
Formal Verification of Dynamical Control Systems (Addressing 

Integral Windup Phenomena Using Model-Checking)   
 

MOHAMMED TLOUL, MICHAEL H. SCHWARZ, JOSEF BÖRCSÖK 
Dept. Computer Architecture and System Programming 

University of Kassel 
Wilhelmshöher Allee 71, 34121 Kassel 

GERMANY 
 
Abstract:  This paper investigates the utilization of model-checking as a potent method for verifying system 
designs, emphasizing its early error detection capabilities, reducing failures, increasing safety, and saving costs. 
The study explores the application of the UPPAAL tool and model-checking techniques within control systems. 
A case study in the paper concentrates on formally verifying Proportional Integral Derivative (PID) controllers, 
emphasizing integral windup issues.  A model is constructed in UPPAAL for a control system that includes the 
system dynamics and the actuator limitations. The model's accuracy is validated against the 
MATLAB/Simulink® model. Formal requirements addressing integral windup are formulated, and a practical 
model-checking example using UPPAAL illustrates its utility in control system verification. 
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1 Introduction 
In today's world, the escalating reliance on complex 
computers, communication networks, and control 
systems is conspicuous. These multifaceted systems 
have pervaded diverse spheres of human existence, 
spanning from handheld devices to nuclear facilities. 
They constitute the bedrock of modern civilization, 
underpinning critical functions encompassing power 
generation, water distribution, transportation systems 
...etc. Consequently, the imperative of guaranteeing 
the accuracy, dependability, and safety of these 
intricate systems is paramount, [1].  
     Over the preceding half-century, a procession of 
accidents and calamities has unfolded due to control 
systems malfunctioning such as the Three Mile 
Island Nuclear Accident (1979), the Chernobyl 
Nuclear Disaster (1986), the Therac-25 Radiation 
Therapy Accidents (1985-1987), the Ariane 5 Rocket 
Failure (1996), and the Deepwater Horizon Oil Spill 
(2010), among others, [1], [2], [3]. Insights from 
these disasters have to be an integral part of planning 
new systems, and more measures have to be taken to 
prevent the repetition of such disasters.  
     Insights from Health and Safety Executive- Great 
Britain's study titled " Out of control: Why controls 

system go wrong and how to prevent failure", [4], 
reveal that a notable 44% of control system failures 
can be ascribed to inadequate specifications. This 
percentage can be disaggregated into two segments: 
specifically, 12% originates from inadequacies in the 

specification of functional requirements, while a 
substantial 32% is linked to shortcomings in 
articulating safety integrity requirements. This 
observation underscores the compelling reality that a 
significant portion of control system failures 
necessitate attention during the initial phases of 
development. 
     Addressing this challenge has prompted a shift in 
the systematic development processes, transitioning 
away from conventional methodologies like the 
waterfall model and the widely adopted V-model 
towards an approach known as model-based 
development, [5],  where the majority of bug and 
design flaw detection occurs post-product 
development or prototype creation. For example, 
under the V-model approach, over 30% of identified 
errors emerge after unit testing, and more than 40% 
manifest after system testing, [1]. 
     The approach of model-based development hinges 
upon the construction of a system model during the 
developmental process, followed by iterative cycles 
of simulation and testing across various stages. This 
contains key phases like Model-In-the-Loop (MIL), 
Software-In-the-Loop (SIL), and Hardware-In-the-
Loop (HIL) testing. By adopting this methodology, 
there is potential to reduce development 
expenditures, primarily through early detection of 
faults, which in turn reduces the expenditures 
associated with their resolution, [5]. However, it is 
imperative to acknowledge that this methodology 
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relies heavily on the utilization of testing and 
simulation techniques, thereby inheriting their 
inherent weakness, which predominantly manifests 
as a reduced level of assurance, particularly in 
scenarios where a substantial number of test cases are 
involved, [1]. This can be unacceptable if the control 
system is used in safety-critical applications.  
     The significance of model-checking has been 
steadily increasing due to several compelling factors. 
Primarily, it operates as an a priori verification 
technique, engaging in the verification process 
through a system model before the existence of an 
actual product or prototype. This proactive approach 
increases the detection of defects even preceding unit 
and system testing phases, [1]. Moreover, model-
checking has substantial coverage and assurance 
capabilities, [1]. Furthermore, its foundation in 
mathematics and classification within the realm of 
formal methods accentuates its prominence. Notably, 
formal methods such as model-checking are "Highly 

recommended" for verification in safety-critical 
systems standards like IEC 61508 (Functional safety 
standard of electrical/ electronic/ programmable 
electronic safety-related systems), ISO 26262 (Road 
vehicles functional safety standard), …etc., [6]. 
Additionally, from the control system perspective, 
the work of, [5], expounds upon the advantages of 
incorporating a system model and formal 
specification within control systems. This integration 
serves to bridge the gap between continuous-time and 
discrete-time domains and offers a framework for 
both model-checking and controller synthesis, 
aligning with a correct-by-design methodology, [5]. 
     It is worth keeping in mind that control systems 
are not assigned the safety role in all safety-critical 
systems as safety standards such as IEC 61508 
emphasize the need for a clear separation between the 
control system and the safety function, if possible, 
[6]. Normally, a simple and reliable safety function is 
used for the safety role, However, the controller itself 
may be a safety-critical system such as the flight 
controller in the X-29 aircraft, [5]. 
     Note: The main goal of this paper is to study 
dynamical control systems in a model-checking 
environment, modelling using hybrid transition 
systems, and formulating formal requirements to 
describe such systems. Conventional control system 
topics such as stability analysis as well as anti-
windup measures and techniques from control 
theory, that are used to minimize the effects of the 
integral windup, [5], are outside the scope of his 
paper.  
 
 

2 Problem Formulation 
This study focuses on employing model-checking 
techniques to verify control systems. It emphasizes 
the necessity of creating a transition system model 
that accounts for the system's dynamic behaviours. 
However, using model-checking tools for this 
purpose is challenging due to their original design not 
accommodating dynamic system verification 
complexities. 
     One major challenge is the lack of support for 
floating-point parameter representation in model-
checking tools, despite its importance in capturing 
accurate system dynamics. Unfortunately, this 
representation can lead to the state space explosion 
problem during model-checking, [7]. Previous work 
mentioned in, [7], introduced an ad-hoc data 
representation-based approach to describe dynamical 
control systems within the model-checking 
framework. However, this work doesn't address the 
integral windup issue. 
     The study also addresses the challenge of 
formulating formal requirements to verify aspects 
related to the integral windup phenomenon. The 
conventional Computational Temporal Logic (CTL) 
and Linear Temporal Logic (LTL) languages, 
designed for state-based systems, are inadequate for 
describing control system dynamics. 
     Building upon previous methodologies, [7], the 
study aims to create a comprehensive control system 
model, including an actuator model to tackle the 
integral windup problem. Additionally, it explores 
using formal languages like LTL and CTL to 
effectively describe this phenomenon. The goal of 
this paper is to advance model-checking techniques 
for verifying control systems, particularly concerning 
integral windup. 
  
3 PID Controller and Integral Windup 

Phenomena  
3.1 Dynamical Control Systems 
The advent of transistors brought about a significant 
revolution in control systems, leading to the birth of 
a new field known as digital control in the 1950s. The 
introduction of embedded systems flexibly enabled 
the implementation of controllers, allowing for easy 
updates through software modifications, [7].  
 

 
Fig. 1: Simplified Block Diagram of Dynamical 

Control System, adapted from, [7].  

Controller Actuator Process

Sensor

_+
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     Fig. 1 shows a simplified block physical process 
regulated by a computer-based controller (without 
considering the disturbances). The main components 
of the system are the process, the actuator, the sensor, 
and the controller.  
     The processes involved in control systems are 
often physical and continuous in nature. In these 
systems, the sensors and actuators play a crucial role 
as they serve as the interface between the discrete and 
continuous worlds, [5]. Different types of controllers 
can be used such as PID controller, Linear Quadratic 
Regulator (LQR), Model Predictive Control (MPC) 
…etc. This paper focuses on the PID controller, in 
particular the PI variant.      
     The PID controller is the most used in the industry 
due to its simplicity and effectiveness. It consists of 
three essential components: the proportional term 
(P), the integral term (I), and the derivative term (D). 
The input to the PID controller is the error signal, 
calculated as the discrepancy between the desired 
reference value and the measured output obtained 
from the sensor. The PID controller processes this 
error signal and generates an output known as the 
control signal. The control signal is then transmitted 
to the actuator, which converts it into the appropriate 
power or action required by the system, [8]. 
 
3.2 Integral Windup   
Integral windup is a nonlinear effect commonly 
observed in control systems when actuators have 
limitations, as shown in Fig. 2. These limitations are 
typically imposed by the physical capabilities of the 
actuators, such as valves having fully open or closed 
positions and maximum flow rates, or electric motors 
having maximum speeds or torque outputs. 
Additionally, safety considerations may also impose 
limits to protect the system or equipment, [5]. 
 

 
Fig. 2: Saturation Characteristic of an Actuator, [8]. 

 
     Integral windup occurs when the controller 
commands a control action that requires the actuator 
to operate beyond its limits. As a result, the feedback 
loop is disrupted, and the system operates in an open-
loop manner. The actuator output becomes saturated 
at its limits, rendering it independent of the process 
output. Since the error does not converge to zero, the 
integrator continues accumulating the error over 
time. Consequently, the output of an integral part 

becomes excessively large, and it takes a 
considerable amount of time to remove the saturation 
effect. This phenomenon significantly affects the 
transient response of the system, resulting in slower 
performance, [5]. 
     Fig. 3 illustrates the integral windup phenomenon 
in a first-order system controlled by a PI controller 
with an actuator that exhibits saturation 
characteristics. The figure is divided into two halves, 
the lower part shows the integral control effort, the 
upper part shows the reference signal in orange and 
the system output in blue. 
 

 
Fig. 3: Simulation of the Integral Windup 

Phenomena. 
 
     The icons shown in Fig. 3 can be summarized as 
the following:  

1. First reference change as a step input.  
2. The system is not able to track the input 

because the actuator is saturated. 
3. The integrator is accumulating the error. 
4. A second reference change is opposite to the 

first one.   
5. Faulty output of the controller, as it is 

applying the maximum output, but in the 
wrong direction. 

6. The system tracks the input too late. 
 
 
4 Model-Checking  
Model checking stands as a powerful formal 
verification technique that systematically and 
exhaustively analyses all possible states of a system, 
[1]. To execute model-checking three main things as 
needed: a model of the system or its components as a 
transition system (state machines),  a set of formal 
requirements written in languages such as LTL or 
CTL, and a model-checking tool such as UPPAAL, 
SPIN or MuSMV as depicted in Fig. 4.  
     Note: UPPAAL, SPIN and MuSMV are model-
checking tools. UPPAAL, the tool that was used for 
this work, is a model-checking tool developed in 
collaboration between the Department of Information 
Technology at Uppsala University in Sweden, and 

Control signal 

Actuator output

Actuator higher limit

Actuator lower limit
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the Department of Computer Science at Aalborg 
University in Denmark.  
 

 
Fig. 4: Schematic View of Model-checking, [1]. 

 
The system model and formal requirements are fed 
into the model-checking tool, and with a "push 

button" the tool then verifies the model against the 
requirements, yielding one of three outcomes, [1]: 
 

1. Satisfied: The model meets the property. 
2. Violated: The model fails the property, with 

a counterexample provided. 
3. Not Enough Memory: Insufficient 

resources for model-checking. 
 
4.1 Modelling  
Models required for model-checking are parts of the 
transition systems family. The nodes in transition 
systems represent states, and the edges represent 
transitions between states, [7].  
     UPPAAL tool is used for the work of this paper, 
and it uses Timed Automata which is a transition 
system extended with timing notations. A timed 
automaton is a “program graph that is equipped with 

a finite set of real-valued clock variables called 

clocks”, [1]. Fig. 5 shows an example of a timed 
automaton of a gate that opens and closes on request, 
time constraints on nodes and edges and modelled 
using the clock x, [7].  
 

 
Fig. 5: Timed Automaton Example of a Gate opens 

and closes on request, [7].   
 

     Timed automata is defined as a tuple 
(𝑆, 𝐼, 𝐴𝑐𝑡, 𝐶, →, 𝐼𝑛𝑣, 𝐴𝑃, 𝐿), [1], where:   
 

• 𝑆 is a set of stats,  
• 𝐼 ⊆ 𝑆  is a set of initial states,  
• 𝐴𝑐𝑡 is a set of actions,  
• 𝐶 is a set of clocks,  
• → ⊆ 𝑆 × 𝐶𝐶(𝐶) ×  𝐴𝑐𝑡 ×  2𝐶 × 𝑆 is a 

transition relation, 
• 𝐼𝑛𝑣 ∶ 𝑆 → 𝐶𝐶(𝐶) is an invariant-assignment 

function, 
• 𝐴𝑃 is a set of atomic propositions, and  
• 𝐿 ∶ 𝑆 →  2𝐴𝑃 is a labelling function.  

where 𝐶𝐶(𝐶) is a set of clock constraints over clock 
𝐶, and the invariants are clock constraints on the 
states.  
 
4.2 Requirements using Formal Languages  
Formal languages are essential for describing and 
verifying system model properties clearly and 
unambiguously. When it comes to model checking, 
human languages are not suitable for expressing 
requirements. Instead, formal languages such as LTL 
and CTL provide the necessary tools to specify 
linear-time and branching-time properties for 
transition systems.  
     The main distinction between LTL and CTL lies 
in their treatment of time. LTL assumes linear time, 
where each state is followed by a single successor 
state. It enables the expression of properties that hold 
across all possible system paths. On the other hand, 
CTL assumes branching time, allowing for multiple 
successors from each state. This makes CTL suitable 
for capturing properties that depend on different 
system branches and choices. Furthermore, CTL 
permits the explicit inclusion of time values using 
clocks, which is not possible in LTL. Certain 
properties can be expressed in one but not the other, 
and some equivalences exist between properties. For 
more information on both LTL and CTL, [7]. 
     The syntax of CTL has two stages: state and path 
formulas. The state formula over a set of atomic 
propositions is defined as the following, [1]:  
 

𝛷 ∷= 𝑡𝑟𝑢𝑒 | 𝑝 | 𝛷1 ∧ 𝛷2 | ¬ 𝛷 | ∃𝜑 | ∀𝜑    
 
where 𝑝 ∈ 𝐴𝑃 and 𝜑 is the path formula. ∃ (Exist) is 
a path quantifier (means for some path), and ∀ (All) 
is a state quantifier (means for all states) [1]. 
     The path formulae are defined as the following, 
[1]:  
 

𝜑 ∷= 𝑋𝛷 | 𝛷1𝑈 𝛷2     
 

Requirements System

Formalizing Modelling
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Satisfied Violated & 
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Simulation
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Going up 
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where 𝜑 is a path formula, 𝑋 is the next operator, and 
𝑈 is the until operator, [1]. 
     The previous operators can be used to form other 
operators such as G (Globally) and F (Eventually). 
Fig. 6 shows two CTL traces, Lift: ∀𝐺𝑝 (for all states 
globally the atomic proposition p appears). Right: 
∃𝐹𝑝 (At least for one path the atomic proposition p 

appears eventually).    
 

 
Fig. 6: Traces safeties the CTL requirements ∀𝐺𝑝 

and ∃𝐹𝑝. 
 
 
5 Model of a Dynamical Control 

System Using Timed-Automata 
Model-checking tools do not support floating-point 
data types, [7]. To include the system dynamics and 
perform calculations of plant and controller in a 
model-checking tool, all the necessary parameters 
shall be represented using a fixed-point data type 
variable. For example, for the following transfer 
function, the parameters K, T, Y and U need to be 
represented using fixed-point data variables. 
 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=  

𝐾

𝑇𝑠+1
     (1) 

 

     To use the transfer function in a model-checking 
tool, [7], introduces Algorithm 1, shown in Table 1, 
to convert a continuous  Single Input Single Output 
(SISO) Linear Time-Invariant (LTI) transfer function 
into a suitable form for model-checking tools. 
     Moreover, [7], introduces model bases for a 
control system consisting of three time automatons: 
plant, controller and observer, as shown in Fig. 7. The 
plant has states such as Settled, Transient, Rise time 
and Overshoot. It is responsible for performing the 
plant calculations necessary for calculating the 
dynamics of the plant. The controller has states such 
as Settled and Transient, and it is responsible for 
performing the controller calculation required to 
calculate the controller output from an error input. In 
addition, an observer is used to synchronize the 
calculation between the plant and the controller, [7]. 
 
 

Table 1. Algorithm to Convert SISO LTI Transfer 
Function to be Used in a Model-checking Tool.  

 
     Note: using Algorithm 1 required identifying the 
number of the decimal digits I, and the number of 
fractional digits F. For example, choosing (I=1, F=4) 
results in a limited range of the U and Y values 
between (−3.2767 ⋯ 3.2767)  and it shall be 
mapped to (−32767 ⋯ 32767) in UPPAAL, [7].  
 

 
Fig. 7: Bases of Modelling a Control System in 

Timed-Automata, [7].  
 
 
6 Case Study (PID Controller and 

Integral Windup) 
6.1 Modelling  
Using the models, model bases and the models 
provided in, [7], as a reference, a control system 
consisting of a first-order plant, PI controller, 
observer and actuator, was constructed in the 
UPPAAL tool as shown in Fig. 8. The model was 
tailored with the focus on the integral windup issue.  
     The following first-order transfer function was 
taken as an example of the first-order plant: 
 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=  

1

15𝑠+1
    (2) 

 

p

p

pp

pp p p

p p

 

Algorithm 1 Convert a SISO Linear Time Invariant Model to be used in a Model-
Checking Tool 
Input: Continuous SISO LTI model, sampling time 𝑇𝑠, 𝐾𝑈  gain. 
Output: Discrete SISO LTI model, 𝐾𝑎𝑏  coefficients scaling gain, 𝐾𝑆 input/output 
scaling gain. 
  
1 Discretize the SISO LTI model using one of the discretization methods 

and sampling time 𝑇𝑠. 
2 Define the input/ output ranges  
3 Select the digit numbers of the fixed-point representation (𝐼, 𝐹) based on 

step 2. Where I is the number of decimal digits and F is the number of 
fractional digits.   

4 Select 𝐾𝑆 based on step 3. 
5 Based on I and F in step 3, round off the coefficients in the described 

SISO LTI model in step 1.  
6 Verify that the non-zero fractional digits in the model coefficients can be 

recovered by scaling them. 
7 Based on step 3, calculate 𝐾𝑎𝑏 : closest value to 10𝐹  which is a power of 

2. 
8 Recalculate coefficients using 𝐾𝑈  gain 
9 Apply the final value theorem for the generated transfer function. 
10 Select the transfer function with the highest and lowest final value 

theorem. 
11 Scale coefficients using 𝐾𝑎𝑏  gain and round off to integer values.  
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     It was converted to be used in UPPAAL using 
Algorithm 1 to:  
 
y= (15327*Y_1+1057*U_1)/16384;  

// system output  

    

 
Fig. 8: Model of a Control System Consists of First 
Order Plant, PI Controller, Observer and Actuator in 

UPPAAL.    
 

     The controller transfer function was:  
 

𝐺𝑃𝐼(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
=  𝐾𝑃 +

𝐾𝐼

𝑠
     (3) 

 
with  𝐾𝑃 = 2 and 𝐾𝐼 = 0.2 as an example.       
     The controller transfer function was converted to 
the following piece of code using Algorithm 1 to be 
used in UPPAAL:  
 
int u_P= 2*E; 

// Proportional controller output  

 

int u_I = 

(1638*E/16384)+(1638*E_1/16384)+U_1I;  

//Integral controller output  

 

int u= u_P + u_I;   

//PI controller output 
            
     The actuator model is essential for the integral 
windup issue. It was modelled as three states: the 
initial state, the state Not_Saturated which represents 
the actuator in its linear range before reaching its 
maximum or minimum limits, and the state Saturated 

which represents the state of the actuator when it 
reaches its higher or lower limits. Fig. 9 shows the 
model of the actuator in UPPAAL.  
 

 
Fig. 9: Model of the Actuator in UPPAAL.  

 
6.2 Simulation  

Before initiating the model-checking process, it was 
imperative to execute a comparative analysis 
between the UPPAAL model and its counterpart 
implemented in MATLAB/Simulink®. This serves 
the dual purpose of validating the outcomes derived 
from the abstraction method and ensuring the 
precision of the system dynamics calculations. The 
outcomes of this analysis are presented in Fig. 10. 
     Fig. 10 shows the simulation results generated by 
both MATLAB/Simulink® and UPPAAL tools are 
juxtaposed. Remarkably, the findings reveal that the 
disparities between the data obtained from these two 
tools manifest predominantly in the fifth digit, 
signifying variations within the fourth fractional 
digit. 
     It is significant to understand that when the 
transfer function parameters or controller gains 
representation requires a greater number of decimal 
digits, the level of accuracy attainable through 
UPPAAL results is subject to degradation, as the 
highest accuracy can be achieved using the number 
of decimal digits I to be one, and the number of 
fractional digits F to be four. 
 
6.3 Verification through model-checking 

The verification phase was executed through the 
formulation of formal requirements that required to 
be checked. Diverse sets of requirements were 
formulated to assess aspects, including the plant's 
susceptibility to overshooting or progressing into an 
unstable state, as well as addressing the intricate 
phenomenon of integral windup. 
     As depicted in Fig. 11, the results of the model-
checking verification process, facilitated by 
UPPAAL, are presented herein. Within this visual 
representation, requirements that have been 
successfully met are denoted by a reassuring green 
colour, while those that remain unfulfilled are 
distinctly highlighted in red. Furthermore, it is worth 
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noting that instances of an orange may arise when 
sufficient computational resources are not available. 
     The main written requirement regarding the 
integral windup issue was: 
 
E<>(Actuator_1.Saturated)&&((E>E_1)||(E==E_1))  
 
     The preceding requirement is formulated to check 
the presence of integral windup within the system. It 
systematically examines whether there exists at least 
one path in which the actuator operates in the 
Saturated state while concurrently maintaining or 
surpassing the current error value compared to its 
prior state. In other words, it checks if the actuator is 
saturated while the error remains constant or 
increases. 
     The model-checking result of the previous 
requirements is green, which means that the 
requirement is satisfied, and the system’s actuator 
reached its limits. These results were also validated 
with MATLAB/Simulink® simulations, and both 
results were the same.  
 

 
Fig. 10: Simulation Results from 

MATLAB/Simulink® and UPPAAL. The Results 
from MATLAB/Simulink® are Represented Using 
the Blue Plot and the Corresponding Data Tips. The 

Results from UPPAAL are Represented Using 8 
Screenshots Labelled with (Global variables). 

 
Fig. 11: Model-Checking Results in UPPAAL.  

 
 
7 Conclusion 
In conclusion, this scientific paper confirms the 
importance of model-checking as an effective 
approach for verifying system designs, offering 
benefits such as early error detection, enhanced 
safety, and cost savings, particularly for hybrid 
systems. Model-checking provides extensive 
coverage and addresses limitations associated with 
testing and simulation. However, challenges exist in 
accurately constructing models and expressing 
requirements in formal languages, particularly when 
dealing with phenomena like integral windup. 
     The UPPAAL tool is highlighted as a powerful 
and user-friendly choice, with its visual modelling 
feature offering a significant advantage over other 
model-checking tools relying on textual modelling. 
This visual approach reduces systematic errors and 
aids in bug detection within models. Nevertheless, 
the effectiveness of modelling and verification in 
UPPAAL depends on system complexity and specific 
requirements, which can be challenging for complex 
systems. 
     While UPPAAL was not originally designed for 
modelling dynamic control systems, this paper 
demonstrates its adaptability for building hybrid 
control system models and performing simulation 
and model-checking verification. UPPAAL's 
strength lies in its formal verification capabilities, 
which are not typically found in traditional control 
system simulators like MATLAB/Simulink®. 
     A notable weakness of UPPAAL is the absence of 
libraries containing pre-existing functions or 
examples to assist users in learning the tool, 
necessitating a "start from scratch" approach for 
modelling and specifying requirements for specific 
systems. 
     Using UPPAAL requires constructing system 
models, which can be challenging and demands prior 
knowledge about the system's components. 
Additionally, the omission of factors like noise, time 
delay, or disturbances in the model adds potential 
sources of modelling errors. 
     The process of simulating models in UPPAAL is 
straightforward and valuable, allowing for the 
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identification and correction of modelling faults and 
the improvement of model accuracy. The comparison 
of UPPAAL results with those from 
MATLAB/Simulink® demonstrates UPPAAL's 
ability to produce accurate outcomes, although 
precision may be influenced by variable value ranges. 
     In principle, the verification process in UPPAAL 
is a "push-button" activity once the system is 
properly modelled. However, challenges arise in 
translating requirements from human-written 
languages into temporal logic languages and ensuring 
the correctness and completeness of both the model 
and the requirements, which can impact the accuracy 
of model-checking results. 
     In summary, model-checking stands as a powerful 
technique within the realm of formal verification. 
However, it is essential to recognize that model-
checking verifies a model of the system rather than 
the system itself. To fully leverage the benefits of 
model-checking, it should be combined with testing, 
simulation, safety analysis, and other verification 
techniques. This comprehensive approach becomes 
even more crucial when dealing with safety-critical 
systems. In such cases, employing a variety of 
verification methods and techniques becomes 
imperative to ensure the utmost safety assurance for 
the system. 
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