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Abstract: It is well-known that, for a mathematical programming problem involving equality and inequality con-
straints, the uniqueness of a Lagrange multiplier associated with a local solution implies, under certain smoothness
assumptions, second order necessary optimality conditions. Those conditions hold on a set of critical directions de-
fined by those points satisfying the constraints and for which the minimizing function and the standard Lagrangian
coincide. No similar links between uniqueness of multipliers and second order conditions seem to have been
established for optimal control problems. In this paper, we provide some results in this direction. In particular,
we study and completely solve a natural conjecture which provides, under uniqueness assumptions, nonnegative
second variations on a classical cone of admissible directions.
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1 Introduction
It is well-known that, for a mathematical program-
ming problem involving equality and inequality con-
straints, a second order necessary condition for a local
solution x0 holds, under certain smoothness assump-
tions, on the tangent cone TS1(x0) at x0 of the set S1
of points satisfying the constraints and for which the
minimizing function and the standard Lagrangian co-
incide. Thus, if x0 is a regular point of S1 (in the sense
that the tangent cone and the set of tangential con-
straints coincide), the second order condition holds on
the set RS1(x0) of tangential constraints (or critical
directions) at x0 with respect to S1.

Regularity can be achieved in different ways. In
particular it holds if there is only one Lagrange multi-
plier associated with the local minimizer. A simple
line of reasoning, to support this statement, can be
given as follows. First of all, the uniqueness of the
multiplier is equivalent to the Mangasarian-Fromovitz
constraint qualification with respect to S1 at x0. Sec-
ond, this constraint qualification is equivalent to the
condition of normality of x0 relative to the set S1.
Finally (and this is a crucial result in the theory of
mathematical programming), normality implies regu-
larity. Thus, if the set of Lagrange multipliers associ-
ated with x0 is a singleton, then x0 is a regular point
of S1 and a second order condition holds on RS1(x0).

For clarity of exposition, and for comparison rea-
sons, we shall find convenient to “unfold” in the next
few lines some of these concepts, main characters,
statements and implications.

Consider the nonlinear programming problem,
which we label (N), of minimizing f on the set S,
where f, gi:Rn → R (i ∈ A ∪ B) are given func-
tions, A = {1, . . . , p}, B = {p+ 1, . . . ,m}, and

S := {x ∈ Rn | gα(x) ≤ 0 (α ∈ A),

gβ(x) = 0 (β ∈ B)}.

We assume, as in [1], [2], [3], that the functions delim-
iting the problem are continuously differentiable and,
when second derivatives occur, they are twice contin-
uously differentiable (for weaker assumptions see, for
example, [4], [5], [6], [7]).

Let us begin with the Karush-Kuhn-Tucker
(KKT) conditions or first order Lagrange multiplier
rule. Denote by Λ(f, x0) the set of all λ =
(λ1, . . . , λm) ∈ Rm satisfying

i. λα ≥ 0 and λαgα(x0) = 0 (α ∈ A).
ii. If F (x) := f(x) + 〈λ, g(x)〉 then F ′(x0) = 0.
Here, the function F is the standard Lagrangian,

g is the function mapping Rn to Rm whose compo-
nents are g1, . . . , gm, 〈λ, g(x)〉 =

∑m
1 λigi(x) is the
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standard inner product, and λ1, . . . , λm are the Kuhn-
Tucker or Lagrange multipliers.

The KKT conditions become first order neces-
sary conditions for a local solution if a certain con-
straint qualification is imposed. In other words, if x0
is a local solution to the problem, the nonemptiness of
Λ(f, x0) can be assured if some extra assumption on
x0 and the constraints is added to the hypothesis.

Denote by

I(x) := {α ∈ A | gα(x) = 0} (x ∈ S)

the set of active (or effective or binding) indices at x.
From the theory of convex cones (see, for example,
[6], [7]) or using the Farkas-Minkowski theorem of
the alternative (see [5]), it can be shown that, if

RS(x0) := {h ∈ Rn | g′α(x0;h) ≤ 0 (α ∈ I(x0)),

g′β(x0;h) = 0 (β ∈ B)}
denotes the set of vectors satisfying the tangential
constraints at x0 (see [6], [7]), also called the lin-
earized tangent cone or the cone of locally con-
strained directions (see [5]), then

Λ(f, x0) 6= ∅ ⇔ f ′(x0;h) ≥ 0 for all h ∈ RS(x0)

or, equivalently, Λ(f, x0) 6= ∅ ⇔ −f ′(x0) ∈ R∗S(x0)
where B∗ := {z ∈ Rn | 〈y, z〉 ≤ 0 for all y ∈ B} is
the (closed convex) dual or polar cone of B ⊂ Rn.

One can find in the literature different answers to
the question of how, if x0 is a local minimum, the re-
lation −f ′(x0) ∈ R∗S(x0) can be assured. In other
words, there are different assumptions on the con-
straints which ensure that the condition −f ′(x0) ∈
R∗S(x0) is a necessary optimality condition for our
problem. Not all constraint qualifications coincide,
indeed, and a rather intricate web of implications and
equivalences has been established (see, for example,
[5]).

We shall first give to that question a simple an-
swer (that is, a constraint qualification) by making use
of the tangent cone. Moreover, as we shall see, this
approach will lead us also to the derivation of second
order conditions.

The definition we choose of tangent cone is the
one given by Hestenes in [6]. As shown in [5], it is
equivalent to the one introduced by Bouligand (also
known as contingent cone). A sequence {xq} ⊂ Rn

is said to converge to x0 in the direction h if h is a unit
vector, xq 6= x0, and

lim
q→∞

|xq − x0| = 0, lim
q→∞

xq − x0
|xq − x0|

= h.

The tangent cone of S at x0, denoted by TS(x0), is
the (closed) cone determined by the unit vectors h for
which there exists a sequence {xq} in S converging to
x0 in the direction h. Equivalently (see [7]), TS(x0) is
the set of all h ∈ Rn for which there exist sequences
{xq} in S and {tq} of positive numbers, such that

lim
q→∞

tq = 0, lim
q→∞

xq − x0
tq

= h.

Note that, if {xq} converges to x0 in the direction
h and f has a differential at x0, then

lim
q→∞

f(xq)− f(x0)

|xq − x0|
= f ′(x0;h).

Also, if f has a second differential at x0, then

lim
q→∞

f(xq)− f(x0)− f ′(x0;xq − x0)
|xq − x0|2

= 1
2f
′′(x0;h).

Suppose that x0 solves (N) locally, h ∈ TS(x0) is a
unit vector, and {xq} ⊂ S is a sequence converging to
x0 in the direction h. Hence, f(xq) ≥ f(x0) for large
values of q and, therefore,

0 ≤ lim
q→∞

f(xq)− f(x0)

|xq − x0|
= f ′(x0;h).

If also f ′(x0) = 0, then

0 ≤ lim
q→∞

f(xq)− f(x0)

|xq − x0|2
= 1

2f
′′(x0;h).

This proves the following basic result on first and
second order necessary conditions (see, for example,
[5, p 303], [6, p 27-28], [7, p 214, 220]).

Theorem 1. Suppose x0 solves (N) locally. Then
the following holds.

a. f ′(x0;h) ≥ 0 for all h ∈ TS(x0).
b. If f ′(x0) = 0, then f ′′(x0;h) ≥ 0 for all h ∈

TS(x0).

The dual cone T ∗S(x0) of the tangent cone of S
at x0 is called the normal cone of S at x0. By the
first part of Theorem 1, if x0 is a local minimum point
of a C1 function f on a set S (actually, merely dif-
ferentiability at x0 is required) then the negative gra-
dient −f ′(x0) is an outer normal of S at x0, that is,
−f ′(x0) ∈ T ∗S(x0).

Note that TS(x0) ⊂ RS(x0) since, if h ∈ TS(x0)
is a unit vector, and {xq} ⊂ S a sequence converging
to x0 in the direction h, then

lim
q→∞

gγ(xq)− gγ(x0)

|xq − x0|
= g′γ(x0;h) (γ ∈ A ∪B)
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and, therefore, g′α(x0;h) ≤ 0 (α ∈ I(x0)) and
g′β(x0;h) = 0 (β ∈ B). Of course, the converse may
not hold. For example, if S = {x : x3 ≤ 0}, then
TS(0) = {h : h ≤ 0} but RS(0) = R.

Hence, we have R∗S(x0) ⊂ T ∗S(x0). If these two
dual cones coincide and x0 solves (N) locally, then

−f ′(x0) ∈ T ∗S(x0) = R∗S(x0)

and so Λ(f, x0) 6= ∅. The condition

R∗S(x0) = T ∗S(x0)

is referred to in [7] as quasi-regularity and in [5] as the
Guignard-Gould-Tolle constraint qualification. Ac-
cording to [5, p 264], it “enjoys the best situation
with respect to the problem, being the most general
constraint qualification for the feasible set of problem
(N).”

The notion of “regularity” as defined in [6, p 35],
[7, p 221], known also as Abadie’s constraint qualifi-
cation (see, for example, [5]), is a crucial one. A point
x0 ∈ S will be said to be regular with respect to S if
TS(x0) and RS(x0) coincide. Clearly, regularity im-
plies quasi-regularity, but one may find quasi-regular
points of S which are not regular. These cases, how-
ever, are exceptional. To give a simple example (see
[7]), this occurs with the origin with respect to the set

S = {(x, y) : x ≤ 0, x+ y ≤ 0, x2 = y2}.

The same arguments given above yield the fol-
lowing result, the first order Lagrange multiplier rule
for a regular solution. It is a direct consequence of
Theorem 1(a) and the definition of regularity.

Theorem 2. If x0 solves (N) locally and is a reg-
ular point of S, then Λ(f, x0) 6= ∅.

The second order Lagrange multiplier rule is a
straightforward consequence of Theorem 1(b). In
what follows, F (x) = f(x) + 〈λ, g(x)〉 denotes (as
before) the Lagrangian with respect to λ ∈ Λ(f, x0).

Theorem 3. Suppose that x0 ∈ S and λ ∈
Λ(f, x0). If x0 solves (N) locally, then F ′′(x0;h) ≥ 0
for all h ∈ TS1(x0) where S1 := {x ∈ S | F (x) =
f(x)}. In particular, if x0 is a regular point of S1, then
F ′′(x0;h) ≥ 0 for all h ∈ RS1(x0).

Note that, if λ ∈ Λ(f, x0) and Γ := {α ∈ A |
λα > 0}, then

S1 [ = S1(λ) ]

= {x ∈ Rn | gα(x) ≤ 0 (α ∈ A, λα = 0),

gβ(x) = 0 (β ∈ Γ ∪B)}

= {x ∈ S | gα(x) = 0 (α ∈ Γ)}.

Therefore, by definition of tangential constraints, we
have

RS1(x0)

= {h ∈ Rn | g′α(x0;h) ≤ 0 (α ∈ I(x0), λα = 0),

g′β(x0;h) = 0 (β ∈ Γ ∪B)}

= {h ∈ RS(x0) | g′α(x0;h) = 0 (α ∈ Γ)}

= {h ∈ RS(x0) | f ′(x0;h) = 0}.

In general, it may be difficult to test for quasi-
regularity or even regularity, and some criteria imply-
ing these conditions is required. As pointed out in [6],
“it is customary in the calculus of variations to call a
condition on the gradients g′1(x0), . . . , g

′
m(x0) a nor-

mality condition if it implies regularity at x0.”
In [7], a point x0 ∈ S is said to be normal relative

to S if λ = 0 is the only solution of
i. λα ≥ 0 and λαgα(x0) = 0 (α ∈ A).

ii.
∑m

1 λig
′
i(x0) = 0.

Normality implies regularity. A proof of this fact
can be found in [7] where another condition, called
properness, is used to establish this implication. A
point x0 ∈ S is said to be proper relative to S if the
set {g′β(x0) | β ∈ B} is linearly independent and, if
p > 0, there exists h such that

g′α(x0;h) < 0 (α ∈ I(x0)), g
′
β(x0;h) = 0 (β ∈ B).

As shown in [7, p 241], properness and normality are
equivalent. This is also proved in [5, p 256] by using
theorems of alternative (see Motzkin in [5, Theorem
2.4.19]), and in [4, p 43] for inequality constraints, in
terms of positive linear independence, by an applica-
tion of the Hahn-Banach separation theorem.

Since normality is equivalent to properness and
they imply regularity, Theorem 2 tells us that both
are constraint qualifications. They are also referred
to in the literature as the Cottle-Dragomirescu and
the Mangasarian-Fromovitz constraint qualifications
respectively. In view of Theorem 2, we have the fol-
lowing classical result.

Theorem 4. If x0 solves (N) locally and is a nor-
mal point of S, then Λ(f, x0) 6= ∅.

It is important to point out that the conclusion that
normality is a constraint qualification can be reached
without making use of Theorem 2 and the notion of
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regularity. The well-known Fritz John necessary op-
timality condition (see, for example, [1], [5], [7], [8]
and, for a nonsmooth multiplier rule, see [4]) allows
the cost multiplier to vanish. It states that, if x0 solves
(N) locally, then there exist λ0 ≥ 0 and λ ∈ Rm, not
both zero, such that

i. λα ≥ 0 and λαgα(x0) = 0 (α ∈ A).
ii. F0(x) := λ0f(x) + 〈λ, g(x)〉 ⇒ F ′0(x0) = 0.
In view of this result, if x0 solves (N) locally and

is a normal point of S, then λ0 > 0 (since, by normal-
ity relative to S, if λ0 = 0 then λ = 0, contradicting
the nontriviality condition) and the multipliers can be
chosen so that λ0 = 1, thus implying nonemptiness of
Λ(f, x0).

We are now in a position to state a fundamental
result on second order necessary conditions under nor-
mality assumptions. It is an immediate consequence
of Theorem 3 and the well-known link between nor-
mality and regularity. For the application of this result
note that, given λ ∈ Λ(f, x0), x0 is a normal point of
S1(λ) if µ = 0 is the only solution of

i. µα ≥ 0 and µαgα(x0) = 0 (α ∈ A, λα = 0).
ii.
∑m

1 µig
′
i(x0) = 0.

Theorem 5. Suppose that x0 ∈ S and λ ∈
Λ(f, x0). If x0 solves (N) locally and is a normal point
of S1(λ), then F ′′(x0;h) ≥ 0 for all h ∈ RS1(x0).

Let us now introduce one of the main characters
which plays a leading role in the theory: the linear
independence constraint qualification (LI). For a given
point x0 ∈ S, it asks the set {g′γ(x0) | γ ∈ I(x0)∪B}
to be linearly independent.

This is, by the way, the definition of normal-
ity given in [6], in contrast with the definition in [7]
which we introduced before. As one readily verifies,
it corresponds to normality of x0 with respect to (nei-
ther S nor S1 but) the set of equality constraints for
active indices:

S0 [ = S0(x0) ]

:= {x ∈ Rn | gγ(x) = 0 (γ ∈ I(x0) ∪B)}.

This follows since, by definition, x ∈ S0(x0) is nor-
mal relative to S0(x0) if λ = 0 is the only solution
of

i. λαgα(x0) = 0 (α ∈ A).
ii.
∑m

1 λig
′
i(x) = 0.

This is equivalent to LI, the condition that the lin-
ear equations g′γ(x0;h) = 0 (γ ∈ I(x0) ∪ B) in h be
linearly independent.

Note that, given x0 ∈ S and λ ∈ Rm with λα ≥ 0
(α ∈ A), we have RS0(x0) ⊂ RS1(x0) ⊂ RS(x0)
where, by definition,

RS0(x0) = {h ∈ Rn | g′γ(x0;h) = 0

(γ ∈ I(x0) ∪B)}.

Also, if x0 is a normal point of S0, then it is a normal
point of S1, and hence a normal point of S.

In most textbooks (see a thorough explanation
and references in [1]) the main result on second or-
der necessary conditions differs from Theorem 5 in
two fundamental aspects: it is derived under the as-
sumption of the linear independence constraint quali-
fication (that is, normality relative to S0 instead of S1)
and the second order condition holds on the set of crit-
ical directionsRS0(x0) (instead ofRS1(x0)). Thus, in
this result, the assumptions are stronger and the con-
clusions weaker than those of Theorem 5 since, usu-
ally, normality relative to S0 is stronger than normality
relative to S1 and RS1(x0) contains properly the set
RS0(x0). As pointed out in [1], “The source of this
weaker result can be attributed to the traditional way
of treating the active inequality constraints as equality
constraints.” Explicitly, this rather “well-worn result”
(see [1]) is the following.

Theorem 6. Suppose x0 ∈ S and λ ∈ Λ(f, x0).
If x0 solves (N) locally and is a normal point of
S0(x0), then F ′′(x0;h) ≥ 0 for all h ∈ RS0(x0).

The set of critical directions in Theorem 5 is then,
in general, bigger than that of Theorem 6. How-
ever, as the following examples show, even under the
strong assumption of Theorem 6 (normality relative
to S0(x0) or the LI constraint qualification), the set of
critical directions cannot be “too big”: we may very
well have negative second variations on RS(x0).

Example 1. Consider the problem of minimizing
f(x1, x2) = x1 subject to

g1(x1, x2) = −x21 − x2 ≤ 0,

g2(x1, x2) = x1 + x2 = 0.

Clearly x0 = (1,−1) is a local solution to
the problem and LI is satisfied since the gradients
g′1(x0) = (−2,−1) and g′2(x0) = (1, 1) are linearly
independent. We have

F (x1, x2) = x1 + λ1(−x21 − x2) + λ2(x1 + x2)
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and so F ′(x1, x2) = (1 − 2λ1x1 + λ2,−λ1 + λ2).
Thus F ′(x0) = 0 implies λ1 = λ2 = 1. Also,

F ′′(x1, x2) =

(
−2λ1 0

0 0

)
=

(
−2 0
0 0

)
and so F ′′(x0;h, k) = −2h2. Now, we have

g′1(x1, x2) = (−2x1,−1), g′1(x1, x2) = (1, 1)

and so

RS(x0) = {(h, k) | −2h− k ≤ 0, h+ k = 0}.

Therefore (1,−1) ∈ RS(x0) but F ′′(x0; 1,−1) =
−2 < 0.

Example 2. Consider the problem of minimizing
f(x) = −x3 subject to g(x) = x− 1 ≤ 0.

Clearly x0 = 1 is a (global) solution and LI holds
since g′(x0) = 1 6= 0. We have

F (x) = f(x) + λg(x) = −x3 + λx− λ

and so F ′(x) = −3x2 + λ and F ′(x0) = 0 implies
that λ = 3. Also F ′′(x0;h) = −6h2. Since

RS(x0) = {h | g′(x0;h) = h ≤ 0}

we have −1 ∈ RS(x0) and F ′′(x0;−1) = −6 < 0.

We can now explain, in a clear and succinct way,
the role played by the uniqueness of Lagrange multi-
pliers in the intricate web of constraint qualifications.

Let us begin with a simple argument which im-
plies uniqueness. Suppose x0 ∈ S and λ ∈ Λ(f, x0).
If also λ̄ ∈ Λ(f, x0), set µ := λ̄− λ and observe that

µαgα(x0) = λ̄αgα(x0)− λαgα(x0) = 0 (α ∈ A),

m∑
1

µig
′
i(x0) =

m∑
1

λ̄ig
′
i(x0)−

m∑
1

λig
′
i(x0) = 0.

Thus, if x0 is normal relative to S0(x0), then µ = 0
and Λ(f, x0) would be a singleton. In other words, the
following result holds.

Theorem 7. Suppose x0 ∈ S and λ ∈ Λ(f, x0).
If x0 is normal relative to S0(x0), then Λ(f, x0) =
{λ}.

In view of Theorem 4, if x0 affords a local mini-
mum to f on S and x0 is normal relative to S0 (and so
normal relative to S) then there exists λ ∈ Λ(f, x0).
We have just proved that, in this event, λ ∈ Λ(f, x0)

is unique. As one readily verifies, if normality is as-
sumed relative to S, the existence of λ ∈ Λ(f, x0) can
be assured, but it may not be unique. Here we arrive
at a crucial result in the theory.

In [2] it is shown that uniqueness of the La-
grange multiplier associated with the point x0 can be
achieved by an assumption weaker than that of nor-
mality relative to S0(x0), namely, normality relative
to S1(λ). Moreover, this assumption is not only suffi-
cient for the uniqueness of the multiplier but also nec-
essary. This is the content of the following result.

Theorem 8. Suppose that x0 ∈ S and λ ∈
Λ(f, x0). Then x0 is normal relative to S1(λ) if and
only if Λ(f, x0) = {λ}.

In [2], the statement of this result is expressed in
terms of a condition called the strict Mangasarian-
Fromovitz constraint qualification which is no other
than properness relative to S1(λ). The proof given
in that paper, however, relies precisely on the equiva-
lence between normality and properness.

Combining this result with Theorem 5, we finally
reach the main result on second order necessary con-
ditions under uniqueness assumptions.

Theorem 9. Suppose that x0 ∈ S and λ ∈
Λ(f, x0). If x0 solves (N) locally and Λ(f, x0) =
{λ}, then F ′′(x0;h) ≥ 0 for all h ∈ RS1(x0).

It is worth mentioning that an entirely different
approach, found in [3], is based on the idea that, since
constraint qualifications are independent of the objec-
tive function f , if a constraint qualification implies
a certain property for the Lagrange multipliers, this
property will hold for all objective functions for which
x0 affords a local minimum. If we defineF(x0) as the
set of all f ∈ C1(Rn,R) such that x0 affords a local
minimum to f on S, the result on uniqueness of La-
grange multipliers given in [3] states that, if x0 ∈ S,
then Λ(f, x0) is a singleton for all f ∈ F(x0) ⇔ x0
is normal relative to S0(x0).

Uniqueness of multipliers in different areas of
constrained optimization has been studied from differ-
ent points of view in order to deal with, to mention a
few, problems subject to cone constraints [9], sensitiv-
ity analysis of optimization problems [10], composite
optimization [11], sets of functions with a common
local minimum [3], or derivation of second order con-
ditions [2], [5], [6], [7], [12], [13], [14].

In this paper we shall be concerned with unique-
ness of multipliers for certain classes of optimal con-
trol problems. Our main objective will be to state the
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main aspects of the theory in that context and give
some answers to questions related to possible links
between uniqueness of multipliers, admissible direc-
tions, and second order optimality conditions.

The stage for such problems, involving equality
and inequality constraints in the control functions, is
rather different than that for the finite dimensional
case. In particular, it has been proved that the cor-
responding Mangasarian-Fromovitz constraint quali-
fication (also called properness) and the condition of
normality are equivalent [15], as in the mathemat-
ical programming problem, but these conditions do
not necessary imply regularity [16]. Moreover, the
Mangasarian-Fromovitz constraint qualification with
respect to S1 implies uniqueness of the Lagrange mul-
tiplier, but the converse may not hold [17], [18].

It is of interest to know if, for optimal control
problems, the uniqueness of Lagrange multipliers im-
plies or not second order conditions on a specific set of
critical directions. Let us move forward to that ques-
tion.

2 Statement of the problem

In the remaining of this paper we shall deal with an
optimal control problem with fixed endpoints, posed
over piecewise C1 trajectories and piecewise continu-
ous controls, and involving inequalities and equalities
in the control functions.

We believe this problem, though (relatively) sim-
ple compared with other formulations, captures the
essence of the question connecting uniqueness of mul-
tipliers with second order conditions. The problem is
not simple, by any means. Actually, the difficulties
encountered for this kind of optimal control problems
are of a much subtler nature than those for (N). As ex-
plained in [4, p 335], the type of constraints we shall
now deal with (even for the classical Lagrange prob-
lem in the calculus of variations with equality con-
straints) “make the constrained optimal control prob-
lem much more complex than (N), or even the isoperi-
metric problem. In part, this is because we now have
infinitely many constraints, one for each t.”

To state the problem, suppose we are given an in-
terval T := [t0, t1] in R, two points ξ0, ξ1 in Rn, and
functions L and f mapping T ×Rn ×Rm to R and
Rn respectively, and ϕ = (ϕ1, . . . , ϕq) mapping Rm

to Rq. Denote by X the space of piecewise C1 func-
tions mapping T to Rn, and by Uk the space of piece-
wise continuous functions mapping T to Rk (k ∈ N).

Let Z := X × Um, and set

D := {(x, u) ∈ Z | ẋ(t) = f(t, x(t), u(t)) (t ∈ T ),

x(t0) = ξ0, x(t1) = ξ1},
S := {(x, u) ∈ D | ϕα(u(t)) ≤ 0,

ϕβ(u(t)) = 0 (α ∈ R, β ∈ Q, t ∈ T )}
where R = {1, . . . , r} and Q = {r + 1, . . . , q}. For
all (x, u) in Z, let

I(x, u) :=

∫ t1

t0
L(t, x(t), u(t))dt.

The problem we shall deal with, which we label (P),
is that of minimizing I over S.

A control function u is an element of Um and a
state trajectory x corresponding to a control function
u is an element of X which solves the differential
equation ẋ(t) = f(t, x(t), u(t)) (t ∈ T ). A pair
(x, u) comprising a state trajectory x and an associ-
ated control function u is referred to as a process. If
u satisfies the control constraints u(t) ∈ U (t ∈ T ),
where

U := {u ∈ Rm | ϕα(u) ≤ 0 (α ∈ R),

ϕβ(u) = 0 (β ∈ Q)},
and x satisfies the endpoint constraints x(t0) = ξ0 and
x(t1) = ξ1, then the process (x, u) is said to be ad-
missible, and it solves (P) if it achieves the minimum
value of I over all admissible processes.

With respect to the functions delimiting the prob-
lem, we assume that, if F := (L, f), then F (t, ·, ·) is
C2 for all t ∈ T and ϕ is C2; F (·, x, u) and its deriva-
tives in (x, u) are piecewise continuous and there ex-
ists an integrable function α:T → R such that, at any
point (t, x, u) ∈ T ×Rn ×Rm,

|F (t, x, u)|+ |∇(x,u)F (t, x, u)| +

|∇2
(x,u)F (t, x, u)| ≤ α(t).

Moreover, the q × (m+ r)-dimensional matrix(
∂ϕi
∂uk

δiαϕα

)
(i = 1, . . . , q; α = 1, . . . , r; k = 1, . . . ,m), has
rank q on U (here δαα = 1, δαβ = 0 (α 6= β)). This
condition is equivalent to the condition that, at each
point u in U , the matrix(

∂ϕi
∂uk

)
(i = i1, . . . , ip; k = 1, . . . ,m)
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has rank p, where i1, . . . , ip are the indices i ∈
{1, . . . , q} such that ϕi(u) = 0 (see [12] for details).
Finally, given (x0, u0) ∈ S, we shall denote by [t]
the point (t, x0(t), u0(t)) and set A(t) := fx[t] and
B(t) := fu[t]. In what follows, the notation ‘∗’ will
be used to denote transpose.

3 Normality and first order condi-
tions

First order necessary conditions are well established
and one version (consequence of the Maximum Prin-
ciple) can be stated as follows (see, for example, [6]).
This result can be seen as the analogous of the Fritz
John necessary optimality condition in mathematical
programming mentioned in the introduction.

For all (t, x, u, p, µ, λ) in T ×Rn×Rm×Rn×
Rq ×R define the Hamiltonian function as

H(t, x, u, p, µ, λ) :=

〈p, f(t, x, u)〉 − λL(t, x, u)− 〈µ, ϕ(u)〉.

Theorem 10. Suppose (x0, u0) solves (P). Then
there exist λ0 ≥ 0, p ∈ X , and µ ∈ Uq, not vanishing
simultaneously on T , such that

a. µα(t) ≥ 0 and µα(t)ϕα(u0(t)) = 0 (α ∈
R, t ∈ T );

b. ṗ(t) = −H∗x(t, x0(t), u0(t), p(t), µ(t), λ0) on
every interval of continuity of u0;

c. Hu(t, x0(t), u0(t), p(t), µ(t), λ0) = 0 (t ∈ T ).

In this theorem, the case λ0 = 1, as in the theory
of mathematical programming, is particuarly relevant.
Denote by E the set of all (x0, u0, p, µ) ∈ Z×X×Uq
satisfying

a. µα(t) ≥ 0 and µα(t)ϕα(u0(t)) = 0 (α ∈
R, t ∈ T );

b. ṗ(t) = −A∗(t)p(t) + L∗x[t] (t ∈ T );
c. B∗(t)p(t) = L∗u[t] + ϕ′∗(u0(t))µ(t) (t ∈ T ).
Given (x0, u0) ∈ S, let Λ(x0, u0) be the set of all

(p, µ) ∈ X × Uq such that (x0, u0, p, µ) ∈ E . The el-
ements of E will be called extremals and of Λ(x0, u0)
Lagrange multipliers (no confusion should arise with
the notation and terminology used in Section 1).

As for the finite dimensional case, given a so-
lution (x0, u0) to the problem, nonemptiness of
Λ(x0, u0) requires the assumption of a certain con-
straint qualification applied to the constraints and the

admissible process. By analogy with the mathemati-
cal programming problem, we define normality rela-
tive to S by imposing the null solution as the unique
solution to the system given in Theorem 10 when the
cost multiplier vanishes. This is a natural extension of
the definition of normality given for problem (N).

We shall say that (x0, u0) ∈ S is normal relative
to S if, given (p, µ) ∈ X × Uq satisfying

i. µα(t) ≥ 0 and µα(t)ϕα(u0(t)) = 0 (α ∈
R, t ∈ T );

ii. ṗ(t) = −A∗(t)p(t)
[ = −H∗x(t, x0(t), u0(t), p(t), µ(t), 0) ] (t ∈ T );
iii. 0 = B∗(t)p(t)− ϕ′∗(u0(t))µ(t)
[ = H∗u(t, x0(t), u0(t), p(t), µ(t), 0) ] (t ∈ T ),

then p ≡ 0. Note that, in this event, also µ ≡ 0.
From Theorem 10 we conclude that, if (x0, u0)

solves (P) and is a normal process relative to S, then
Λ(x0, u0) is nonempty, that is, there exists (p, µ) ∈
X × Uq such that (x0, u0, p, µ) is an extremal.

The sets S0 and S1, which played a fundamen-
tal role before, have also their counterpart in optimal
control. Denote the set of active indices at u by

Ia(u) := {α ∈ R | ϕα(u) = 0} (u ∈ Rm).

Given u0 ∈ Um, let

S0 [ = S0(u0) ] := {(x, u) ∈ D | ϕi(u(t)) = 0

(i ∈ Ia(u0(t)) ∪Q, t ∈ T )}.

For µ ∈ Uq with µα(t) ≥ 0 (α ∈ R, t ∈ T ), define

S1 [ = S1(µ) ] := {(x, u) ∈ D |

ϕα(u(t)) ≤ 0 (α ∈ R, µα(t) = 0, t ∈ T ),

ϕβ(u(t)) = 0 (β ∈ R with µβ(t) > 0,

or β ∈ Q, t ∈ T )}.

Note that
S1(µ) = {(x, u) ∈ S |

ϕα(u(t)) = 0 (α ∈ R, µα(t) > 0, t ∈ T )}.

Since normality is defined relative to any set of pro-
cesses given by inequality and equality constraints, it
can be applied to the sets S0(u0) and S1(µ). By defi-
nition, we obtain the following conditions.

An admissible process (x0, u0) is normal relative
to S0(u0) if, given (p, µ) ∈ X × Uq satisfying

i. µα(t)ϕα(u0(t)) = 0 (α ∈ R, t ∈ T );

ii. ṗ(t) = −A∗(t)p(t) (t ∈ T );
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iii. B∗(t)p(t) = ϕ′∗(u0(t))µ(t) (t ∈ T ),
then p ≡ 0. As before, this implies that µ ≡ 0.

Similarly, an admissible process (x0, u0) is nor-
mal relative to S1(µ) if, given (q, ν) ∈ X × Uq satis-
fying

i. να(t) ≥ 0 and να(t)ϕα(u0(t)) = 0 (α ∈
R, µα(t) = 0, t ∈ T );

ii. q̇(t) = −A∗(t)q(t) (t ∈ T );
iii. B∗(t)q(t) = ϕ′∗(u0(t))ν(t) (t ∈ T ),

then q ≡ 0. In this event, again, we also have ν ≡ 0.
As one readily verifies, if (x0, u0) ∈ S is normal

relative to S0(u0), then Λ(x0, u0) is a singleton. This
assumption, however, can be weakened, and the same
conclusion will follow if, given (p, µ) ∈ Λ(x0, u0),
the admissible process is normal relative to S1(µ).
The converse, however, may not hold. There are prob-
lems for which the pair (p, µ) is unique in Λ(x0, u0)
but (x0, u0) fails to be normal relative to S1(µ). A
full account of these results can be found in [18]. For
a characterization of the uniqueness of multipliers in
terms of normality of yet another set of constraints we
refer to [17].

4 Uniqueness and second order con-
ditions

We shall find convenient to express the normality con-
ditions of the previous section in terms of certain con-
vex cones. Given µ ∈ Rq define the following subsets
of indices of R:

Γ0(µ) := {α ∈ R | µα = 0},

Γp(µ) := {α ∈ R | µα > 0}.

For all u ∈ Rm and µ ∈ Rq, consider the following
sets

τ0(u) := {h ∈ Rm | ϕ′i(u)h = 0 (i ∈ Ia(u) ∪Q)},

τ1(u, µ) := {h ∈ Rm | ϕ′i(u)h ≤ 0

(i ∈ Ia(u) ∩ Γ0(µ)),

ϕ′j(u)h = 0 (j ∈ Γp(µ) ∪Q)},

τ(u) := {h ∈ Rm | ϕ′i(u)h ≤ 0 (i ∈ Ia(u)),

ϕ′j(u)h = 0 (j ∈ Q)}.

As shown in [13], [14], (x0, u0) is normal with
respect to S0(u0) if z ≡ 0 is the only solution of the
system

ż(t) = −A∗(t)z(t), z∗(t)B(t)h = 0

for all h ∈ τ0(u0(t)) (t ∈ T ).

Similarly, (x0, u0, µ) is normal with respect to S1(µ)
if z ≡ 0 is the only solution of the system

ż(t) = −A∗(t)z(t), z∗(t)B(t)h ≤ 0

for all h ∈ τ1(u0(t), µ(t)) (t ∈ T ).

Finally, (x0, u0) is normal with respect to S if z ≡ 0
is the only solution of the system

ż(t) = −A∗(t)z(t), z∗(t)B(t)h ≤ 0

for all h ∈ τ(u0(t)) (t ∈ T ).

For second order necessary conditions, we
consider the quadratic integral defined, for all
(x, u, p, µ) ∈ Z ×X × Uq, by

J((x, u, p, µ); (y, v)) :=∫ t1

t0
2Ω(t, y(t), v(t))dt ((y, v) ∈ Z)

where, for all (t, y, v) ∈ T ×Rn ×Rm,

2Ω(t, y, v) :=

−[〈y,Hxx(t)y〉+ 2〈y,Hxu(t)v〉+ 〈v,Huu(t)v〉]

and H(t) denotes H(t, x(t), u(t), p(t), µ(t), 1).
The next result is well-known in the literature

(see, for example, [12]). It guarantees uniqueness
of the Lagrange multiplier and provides second order
necessary conditions.

Theorem 11. Suppose (x0, u0) solves (P)
and (p, µ) ∈ Λ(x0, u0). If (x0, u0) is nor-
mal relative to S0(u0) then (p, µ) is unique and
J((x0, u0, p, µ); (y, v)) ≥ 0 for all (y, v) ∈ Z sat-
isfying

i. ẏ(t) = A(t)y(t) +B(t)v(t) (t ∈ T );
ii. y(t0) = y(t1) = 0;

iii. v(t) ∈ τ0(u0(t)) (t ∈ T ).

This result is, clearly, the counterpart of Theorem
6 which deals with normality with respect to S0 and
guarantees nonnegativity on the set RS0 .
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It is worth mentioning that some examples found
in the literature (see [13], [14]) show that we may have
a solution (x0, u0) to the problem which is normal rel-
ative to S, a pair (p, µ) such that (x0, u0, p, µ) ∈ E ,
and (y, v) ∈ Z satisfying (i), (ii) and (iii) of this theo-
rem, but J((x0, u0, p, µ); (y, v)) < 0. In other words,
the conclusion of Theorem 11 may not hold if we as-
sume that the solution to the problem is normal with
respect to S.

Those references provide also examples where a
solution which is normal relative to S1(µ) may yield
a negative second variation on τ(u0(t)). In other
words, there exists an admissible process (x0, u0)
which solves the problem and is normal with re-
spect to S1(µ) with (p, µ) ∈ Λ(x0, u0) but, for some
(y, v) ∈ Z satisfying (i), (ii) of Theorem 11 with
v(t) ∈ τ(u0(t)), we have J((x0, u0, p, µ); (y, v)) <
0. It is natural to ask if the same conclusion can be
reached assuming only uniqueness of the multiplier.

More generally, it is of interest to know if the sec-
ond order necessary condition given in Theorem 11
holds in a larger set and/or under weaker assumptions.
In particular, we would like to know if the theorem re-
mains valid assuming uniqueness of the multiplier in-
stead of the strong normality assumption on (x0, u0).
Explicitly, the question is if the following result holds.

Conjecture 1. Suppose (x0, u0) solves (P) and
(p, µ) ∈ Λ(x0, u0). If (p, µ) is unique, that is, if
Λ(x0, u0) = {(p, µ)}, then J((x0, u0, p, µ); (y, v)) ≥
0 for all (y, v) ∈ Z satisfying

i. ẏ(t) = A(t)y(t) +B(t)v(t) (t ∈ T );
ii. y(t0) = y(t1) = 0;

iii. v(t) ∈ τ(u0(t)) (t ∈ T ).

5 The example

In this final section we provide a new and illustra-
tive result in the direction signaled by the conjec-
ture. It corresponds to an example where a solu-
tion (x0, u0) to the problem has a unique multiplier
(p, µ) ∈ Λ(x0, u0) but J((x0, u0, p, µ); (y, v)) < 0
for some (y, v) ∈ Z satisfying

ẏ(t) = A(t)y(t) +B(t)v(t) (t ∈ T ),

y(t0) = y(t1) = 0,

v(t) ∈ τ(u0(t)) (t ∈ T ).

In other words, the conclusion of the conjecture may
not be true.

Example 3. Consider the problem of minimizing
I(x, u) =

∫ 1
−1 b(t)u

3(t)dt subject to

ẋ(t) = u(t) (t ∈ [−1, 1]), x(−1) = x(1) = 0,

u2(t) ≤ 1 (t ∈ [−1, 1])

where

b(t) =

{
0 if t ∈ [−1, 0]

t2 if t ∈ [0, 1].

In this case T = [−1, 1], n = m = 1, ξ0 = ξ1 =
0 and, for all (t, x, u) ∈ T ×R×R,

L(t, x, u) = b(t)u3, f(t, x, u) = u, ϕ(u) = u2 − 1.

Let

x0(t) :=

{
t+ 1 if t ∈ [−1, 0]

1− t if t ∈ [0, 1]

u0(t) :=

{
1 if t ∈ [−1, 0]

−1 if t ∈ (0, 1].

Clearly (x0, u0) is a solution to the problem.
Now, if (x0, u0, p, µ) ∈ E , then µ(t) ≥ 0, ṗ(t) =

0,

p(t) = 3b(t)u20(t) + 2u0(t)µ(t) (t ∈ [−1, 1]).

Thus p is a constant satisfying

p =

{
2µ(t) if t ∈ [−1, 0]

3t2 − 2µ(t) if t ∈ (0, 1].

Since µ(t) ≥ 0 for all t ∈ T , from the first relation
we have p ≥ 0 and, from the second, p ≤ 3t2 for all
t ∈ (0, 1] and so p ≤ 0. Thus p ≡ 0 and therefore

µ(t) =

{
0 if t ∈ [−1, 0]

(3/2)t2 if t ∈ [0, 1].

This implies that (p, µ) is the only pair such that
(x0, u0, p, µ) ∈ E .

We have H(t, x, u, p, µ) = pu − b(t)u3 − (u2 −
1)µ and so

Hu(t, x, u, p, µ) = p− 3b(t)u2 − 2µu,

Huu(t, x, u, p, µ) = −6b(t)u− 2µ.

Therefore

Huu(t, x0(t), u0(t), p(t), µ(t))

=

{
0 if t ∈ [−1, 0]

3t2 if t ∈ [0, 1].

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.40 Javier F. Rosenblueth

E-ISSN: 2224-2856 390 Volume 18, 2023



This implies that, for all (x, u, p, µ) ∈ Z × X × U1
and (y, v) ∈ Z,

J((x, u, p, µ); (y, v)) = −
∫ 1

0
3t2v2(t)dt.

Since ϕ′(u) = 2u, we have

τ0(u0(t)) = {h | 2u0(t)h = 0} = {0},

τ1(u0(t), µ(t)) is given by

{h | 2u0(t)h ≤ 0} = {h | h ≤ 0} if t ∈ [−1, 0],

{h | 2u0(t)h = 0} = {0} if t ∈ (0, 1],

and τ(u0(t)) is given by

{h | 2u0(t)h ≤ 0} = {h | h ≤ 0} if t ∈ [−1, 0],

{h | 2u0(t)h ≤ 0} = {h | h ≥ 0} if t ∈ (0, 1].

Let

y(t) :=

{−t− 1 if t ∈ [−1, 0]

t− 1 if t ∈ [0, 1]

v(t) :=

{−1 if t ∈ [−1, 0]

1 if t ∈ (0, 1].
Then (y, v) solves ẏ(t) = v(t) (t ∈ T ), y(−1) =
y(1) = 0, v(t) ∈ τ(u0(t)), and

J((x0, u0, p, µ); (y, v)) = −
∫ 1

0
3t2v2(t)dt < 0.

Let us end this paper with an open question, a new
conjecture. As mentioned before, it is of interest to
know if Theorem 11 holds in a larger set and/or under
weaker assumptions. In particular, we would like to
know if Conjecture 1 is valid if we replace condition
(iii) by

v(t) ∈ τ1(u0(t), µ(t)) (t ∈ T ).

Explicitly, the question is if the following result
holds.

Conjecture 2. Suppose (x0, u0) solves (P) and
(p, µ) ∈ Λ(x0, u0). If (p, µ) is unique, that is, if
Λ(x0, u0) = {(p, µ)}, then J((x0, u0, p, µ); (y, v)) ≥
0 for all (y, v) ∈ Z satisfying

i. ẏ(t) = A(t)y(t) +B(t)v(t) (t ∈ T );
ii. y(t0) = y(t1) = 0;

iii. v(t) ∈ τ1(u0(t), µ(t)) (t ∈ T ).
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