasters have to be an integral part of planning
new systems, and more measures have to be taken to
prevent the repetition of such disasters.
 Insights from Health and Safety Executive- Great
Britain's study titled " Out of control: Why controls

system go wrong and how to prevent failure", [4],
reveal that a notable 44% of control system failures
can be ascribed to inadequate specifications. This
percentage can be disaggregated into two segments:
specifically, 12% originates from inadequacies in the

specification of functional requirements, while a
substantial 32% is linked to shortcomings in
articulating safety integrity requirements. This
observation underscores the compelling reality that a
significant portion of control system failures
necessitate attention during the initial phases of
development.
 Addressing this challenge has prompted a shift in
the systematic development processes, transitioning
away from conventional methodologies like the
waterfall model and the widely adopted V-model
towards an approach known as model-based
development, [5], where the majority of bug and
design flaw detection occurs post-product
development or prototype creation. For example,
under the V-model approach, over 30% of identified
errors emerge after unit testing, and more than 40%
manifest after system testing, [1].
 The approach of model-based development hinges
upon the construction of a system model during the
developmental process, followed by iterative cycles
of simulation and testing across various stages. This
contains key phases like Model-In-the-Loop (MIL),
Software-In-the-Loop (SIL), and Hardware-In-the-
Loop (HIL) testing. By adopting this methodology,
there is potential to reduce development
expenditures, primarily through early detection of
faults, which in turn reduces the expenditures
associated with their resolution, [5]. However, it is
imperative to acknowledge that this methodology

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.41 Mohammed Tloul, Michael H. Schwarz, Josef Börcsök

E-ISSN: 2224-2856 393 Volume 18, 2023

relies heavily on the utilization of testing and
simulation techniques, thereby inheriting their
inherent weakness, which predominantly manifests
as a reduced level of assurance, particularly in
scenarios where a substantial number of test cases are
involved, [1]. This can be unacceptable if the control
system is used in safety-critical applications.
 The significance of model-checking has been
steadily increasing due to several compelling factors.
Primarily, it operates as an a priori verification
technique, engaging in the verification process
through a system model before the existence of an
actual product or prototype. This proactive approach
increases the detection of defects even preceding unit
and system testing phases, [1]. Moreover, model-
checking has substantial coverage and assurance
capabilities, [1]. Furthermore, its foundation in
mathematics and classification within the realm of
formal methods accentuates its prominence. Notably,
formal methods such as model-checking are "Highly

recommended" for verification in safety-critical
systems standards like IEC 61508 (Functional safety
standard of electrical/ electronic/ programmable
electronic safety-related systems), ISO 26262 (Road
vehicles functional safety standard), …etc., [6].
Additionally, from the control system perspective,
the work of, [5], expounds upon the advantages of
incorporating a system model and formal
specification within control systems. This integration
serves to bridge the gap between continuous-time and
discrete-time domains and offers a framework for
both model-checking and controller synthesis,
aligning with a correct-by-design methodology, [5].
 It is worth keeping in mind that control systems
are not assigned the safety role in all safety-critical
systems as safety standards such as IEC 61508
emphasize the need for a clear separation between the
control system and the safety function, if possible,
[6]. Normally, a simple and reliable safety function is
used for the safety role, However, the controller itself
may be a safety-critical system such as the flight
controller in the X-29 aircraft, [5].
 Note: The main goal of this paper is to study
dynamical control systems in a model-checking
environment, modelling using hybrid transition
systems, and formulating formal requirements to
describe such systems. Conventional control system
topics such as stability analysis as well as anti-
windup measures and techniques from control
theory, that are used to minimize the effects of the
integral windup, [5], are outside the scope of his
paper.

2 Problem Formulation
This study focuses on employing model-checking
techniques to verify control systems. It emphasizes
the necessity of creating a transition system model
that accounts for the system's dynamic behaviours.
However, using model-checking tools for this
purpose is challenging due to their original design not
accommodating dynamic system verification
complexities.
 One major challenge is the lack of support for
floating-point parameter representation in model-
checking tools, despite its importance in capturing
accurate system dynamics. Unfortunately, this
representation can lead to the state space explosion
problem during model-checking, [7]. Previous work
mentioned in, [7], introduced an ad-hoc data
representation-based approach to describe dynamical
control systems within the model-checking
framework. However, this work doesn't address the
integral windup issue.
 The study also addresses the challenge of
formulating formal requirements to verify aspects
related to the integral windup phenomenon. The
conventional Computational Temporal Logic (CTL)
and Linear Temporal Logic (LTL) languages,
designed for state-based systems, are inadequate for
describing control system dynamics.
 Building upon previous methodologies, [7], the
study aims to create a comprehensive control system
model, including an actuator model to tackle the
integral windup problem. Additionally, it explores
using formal languages like LTL and CTL to
effectively describe this phenomenon. The goal of
this paper is to advance model-checking techniques
for verifying control systems, particularly concerning
integral windup.

3 PID Controller and Integral Windup

Phenomena
3.1 Dynamical Control Systems
The advent of transistors brought about a significant
revolution in control systems, leading to the birth of
a new field known as digital control in the 1950s. The
introduction of embedded systems flexibly enabled
the implementation of controllers, allowing for easy
updates through software modifications, [7].

Fig. 1: Simplified Block Diagram of Dynamical

Control System, adapted from, [7].

Controller Actuator Process

Sensor

_+

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.41 Mohammed Tloul, Michael H. Schwarz, Josef Börcsök

E-ISSN: 2224-2856 394 Volume 18, 2023

 Fig. 1 shows a simplified block physical process
regulated by a computer-based controller (without
considering the disturbances). The main components
of the system are the process, the actuator, the sensor,
and the controller.
 The processes involved in control systems are
often physical and continuous in nature. In these
systems, the sensors and actuators play a crucial role
as they serve as the interface between the discrete and
continuous worlds, [5]. Different types of controllers
can be used such as PID controller, Linear Quadratic
Regulator (LQR), Model Predictive Control (MPC)
…etc. This paper focuses on the PID controller, in
particular the PI variant.
 The PID controller is the most used in the industry
due to its simplicity and effectiveness. It consists of
three essential components: the proportional term
(P), the integral term (I), and the derivative term (D).
The input to the PID controller is the error signal,
calculated as the discrepancy between the desired
reference value and the measured output obtained
from the sensor. The PID controller processes this
error signal and generates an output known as the
control signal. The control signal is then transmitted
to the actuator, which converts it into the appropriate
power or action required by the system, [8].

3.2 Integral Windup
Integral windup is a nonlinear effect commonly
observed in control systems when actuators have
limitations, as shown in Fig. 2. These limitations are
typically imposed by the physical capabilities of the
actuators, such as valves having fully open or closed
positions and maximum flow rates, or electric motors
having maximum speeds or torque outputs.
Additionally, safety considerations may also impose
limits to protect the system or equipment, [5].

Fig. 2: Saturation Characteristic of an Actuator, [8].

 Integral windup occurs when the controller
commands a control action that requires the actuator
to operate beyond its limits. As a result, the feedback
loop is disrupted, and the system operates in an open-
loop manner. The actuator output becomes saturated
at its limits, rendering it independent of the process
output. Since the error does not converge to zero, the
integrator continues accumulating the error over
time. Consequently, the output of an integral part

becomes excessively large, and it takes a
considerable amount of time to remove the saturation
effect. This phenomenon significantly affects the
transient response of the system, resulting in slower
performance, [5].
 Fig. 3 illustrates the integral windup phenomenon
in a first-order system controlled by a PI controller
with an actuator that exhibits saturation
characteristics. The figure is divided into two halves,
the lower part shows the integral control effort, the
upper part shows the reference signal in orange and
the system output in blue.

Fig. 3: Simulation of the Integral Windup

Phenomena.

 The icons shown in Fig. 3 can be summarized as
the following:

1. First reference change as a step input.
2. The system is not able to track the input

because the actuator is saturated.
3. The integrator is accumulating the error.
4. A second reference change is opposite to the

first one.
5. Faulty output of the controller, as it is

applying the maximum output, but in the
wrong direction.

6. The system tracks the input too late.

4 Model-Checking
Model checking stands as a powerful formal
verification technique that systematically and
exhaustively analyses all possible states of a system,
[1]. To execute model-checking three main things as
needed: a model of the system or its components as a
transition system (state machines), a set of formal
requirements written in languages such as LTL or
CTL, and a model-checking tool such as UPPAAL,
SPIN or MuSMV as depicted in Fig. 4.
 Note: UPPAAL, SPIN and MuSMV are model-
checking tools. UPPAAL, the tool that was used for
this work, is a model-checking tool developed in
collaboration between the Department of Information
Technology at Uppsala University in Sweden, and

Control signal

Actuator output

Actuator higher limit

Actuator lower limit

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.41 Mohammed Tloul, Michael H. Schwarz, Josef Börcsök

E-ISSN: 2224-2856 395 Volume 18, 2023

the Department of Computer Science at Aalborg
University in Denmark.

Fig. 4: Schematic View of Model-checking, [1].

The system model and formal requirements are fed
into the model-checking tool, and with a "push

button" the tool then verifies the model against the
requirements, yielding one of three outcomes, [1]:

1. Satisfied: The model meets the property.
2. Violated: The model fails the property, with

a counterexample provided.
3. Not Enough Memory: Insufficient

resources for model-checking.

4.1 Modelling
Models required for model-checking are parts of the
transition systems family. The nodes in transition
systems represent states, and the edges represent
transitions between states, [7].
 UPPAAL tool is used for the work of this paper,
and it uses Timed Automata which is a transition
system extended with timing notations. A timed
automaton is a “program graph that is equipped with

a finite set of real-valued clock variables called

clocks”, [1]. Fig. 5 shows an example of a timed
automaton of a gate that opens and closes on request,
time constraints on nodes and edges and modelled
using the clock x, [7].

Fig. 5: Timed Automaton Example of a Gate opens

and closes on request, [7].

 Timed automata is defined as a tuple
(𝑆, 𝐼, 𝐴𝑐𝑡, 𝐶, →, 𝐼𝑛𝑣, 𝐴𝑃, 𝐿), [1], where:

• 𝑆 is a set of stats,
• 𝐼 ⊆ 𝑆 is a set of initial states,
• 𝐴𝑐𝑡 is a set of actions,
• 𝐶 is a set of clocks,
• → ⊆ 𝑆 × 𝐶𝐶(𝐶) × 𝐴𝑐𝑡 × 2𝐶 × 𝑆 is a

transition relation,
• 𝐼𝑛𝑣 ∶ 𝑆 → 𝐶𝐶(𝐶) is an invariant-assignment

function,
• 𝐴𝑃 is a set of atomic propositions, and
• 𝐿 ∶ 𝑆 → 2𝐴𝑃 is a labelling function.

where 𝐶𝐶(𝐶) is a set of clock constraints over clock
𝐶, and the invariants are clock constraints on the
states.

4.2 Requirements using Formal Languages
Formal languages are essential for describing and
verifying system model properties clearly and
unambiguously. When it comes to model checking,
human languages are not suitable for expressing
requirements. Instead, formal languages such as LTL
and CTL provide the necessary tools to specify
linear-time and branching-time properties for
transition systems.
 The main distinction between LTL and CTL lies
in their treatment of time. LTL assumes linear time,
where each state is followed by a single successor
state. It enables the expression of properties that hold
across all possible system paths. On the other hand,
CTL assumes branching time, allowing for multiple
successors from each state. This makes CTL suitable
for capturing properties that depend on different
system branches and choices. Furthermore, CTL
permits the explicit inclusion of time values using
clocks, which is not possible in LTL. Certain
properties can be expressed in one but not the other,
and some equivalences exist between properties. For
more information on both LTL and CTL, [7].
 The syntax of CTL has two stages: state and path
formulas. The state formula over a set of atomic
propositions is defined as the following, [1]:

𝛷 ∷= 𝑡𝑟𝑢𝑒 | 𝑝 | 𝛷1 ∧ 𝛷2 | ¬ 𝛷 | ∃𝜑 | ∀𝜑

where 𝑝 ∈ 𝐴𝑃 and 𝜑 is the path formula. ∃ (Exist) is
a path quantifier (means for some path), and ∀ (All)
is a state quantifier (means for all states) [1].
 The path formulae are defined as the following,
[1]:

𝜑 ∷= 𝑋𝛷 | 𝛷1𝑈 𝛷2

Requirements System

Formalizing Modelling

Property
specification System model

Model checking

Satisfied Violated &
counterexample

Simulation

Error location

Up

True

lower

Down

True

rise

reset (x)

Coming

down

Going up

reset (x)

{up}

{down}

{ }

{ }

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.41 Mohammed Tloul, Michael H. Schwarz, Josef Börcsök

E-ISSN: 2224-2856 396 Volume 18, 2023

where 𝜑 is a path formula, 𝑋 is the next operator, and
𝑈 is the until operator, [1].
 The previous operators can be used to form other
operators such as G (Globally) and F (Eventually).
Fig. 6 shows two CTL traces, Lift: ∀𝐺𝑝 (for all states
globally the atomic proposition p appears). Right:
∃𝐹𝑝 (At least for one path the atomic proposition p

appears eventually).

Fig. 6: Traces safeties the CTL requirements ∀𝐺𝑝

and ∃𝐹𝑝.

5 Model of a Dynamical Control

System Using Timed-Automata
Model-checking tools do not support floating-point
data types, [7]. To include the system dynamics and
perform calculations of plant and controller in a
model-checking tool, all the necessary parameters
shall be represented using a fixed-point data type
variable. For example, for the following transfer
function, the parameters K, T, Y and U need to be
represented using fixed-point data variables.

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

𝐾

𝑇𝑠+1
 (1)

 To use the transfer function in a model-checking
tool, [7], introduces Algorithm 1, shown in Table 1,
to convert a continuous Single Input Single Output
(SISO) Linear Time-Invariant (LTI) transfer function
into a suitable form for model-checking tools.
 Moreover, [7], introduces model bases for a
control system consisting of three time automatons:
plant, controller and observer, as shown in Fig. 7. The
plant has states such as Settled, Transient, Rise time
and Overshoot. It is responsible for performing the
plant calculations necessary for calculating the
dynamics of the plant. The controller has states such
as Settled and Transient, and it is responsible for
performing the controller calculation required to
calculate the controller output from an error input. In
addition, an observer is used to synchronize the
calculation between the plant and the controller, [7].

Table 1. Algorithm to Convert SISO LTI Transfer
Function to be Used in a Model-checking Tool.

 Note: using Algorithm 1 required identifying the
number of the decimal digits I, and the number of
fractional digits F. For example, choosing (I=1, F=4)
results in a limited range of the U and Y values
between (−3.2767 ⋯ 3.2767) and it shall be
mapped to (−32767 ⋯ 32767) in UPPAAL, [7].

Fig. 7: Bases of Modelling a Control System in

Timed-Automata, [7].

6 Case Study (PID Controller and

Integral Windup)
6.1 Modelling
Using the models, model bases and the models
provided in, [7], as a reference, a control system
consisting of a first-order plant, PI controller,
observer and actuator, was constructed in the
UPPAAL tool as shown in Fig. 8. The model was
tailored with the focus on the integral windup issue.
 The following first-order transfer function was
taken as an example of the first-order plant:

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

1

15𝑠+1
 (2)

p

p

pp

pp p p

p p

Algorithm 1 Convert a SISO Linear Time Invariant Model to be used in a Model-
Checking Tool
Input: Continuous SISO LTI model, sampling time 𝑇𝑠, 𝐾𝑈 gain.
Output: Discrete SISO LTI model, 𝐾𝑎𝑏 coefficients scaling gain, 𝐾𝑆 input/output
scaling gain.

1 Discretize the SISO LTI model using one of the discretization methods

and sampling time 𝑇𝑠.
2 Define the input/ output ranges
3 Select the digit numbers of the fixed-point representation (𝐼, 𝐹) based on

step 2. Where I is the number of decimal digits and F is the number of
fractional digits.

4 Select 𝐾𝑆 based on step 3.
5 Based on I and F in step 3, round off the coefficients in the described

SISO LTI model in step 1.
6 Verify that the non-zero fractional digits in the model coefficients can be

recovered by scaling them.
7 Based on step 3, calculate 𝐾𝑎𝑏 : closest value to 10𝐹 which is a power of

2.
8 Recalculate coefficients using 𝐾𝑈 gain
9 Apply the final value theorem for the generated transfer function.
10 Select the transfer function with the highest and lowest final value

theorem.
11 Scale coefficients using 𝐾𝑎𝑏 gain and round off to integer values.

Overshoot Rise Time

Settled Transient

No Event

Settled

Event

Settled

Processing

Processing Processing

Settled

Overshoot Reached

Settled Transient

Settled

EventNo Event Processing Initial Transient

Plant and

Controller

Settled

Reference

Changed

No Event Processing

End

Plant

Controller

Observer

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.41 Mohammed Tloul, Michael H. Schwarz, Josef Börcsök

E-ISSN: 2224-2856 397 Volume 18, 2023

 It was converted to be used in UPPAAL using
Algorithm 1 to:

y= (15327*Y_1+1057*U_1)/16384;

// system output

Fig. 8: Model of a Control System Consists of First
Order Plant, PI Controller, Observer and Actuator in

UPPAAL.

 The controller transfer function was:

𝐺𝑃𝐼(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑃 +

𝐾𝐼

𝑠
 (3)

with 𝐾𝑃 = 2 and 𝐾𝐼 = 0.2 as an example.
 The controller transfer function was converted to
the following piece of code using Algorithm 1 to be
used in UPPAAL:

int u_P= 2*E;

// Proportional controller output

int u_I =

(1638*E/16384)+(1638*E_1/16384)+U_1I;

//Integral controller output

int u= u_P + u_I;

//PI controller output

 The actuator model is essential for the integral
windup issue. It was modelled as three states: the
initial state, the state Not_Saturated which represents
the actuator in its linear range before reaching its
maximum or minimum limits, and the state Saturated

which represents the state of the actuator when it
reaches its higher or lower limits. Fig. 9 shows the
model of the actuator in UPPAAL.

Fig. 9: Model of the Actuator in UPPAAL.

6.2 Simulation

Before initiating the model-checking process, it was
imperative to execute a comparative analysis
between the UPPAAL model and its counterpart
implemented in MATLAB/Simulink®. This serves
the dual purpose of validating the outcomes derived
from the abstraction method and ensuring the
precision of the system dynamics calculations. The
outcomes of this analysis are presented in Fig. 10.
 Fig. 10 shows the simulation results generated by
both MATLAB/Simulink® and UPPAAL tools are
juxtaposed. Remarkably, the findings reveal that the
disparities between the data obtained from these two
tools manifest predominantly in the fifth digit,
signifying variations within the fourth fractional
digit.
 It is significant to understand that when the
transfer function parameters or controller gains
representation requires a greater number of decimal
digits, the level of accuracy attainable through
UPPAAL results is subject to degradation, as the
highest accuracy can be achieved using the number
of decimal digits I to be one, and the number of
fractional digits F to be four.

6.3 Verification through model-checking

The verification phase was executed through the
formulation of formal requirements that required to
be checked. Diverse sets of requirements were
formulated to assess aspects, including the plant's
susceptibility to overshooting or progressing into an
unstable state, as well as addressing the intricate
phenomenon of integral windup.
 As depicted in Fig. 11, the results of the model-
checking verification process, facilitated by
UPPAAL, are presented herein. Within this visual
representation, requirements that have been
successfully met are denoted by a reassuring green
colour, while those that remain unfulfilled are
distinctly highlighted in red. Furthermore, it is worth

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.41 Mohammed Tloul, Michael H. Schwarz, Josef Börcsök

E-ISSN: 2224-2856 398 Volume 18, 2023

noting that instances of an orange may arise when
sufficient computational resources are not available.
 The main written requirement regarding the
integral windup issue was:

E<>(Actuator_1.Saturated)&&((E>E_1)||(E==E_1))

 The preceding requirement is formulated to check
the presence of integral windup within the system. It
systematically examines whether there exists at least
one path in which the actuator operates in the
Saturated state while concurrently maintaining or
surpassing the current error value compared to its
prior state. In other words, it checks if the actuator is
saturated while the error remains constant or
increases.
 The model-checking result of the previous
requirements is green, which means that the
requirement is satisfied, and the system’s actuator
reached its limits. These results were also validated
with MATLAB/Simulink® simulations, and both
results were the same.

Fig. 10: Simulation Results from

MATLAB/Simulink® and UPPAAL. The Results
from MATLAB/Simulink® are Represented Using
the Blue Plot and the Corresponding Data Tips. The

Results from UPPAAL are Represented Using 8
Screenshots Labelled with (Global variables).

Fig. 11: Model-Checking Results in UPPAAL.

7 Conclusion
In conclusion, this scientific paper confirms the
importance of model-checking as an effective
approach for verifying system designs, offering
benefits such as early error detection, enhanced
safety, and cost savings, particularly for hybrid
systems. Model-checking provides extensive
coverage and addresses limitations associated with
testing and simulation. However, challenges exist in
accurately constructing models and expressing
requirements in formal languages, particularly when
dealing with phenomena like integral windup.
 The UPPAAL tool is highlighted as a powerful
and user-friendly choice, with its visual modelling
feature offering a significant advantage over other
model-checking tools relying on textual modelling.
This visual approach reduces systematic errors and
aids in bug detection within models. Nevertheless,
the effectiveness of modelling and verification in
UPPAAL depends on system complexity and specific
requirements, which can be challenging for complex
systems.
 While UPPAAL was not originally designed for
modelling dynamic control systems, this paper
demonstrates its adaptability for building hybrid
control system models and performing simulation
and model-checking verification. UPPAAL's
strength lies in its formal verification capabilities,
which are not typically found in traditional control
system simulators like MATLAB/Simulink®.
 A notable weakness of UPPAAL is the absence of
libraries containing pre-existing functions or
examples to assist users in learning the tool,
necessitating a "start from scratch" approach for
modelling and specifying requirements for specific
systems.
 Using UPPAAL requires constructing system
models, which can be challenging and demands prior
knowledge about the system's components.
Additionally, the omission of factors like noise, time
delay, or disturbances in the model adds potential
sources of modelling errors.
 The process of simulating models in UPPAAL is
straightforward and valuable, allowing for the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.41 Mohammed Tloul, Michael H. Schwarz, Josef Börcsök

E-ISSN: 2224-2856 399 Volume 18, 2023

identification and correction of modelling faults and
the improvement of model accuracy. The comparison
of UPPAAL results with those from
MATLAB/Simulink® demonstrates UPPAAL's
ability to produce accurate outcomes, although
precision may be influenced by variable value ranges.
 In principle, the verification process in UPPAAL
is a "push-button" activity once the system is
properly modelled. However, challenges arise in
translating requirements from human-written
languages into temporal logic languages and ensuring
the correctness and completeness of both the model
and the requirements, which can impact the accuracy
of model-checking results.
 In summary, model-checking stands as a powerful
technique within the realm of formal verification.
However, it is essential to recognize that model-
checking verifies a model of the system rather than
the system itself. To fully leverage the benefits of
model-checking, it should be combined with testing,
simulation, safety analysis, and other verification
techniques. This comprehensive approach becomes
even more crucial when dealing with safety-critical
systems. In such cases, employing a variety of
verification methods and techniques becomes
imperative to ensure the utmost safety assurance for
the system.

References

[1] C. Baier and J.-P. Katoen, Principles of model

checking. Cambridge, Mass., London: MIT,
2008.

[2] “Deepwater Horizon – BP Gulf of Mexico Oil
Spill,” [Online]. Available: https://
www.epa.gov/enforcement/deepwater-horizon-
bp-gulf-mexico-oil-spill
#:~:text=On%20April%2020%2C%202010%2
C%20the,of%20marine%20oil%20drilling%20
operations (accessed: Jun. 12 2023).

[3] Chernobyl | Chernobyl Accident | Chernobyl

Disaster - World Nuclear Association. [Online].
Available: https://www.world-nuclear.org/
information-library/safety-and-security/safety-
of-plants/chernobyl-accident.aspx (accessed:
Jun. 12 2023).

[4] Great Britain. Health and Safety Executive, Out

of control: Why controls system go wrong and

how to prevent failure, 2nd ed. Sudbury: HSE
Books, 2003.

[5] K. J. Åström and R. M. Murray, Feedback

systems: An introduction for scientists and

engineers / Karl Johan Åström, Richard M.

Murray. Princeton, New Jersey: Princeton
University Press, 2021.

[6] Functional Safety of

Electrical/Electronic/Programmable

Electronic Safety-related Systems (E/E/PE, or

E/E/PES)., IEC 61508, 2010.
[7] Pablo Armando Ordóñez Aguileta, “Formal

Design and Verification of Digital PID Gain
Scheduling Controllers: A Model Checking
Approach,” PhD thesis, University of Sheffield,
2018. Accessed: Feb. 22 2023. [Online].
Available: https://etheses.whiterose.ac.uk/
19465/

[8] M. A. Johnson, M. H. Moradi, and J. Crowe,
PID control: New identification and design

methods / Michael A. Johnson and Mohammad

H. Moradi (editors); with J. Crowe, K.K. Tan,

T.H. Lee, R. Ferdous, M.R. Katebi, H.-P.

Huang, J.-C. Jeng, K.S. Tang, G.R. Chen, K.F.

Man, S. Kwong, A. Sánchez, Q.-G. Wang, Yong

Zhang, Yu Zhang, P. Martin, M.J. Grimble and

D.R. Greenwood. New York, N.Y., London:
Springer, 2005.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/de
ed.en_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2023.18.41 Mohammed Tloul, Michael H. Schwarz, Josef Börcsök

E-ISSN: 2224-2856 400 Volume 18, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

