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Abstract: - Control charts comprise an excellent statistical process control tool for monitoring industrial processes. 
Especially, the CUSUM control chart is very sensitive to small-to-moderate process parameter changes. The 
proposed approach utilizes the numerical integral equation (NIE) method to approximate the average run length 
(ARL) of changes in the mean of a seasonal time series model with underlying exponential white noise running on 
a CUSUM control chart. This was achieved by solving a system of linear equations and integration through 
partitioning and summation using the area under the curve of a function obtained by applying the Gauss-Legendre 
quadrature. A numerical study was conducted to compare the capabilities of the ARL derivations obtained using 
the NIE method and explicit formulas to detect changes in the mean of a long-memory ,SARFIMA( , )( ), sP D Qp d  
model with exponential white noise running on a CUSUM control chart. The results reveal that the performances of 
both were comparable in terms of the accuracy percentage, which was greater than 95%, meaning that the ARL 
values were highly consistent. Thus, the NIE method can be used to validate ARL results for this situation.  
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1   Introduction 
Statistical process control (SPC) has been extensively 
employed for monitoring processes and services to 
avoid the occurrence of problems in industrial 
processes. One of the most commonly utilized SPC 
tools is the control chart, which is robust, reliable, 
and powerful for monitoring industrial processes. 
Moreover, they are easy to implement and 
interpretation of their output is unambiguous. Control 
charts are designed to detect changes in a process 
parameter from the in-control state to the out-of-
control state. Information about a process 
characteristic is plotted against time in conjunction 
with so-called control limits. A signal is transmitted 
once the plotted statistic exceeds the predetermined 
control limit and indicates that the process is possibly 
out-of-control, [1]. There are two categories of 
control charts: memoryless (e.g., Shewharts) and 
memory-type (e.g., the cumulative sum (CUSUM) 

and exponentially weighted moving average 
(EWMA)). The CUSUM, [2], and EWMA, [3], 
control charts are extensively utilized to detect small-
to-moderate changes in the parameter of a process 
while the Shewhart control chart is better at detecting 
large changes. Much research has been performed to 
evaluate the efficacy of the CUSUM control chart, 
[4], [5], [6]. Our research is mainly concentrated on 
the upper one-sided CUSUM control chart, [7]. 

An important control chart evaluation criterion is 
the average run length (ARL). It is the average 
number of observations taken until a control chart 
signals that the process is out of control. It comprises 
two parts: ARL0 when the process is in control, 
which should be as large as possible, and ARL1 when 
the process is out of control, which should be as 
small as possible. Various methods have been 
developed to derive the ARL for changes in the mean 
of a normal process running on a CUSUM control 
chart. For example, [8], derived the approximate 
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ARL for changes in the parameters of processes 
running on a CUSUM control chart with a zero head-
start as the ratio of numerical solutions to two 
integral equations. Likewise, [9], provided a solution 
for the ARL under similar circumstances but with a 
non-zero head-start using the Markov chain and 
integral equation methods for normally distributed 
observations. 

Autocorrelation can have a substantial impact on 
the effectiveness of a CUSUM control chart, [10]. 
Nevertheless, since it is often an inherent part of a 
process, it must be modeled and monitored 
appropriately. Econometric data has been used to 
develop some of these models since it often fits 
autoregressive (AR), moving-average (MA), ARMA, 
or AR fractionally integrated MA (ARFIMA) 
models. Measuring errors (the difference between the 
actual and estimated values) is crucial when creating 
a model: the lower the number of errors, the higher 
the efficiency of the model. A time series model with 
autocorrelated data often contains errors indicated as 
white noise, which in certain situations, is 
exponentially distributed, [11], [12], [13]. 

A time series has long-memory properties when 
the differencing parameter d in a ARFIMA( , , )p d q  
model lies within the range (0, ½), [14 ], [15 ]. This 
characteristic is exemplified either by the hyperbolic 
decline of the autocorrelation function or the lack of 
bounds for the spectral density function. In contrast, 
an ARMA model shows a geometric rate of reduction 
in the correlation between the observations. Our 
primary interest lies in long-memory 
SARFIMA( , , )p d q ( , , ) SP D Q  models with the added 
complication of seasonality, [16 ], [17], [18], which 
often appears empirically. The study, [17], adopted 
the Kalman filter methodology to deduce the values 
of parameters d  and D  for a 

,S 0ARFIMA( )(0 00, , ), SDd  process. In the present 
study, we explore this specific scenario under the 
presumption that the white noise follows an 
exponential distribution. Several control charts have 
been adapted to run processes with the fractional 
integration element, [18], [19]. The present research 
is centered on identifying shifts in the mean of a 
long-memory ,S , ,R ,A FIMA( )( ) SP Dd Qp q process 
running on a CUSUM control chart. 

The principal methods for calculating the ARL 
have been based on utilizing Monte Carlo simulation, 
the Markov chain technique, explicit formulas, and 
integral equations. The study, [20], employed the 

Markov chain methodology to determine the ARL of 
a process running on a CUSUM control chart while 
presupposing that the observations are independently 
and identically distributed (i.i.d.). The author in, [21], 
refined this approach through the incorporation of 
Richardson extrapolation for observations from a 
comprehensive array of distributions, including the 
Chi-squared distribution. Integral equations such as 
the Fredholm integral equation of the second kind 
have been utilized within the numerical integral 
equation (NIE) methodology to compute the ARL, 
[22], [23], [24], [25], [26], [27], [28]. Alternatively, 
the Gauss-Legendre quadrature has been employed in 
the integral equation approach, [22], in which it is 
noteworthy that the sample variance adheres to a 
right-skewed Chi-squared distribution restricted to 
the half-real line. The study, [29], used a piecewise 
collocation technique as an alternative to the Gauss-
Legendre quadrature for ARL approximation. 
Numerical integration (or quadrature) is a commonly 
utilized method for approximating integrals. As well 
as the Gauss-Legendre quadrature, other examples 
include using the midpoint, composite trapezoidal, 
composite Simpson’s, and Gaussian rules. In the 
present study, we obtained approximated the ARL for 
changes in the mean of a long-memory 

,SARFIMA( , )( ), SP D Qp d  process with underlying 
exponential white noise running on a CUSUM control 
chart by using the NIE method based on an integral 
equation using the Gauss-Legendre quadrature. 

The remainder of the paper Is organized as 
follows. Section 2 provides a concise overview of 
the upper-sided CUSUM control chart and the 
generalized long-memory ,SARFIMA( , )( ), SP D Qp d

model with underlying exponential white noise. 
Similarly, the design of the upper-sided CUSUM 
control chart is presented in Section 3. Approximating 
the ARL for changes in the mean of a long-memory 

,SARFIMA( , )( ), SP D Qp d with underlying exponential 
white noise running on a CUSUM control chart by 
using the NIE method is covered in Section 4. The 
ARL numerical results obtained using the NIE method 
and the explicit formulas are compared in Section 5. 
Last, conclusions and future recommendations are set 
out in Section 7. 
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2   Preliminaries 
Here, we overview the upper-sided CUSUM control 
chart and the generalized long-memory 

,SARFIMA( , )( ), SP D Qp d  model with underlying 
exponential white noise. 
 
2.1   The Upper-Sided CUSUM Control Chart 

CUSUM statistic ,tZ  at time t  is defined as follows: 

 1max , 0 ,  t t tZ Z Y k  for 1,2,... ,t   (1) 
 
where tY  is the sequence of the generalized 

,SARFIMA( , )( ), SP D Qp d process with exponential 
white noise and k  is a reference value. The starting 
value 0Z  is set to   in this study whereby , h  
where h is either the decision parameter or upper 
control limit of the CUSUM control chart. 
 
2.2 The Generalized Long-Memory 

SARFIMA(p, d, q)(P, D, Q)S Model 

With Underlying Exponential White 

Noise 
A time series has long-term dependence or long 
memory if its autocorrelation coefficient does not 
decay. If the coefficient of autocorrelation of order 

, ,kk  satisfies the condition 
1

,k

k






  then such a 

time series is called a long-memory process. As the 
latter has often been observed in many economic 
time series, several models for describing it have 
been developed. Analysis of long-term dependency 
on the volatility of exchange rates has often been 
performed using the ARFIMA model, [14], [15]. 
Nevertheless, the utilization of fractional differencing 
(or integration) alone does not cover the 
characteristics of seasonality. Consequently, the 
SARFIMA model, which is the ARFIMA model with 
a seasonality component, has been devised. The 
parameters of the ,S , ,R ,A FIMA( )( ) SP Dd Qp q  
model can be described in terms of a seasonal time 
series ( )tY as follows: 

( ) ( )(1 ) (1 ) ( ) ( ) ,    s d s D s

p P t q Q tB B B B Y B B    
(2) 

where t is a white noise process assumed to be 
exponentially distributed with ( )~t Exp   when 
shift parameter 0.   

2
1 2

1
( ) (1 ... ) 1 ,



      
p

p i

p p i

i

B B B B B      and  

2
1 2

1
( ) (1 ... ) 1 ,



      
q

q j

q q j

j

B B B B B       

are non-seasonal AR and MA polynomials in B  of 
order p and q respectively; 

2
1 2

1
( ) (1 ... ) 1 ,



        
P

s s s Ps ks

P P k

k

B B B B B

 and  
2

1 2
1

( ) (1 ... ) 1 ,


        
Q

s s s Qs ls

Q Q l

l

B B B B B

 
are seasonal AR and MA polynomials in B  of order 
P and Q, respectively; B  is the backshift operator 
satisfying 1,t tBY Y  and ,s

t t sB Y Y ; d and D are 
the annual and seasonal fractionally differencing 
parameter, respectively, and s  is the number of time 
periods utilized in a year (e.g., 12s   is a monthly 
time series). In particular, the 

,S , ,R ,A FIMA( )( ) SP Dd Qp q  process is when 
  0.p q P Q    This process is a non-seasonal 
and seasonal fractionally integrated
(SARFIMA(0, ),0d ), ,(0 0) SD  model, which can be 
defined as 

(1 ) (1 ) ,  d S D

t tB B Y   
where d and D are the non-seasonal and seasonal 
differencing parameters, respectively. All real values 
of , 1,d D    can be expressed in terms of their 
binomial expansion as follows: 

2

0

( 1)(1 ) ( ) 1 ...., ;
2





    
       

 
x v

v

B B B B
v

   

 
1, , and , ,  s d D   (3) 

where 
( 1) , and (.)

( 1) ( 1)v v v

    
  
      

is a 

gamma function. 
 
For 0,q   the ,S 0ARFIMA( ), ,( ), SP D Qp d  or 

,SARFIMA( , )( ), SP D Qp d model can be defined as 

( ) ( )(1 ) (1 ) ( ) ,   s d s D s

p P t Q tB B B B Y B    (4) 
 ,SARFIMA( , )( ), SP D Qp d models are commonly 
used to model time series with long-memory 
behavior. They have the same characteristics as the 
corresponding ARFIMA model (i.e. stationarity and 
invertibility) when 1 2d D   and andd D  are 
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less than 1 2 , which indicates a long-memory 
process. 
 The equation (4) can be rearranged in favor of 
( )tY  for the generalized ,SARFIMA( , )( ), SP D Qp d  
model on the CUSUM control chart as follows: 

( )
, or

( ) ( )(1 ) (1 )



  

s

Q t

t s d s D

p P

B
Y

B B B B




 

1 1

1 1
(1 ) (1 ) (1 ) (1 )   

 

      
p P

i is d s D

t i j

i j

Y B B B B  

 
1 2 2.( ... )     t t s t s Q t Qs      (5) 

 
where ( ).~t Exp   The initial value is normally the 
process mean (i.e., 

2, ,..., 1.t s t s t Qs      ); the 
coefficient parameters are 

,1 ,1 ,1, , ,i i p j j P k k Q        ; 
and the initial value of the long-memory 

,SARFIMA( , )( ), SP D Qp d  process is 1. 
 
 
3 The Design of Upper-Sided CUSUM 

Control Chart 
Here, we discuss the design of the CUSUM control 
chart running a generalized long-memory 

,SARFIMA( , )( ), SP D Qp d  model with underlying 
exponential white noise. 

Let , 1,2,...,t t  represent a sequence of 
continuous i.i.d. random variables from an 
exponential distribution with parameter . The 
process is considered in-control when 0 ,   whereas 
it is out-of-control when 1.   The following are the 
change points for 

t : 

0

1 0

no ch
(

ange)( ), 1, 2, ..., 1 (
( ch), , 1, ... ange),t

Exp t m

Exp t m m




 

 

 


 


  

  (6) 
The ARFIMA process in Equation (5) can be 

substituted into Equation (1), so the CUSUM statistic 
becomes 

 
1

1 1
1

1 1
(1 ) (1 ) (1 ) (1 )

t t t

p P
i is d s D

i j

i j

Z Z Y k

Z B B B B 



   

 

  

       
 

1 2 2.( ... )      t t s t s Q t Qs k     (7) 
where 1 . tZ   Hence, the CUSUM stopping time  
( h

) can be written as 

 inf 0; ,f ,or   h tZ h ht   (8) 
 

Note that 0 , tZ h indicates that the process is in 
control whereas tZ h  indicates that the process is 
out of control. 
 

In the context of the in-control process, 
modifying the CUSUM statistic by reorganizing the 
error term ( )

t
 is possible, resulting in 

t
  being 

between 0 and .h  Subsequently, 
t
  can be rearranged 

as follows: 
  

1 1

1 1

1 1 2 1 2 1

1 1
1

1 1

1 1 2 1 2 1

(1 ) (1 ) (1 ) (1 )

.( ... )

(1 ) (1 ) (1 ) (1 )

.( ... ),

   

 

  

   

 

  

      

   

         

   

 

 

p P
i is d s D

i j

i j

s s Q Qs

p P
i is d s D

i j

i j

s s Q Qs

k B B B B

h k B B B B

 

  

  

  

 
 

4 Approximating the ARL for Changes 

in the Mean of a Process Running on 

a CUSUM Control Chart Via the 

NIE Method 
The ARL can be approximated by utilizing the NIE 
method based on Fredholm's integral equation of the 
second kind, [23]. Subsequently, the NIE method 
was used in conjunction with the CUSUM statistic to 
approximate the ARL. In this section, the application 
of the Gauss-Legendre rule technique for the 
numerical calculation of the integral equations of the 
NIE method is proposed. 

To evaluate the performance of the CUSUM 
control chart, it is necessary to determine the 
stochastic properties of the corresponding stopping 
time ( )

h
 . Assuming there is a change point in 

Equation (6), it is possible to establish a rigorous 
definition of the ARL using (.)mE  under the 
assumption that the change point occurs at time 

.m  Consequently, 

1 1

0 0

0

( ), ; in-control  (ARL )
A

t
s

-
ta

e
RL

( ), ; ou of l
te

stat-contro (ARL ).
h

h

E

E

  

  












 

Let ( )L  be the ARL of a change in the mean of 
a long-memory ,S , ,R ,A FIMA( )( ) SP Dd Qp q  model 
conditioned on the initial value of the CUSUM 
statistic 0 ;Z   0 .  h  This structure utilizes the 
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stopping time ( )h  for the process such that the ARL 
is given as 

( ) E ( ) ,h   L
 where E ( ) h is the expectation under the density 

function ( , ).tf    
 
The solution of the integral equation becomes 

1 1 1( ) 1 P { 0} (0) E [ {0 } ( )],z zZ I Z h Z      L L L  (9) 
where 1Z  is the first observation and 1{0 } I Z h

represents the indicator function. 
 

The integral equation utilized to determine the 
ARL of a change in the process parameter running on 
a one-sided CUSUM control chart is obtained by 
employing Equation (9) and applying a Fredholm 
integral equation of the second kind. This allows us 
to rewrite for ( )L  as follows: 

1 1

1 1

1

1 1

1 10

1

( ) 1 (0) ( (1 ) (1 )

(1 ) (1 ) ( ... ))

( ) ( (1 ) (1 )

(1 ) (1 ) ( ... )) ,

 

 

 

 

 

 

 

 

      

    

      

    

 

 

p P
i is

i j

i j

d s D

t t s Q t Qs

h p P
i is

i j

i j

d s D

t t s Q t Qs

F k B B

B B

u f u k B B

B B du

 

  

 

  

L L

L

   (10) 
 
where ( ) 1F e     and ( ) .f e     When 
applying the final term in Equation (1 0 ) to the 
quadrature rule, the integral can be estimated by 
summation of the rectangles. 

The Gauss-Legendre quadrature rule can be 
utilized in numerical solutions based on integral 
equations in the final term in Equation (10). Clearly, 
integral 

0
( )

h

f u du  can be approximated by summing 

the areas of the rectangles with bases /h m and heights 
maintained as the values of f  at the zero-based 
midpoints of the intervals of length / .h m  Interval 
 0,h is partitioned into 10 ...   ma a h partitions 
while / 0jw h m  is a set of weights. Thus, the 
integral can be approximated in summation form as 

10

( ) ( ) ( )
h m

j j

j

W u f u du w f a


   

where ( )W u  is a weight function, 1 = ,
2j

h
a j

m

 
 

 
 

and / ; 1,2,..., .jw h m j m   

Solving the system of m linear equations in mm 
unknowns can be used to approximate the solution 
for ( )L on interval  0,h  by substituting   with 

ia  in Equation (10) as follows: 
1 1

1 1

1 1 1

1 1

1 1 1

1

1

1 1

ˆ ˆ( ) 1 ( (1 ) (1 )

.(1 ) (1 ) ( ... ))

ˆ ( (1 ) (1 )

.(1 ) (

)

1 ) ( ... )), 1,2

(

,..., .

(

)

p P
i is

i j

i

P

i

j

d s D

s Q Qs

pm
i is

j j i i j

j i j

d s D

s Q Qs

j

F k B B

B B

w f a k a B

i

a a

a B

B B m

 

 



 

 

 

 

 

 

  

 

 

     

    

      

  



   

 

  

L L

L

 
 

Let ˆ( )L  denote the approximated ARL using the 
NIE method when applying the Gauss-Legendre rule 
on interval  0, .h  Therefore, the integral equation in 
Equation (10) comprises the set 

1 2( ), ( ), ..., ( )ˆ ˆ ˆ ˆ( ) ma a a L L L L , which can be 
approximated as 

 
1 1

1
1 1

1 1 1

1 1
1

1 1

1

1

1

1

1

2
(

( (1 ) (1 ) (1 )

.(1 ) ( ... ) )ˆ )ˆ1
( (1

)

(
) (1 )

.(1 (1 ) ( ... )

(

)

ˆ

)

p P
i is d

i j

i j

s D

s Q Qs t

p P
i is

i j

i j

d s D

s Q Qs t

m

j

j

F k a B B B

B

w f k B B
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The above set of m equations in m unknowns can 

be expressed in matrix form: 
1 1 1m m m m m    L 1 C L   

which is equivalent to 1 1( ) .m m m m m   I C L 1    (11) 

where 
1 1 2( ), ( ),..., ( ) ,ˆ ˆ ˆ

m ma a a

 
 

L L L L   1 1,1,...,1m
1  

is a column vector of ones, and (1,1, ,1)m diagI  is 
the unit matrix order .m  Matrix C  with dimensions 
m m  becomes 
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If 1( )m m m



I C  is invertible and exists, then the ARL 
approximation for the NIE can be reformed into a 
system of linear equations in matrix form as follows: 
 1
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with 1, and ; 1,2, , .
2

 
    

 
j jw h m a h m j j m   

This is the proposed approximation of the ARL 
for changes in the mean of a long-memory 

,S 0ARFIMA( ), ,( ), SP D Qp d  process with 
underlying exponential white noise on a CUSUM 
control chart using the NIE method. The Gauss-
Legendre quadrature rule technique can be used to 
approximate the ARL quite accurately, as shown in 
the next section. 

 
 

5  The Performance Evaluation Results 

of the Numerical Study 
Here, we present the numerical results of a 
comparative analysis conducted to evaluate the 
performances of the proposed NIE method utilizing 
explicit formulas. 
 
5.1 Derivation of the ARL using Explicit 

Formulas 
To evaluate the performance of the proposed ARL 
for a long-memory ,SARFIMA( , )( ), SP D Qp d  
model running on a CUSUM control chart, we used 
the ARL derived by using explicit formulas denoted 
as ( )L , which can be written in the form 
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 (14) 
where   is replaced by 0  for the in-control ARL 
(ARL0) process and   is replaced by 1  for the out-
of-control ARL (ARL1). 
 
5.2 The Standard Deviation of the Run 

Length (SDRL) Performance Measure 
As well as the ARL, we also computed the SDRL 
used as a performance measure for the CUSUM 
control chart for the situation described earlier. The 
in-control SDRL (SDRL0) is defined as 

0 2
1SDRL = 



  (15) 

where 1 (0 )tP Z h      is a false alarm (or type I 
error); the probability at which a false alarm occurs is 
known as the false alarm rate (FAR). Thus, the 
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probability of a type I error or FAR is 0.0027. Hence, 

0
lARL = 370,

 and 0SDRL 370.  

On the contrary, the out-of-control SDRL (SDRL1) 
can be characterized as 

1 2SDRL = ,
(1 )




 (16) 

where 
1

(0 )tP Z h     is the probability of a type 

II error occurring. 1
1ARL = 1

(1 )



 corresponds to 

ARL0 = 370 for large changes in the process mean. 
 

5.3  The Percentage Accuracy Performance 

Measure 

Let ˆ( )L  and ( )L  be the ARL values obtained by 
using the NIE and explicit formula methods, 
respectively. Thus, 

ˆ( ) ( )%Accuracy 100 100%,
( )

 




  

L L
L

 (17) 

An accuracy percentage of greater than 95% 
implies that the ARL results using both methods are 
close to each other. 

This work aims to numerically approximate the 
average run lengths (ARLs) for long memory with 

,SARFIMA( , )( ), SP D Qp d  a model underly 
exponential white noise when implemented on a 
CUSUM control chart using the NIE method and 
explicit formulas. The white noise in the long-
memory ,SARFIMA( , )( ), SP D Qp d process was 
distributed exponentially where the mean parameter 
of the exponential is   in the study situation. In 
addition, the value of 0   is equal to 1 for the in-
control process, whereas 1 0(1 )     represents the 
value for the out-of-control process, where   is the 
magnitude of shift size;   = 0.025, 0.05, 0.10, 0.25, 
0.50, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, or 5.0 
respectively. In the long-memory process with 

4SARFIMA(1, 0.1)(1,0.1, 1)  the model, coefficient 
parameters 1 = 0.1, 0.3, 0.5, or 0.7, 1  = 0.10, and 

1  = 0.10 are employed and compared. The NIE 
method employs 800 division points, denoted as m, 
to solve systems of linear equations in calculations. 
The ARL results using the NIE method were 
compared to the ARL results derived from explicit 
formulas. The results showed comparable 

performance of ARL obtained from both methods in 
detecting changes in the mean process. 

Table 1 presents the chief findings of our proposed 
CUSUM control chart. We have used the sensitivity 
parameter of the control chart k = 2.5, 3.0, and 5.0, 
which are the optimal choices for calculating the 
upper control limit (h) from (13) such that the ARL0 
is fixed at 370. 

 
Table 1. Values of CUSUM control limit with 

corresponding values of k for the desired ARL0 = 370 
of long-memory 4SARFIMA(1, 0.1)(1,0.1, 1)  models. 

SARFIMA 

(1, 0.1) (0, 0.1, 1)4 
 In-control ARL0 = 370 

1  1  1   k = 2.5 k = 3.0 k = 3.5 
0.1 0.1 0.1  4.020943 3.303497 1.149340 
0.3 0.1 0.1  3.937120 3.240665 1.098567 
0.5 0.1 0.1  3.856962 3.178866 1.047840 
0.7 0.1 0.1  3.779928 3.11,8004 0.997154 

 
Table 1 contains reports on the upper control limits 

(h) and k for every scenario in the control process 
( 0).   The study revealed the value of h decreased 
as k was systematically increased for every 
coefficient parameter combination in each 

4SARFIMA(1, 0.1)(1,0.1, 1)  model. Moreover, if we 
consider the coefficient parameters, it is found that as 

1  increases, the value of h decreases for each value 
of k as 1  changes between 0.1 and 0.7. 
Consequently, we propose a design structure based 
on the CUSUM statistic to detect changes in the 
process mean. 

Numerical results of ARL1 were obtained using the 
NIE method and explicit formulas for out-of-control 
ARL1 1 0( ),   which can be calculated through the 
Wolfram Mathematica. Both methods of detecting 
changes in the process mean are reported in Table 2, 
Table 3, Table 4, and Table 5. We also proposed 
SDRL to compare the performance of ARL in this 
scenario. According to these findings, the ARL1 
results calculated using the NIE method in (13) and 
explicit formulas in (14) tended to decrease 
sensitively as the shift size increased for small to 
moderate shift magnitude shifts in the process. The 
ARL1 is more effective at detecting small
(0 0.5)   to moderate (0.5 1.0)   shifts than 
large (1.0 5.0)  ones. In case of a small shift in the 
process mean, NIE methods for k = 2.5 (see Figure 
1(a)) produced lower ARL1 values compared to k = 
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3.0 and 5.0, respectively (see Figure 1(b)-(c)). In case 
k = 2.5, ARFIMA processes with small AR 
coefficient values 1( ) 0.1   (see Figure 1(a)) were 
more sensitive to process mean shift detection by 
both methods than those with large AR coefficients 
of 1  = 0.3, 0.5, and 0.7, respectively (see Figure 1(b) 
– (c)). However, both methods produced the same 
ARL1 value for all values of k for a large shift. 
Similar to the ARL1 results, the SDRL1 results also 
demonstrate a decreasing pattern as the shift size 
increased for all scenarios (see Table 2, Table 3, 
Table 4, and Table 5). 

Furthermore, percentage change results calculated 
at various magnitudes of process mean shifts for the 
long-memory processes were greater than 95%, 

indicating that the proposed method is accurate and 
highly consistent with the explicit formulas. 

The summary of the solution of the Integral 
equation can be approximated ARL using the Gauss-
Legendre quadrature rule. The results demonstrate 
that the NIE method is a simpler alternative to ARL 
calculations, which approximate the accuracy of the 
ARL, [27], [28]. However, the Gauss-Legendre rule 
yielded the most straightforward ARL calculation 
and the highest accuracy for the given number of 
nodes. Lasty, the graphical displays of approximating 
the ARL1 accurately using NIE method on the 
CUSUM control is presented in Figure 2. 

 

 
Table 2. Comparison of ARL1 between NIE method and explicit formulas and SDRL1 of CUSUM chart for a long-memory 

4SARFIMA(1, 0.1)(1,0.1, 1)  model where 1 0.1  at ARL0 = 370  

  
k = 2.5 

SDRL1 Acc% 
k = 3.0 

SDRL1 Acc% 
k = 5.0 

SDRL1 Acc% 
NIE Explicit NIE Explicit NIE Explicit 

0.025 313.089 313.759 313.259 99.79 316.375 316.968 316.468 99.81 319.751 319.973 319.473 99.93 
0.05 267.614 268.156 267.656 99.80 273.019 273.516 273.016 99.82 278.423 278.612 278.112 99.93 
0.10 1,99.797 200.173 199.672 99.81 207.401 207.755 207.254 99.83 215.082 215.221 214.720 99.94 
0.25 96.020 96.165 95.664 99.85 103.693 103.842 103.341 99.86 112.081 112.144 111.643 99.94 
0.50 39.889 39.931 39.428 99.89 44.571 44.621 44.118 99.89 50.366 50.389 49.886 99.95 
0.75 21.765 21.782 21.276 99.92 24.551 24.572 24.067 99.91 28.370 28.381 27.877 99.96 
1.0 14.060 14.068 13.559 99.94 15.806 15.817 15.309 99.93 18.419 18.425 17.918 99.97 
1.5 7.863 7.866 7.349 99.96 8.663 8.667 8.152 99.95 10.046 10.048 9.535 99.98 
2.0 5.451 5.453 4.928 99.96 5.877 5.879 5.356 99.97 6.707 6.708 6.188 99.99 
2.5 4.237 4.238 3.704 99.98 4.487 4.488 3.957 99.98 5.031 5.032 4.504 99.98 
3.0 3.523 3.524 2.982 99.97 3.680 3.681 3.141 99.97 4.060 4.061 3.526 99.98 
4.0 2.736 2.737 2.180 99.96 2.806 2.806 2.251 100.00 3.016 3.016 2.466 100.00 
5.0 2.317 2.317 1.747 100.00 2.351 2.351 1.782 100.00 2.480 2.480 1.916 100.00 
h 4.020943   3.303497   1.149340   

 

Table 3. Comparison of ARL1 between NIE method and explicit formulas and SDRL1 of CUSUM chart for a long-memory 
4SARFIMA(1, 0.1)(1,0.1, 1)  model where 1 0.3 at ARL0 = 370  

  
k = 2.5 

SDRL1 Acc% 
k = 3.0 

SDRL1 Acc% 
k = 5.0 

SDRL1 Acc% 
NIE Explicit NIE Explicit NIE Explicit 

0.025 313.570 314.225 313.725 99.79 316.387 317.171 316.671 99.75 319.774 319.987 319.487 99.93 
0.05 268.404 268.944 268.444 99.80 273.367 273.857 273.357 99.82 278.456 278.636 278.136 99.94 
0.10 200.899 201.275 200.774 99.81 207.894 208.244 207.743 99.83 215.125 215.258 214.757 99.94 
0.25 97.103 97.249 96.748 99.85 104.209 104.357 103.856 99.86 112.131 112.191 111.690 99.95 
0.50 40.523 40.567 40.064 99.89 44.903 44.952 44.449 99.89 50.405 50.427 49.924 99.96 
0.75 22.131 22.148 21.642 99.92 24.756 24.777 24.272 99.92 28.398 28.408 27.904 99.96 
1.0 14.283 14.291 13.782 99.94 15.940 15.951 15.443 99.93 18.439 18.445 17.938 99.97 
1.5 7.960 7.963 7.446 99.96 8.728 8.732 8.217 99.95 10.058 10.061 9.548 99.97 
2.0 5.500 5.502 4.977 99.96 5.913 5.915 5.392 99.97 6.715 6.716 6.196 99.99 
2.5 4.264 4.265 3.732 99.98 4.509 4.511 3.980 99.96 5.037 5.038 4.510 99.98 
3.0 3.540 3.540 2.999 100.00 3.695 3.696 3.157 99.97 4.064 4.065 3.530 99.98 
4.0 2.743 2.743 2.187 100.00 2.814 2.814 2.259 100.00 3.018 3.019 2.469 99.97 
5.0 2.320 2.320 1.750 100.00 2.355 2.355 1.786 100.00 2.482 2.482 1.918 100.00 
h 3.937120   3.240665   1.098567   
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Table 4. Comparison of ARL1 between NIE method and explicit formulas and SDRL1 of CUSUM chart for a long-memory 
with 4SARFIMA(1, 0.1)(1,0.1, 1)  where 1 0.5 at ARL0 = 370 

  
k = 2.5 

SDRL1 Acc% 
k = 3.0 

SDRL1 Acc% 
k = 5.0 

SDRL1 Acc% 
NIE Explicit NIE Explicit NIE Explicit 

0.025 314.001 314.651 314.151 99.79 316.784 317.360 316.860 99.82 319.798 320.000 319.500 99.94 
0.05 269.114 269.651 269.151 99.80 273.692 274.174 273.674 99.82 278.487 278.659 278.159 99.94 
0.10 201.894 202.269 201.768 99.81 208.356 208.702 208.201 99.83 215.167 215.293 214.792 99.94 
0.25 98.087 98.236 97.735 99.85 104.695 104.842 104.341 99.86 112.177 112.234 111.733 99.95 
0.50 41.108 41.153 40.650 99.89 45.217 45.266 44.763 99.89 50.440 50.462 49.959 99.96 
0.75 22.470 22.489 21.983 99.92 24.952 24.973 24.468 99.92 28.424 28.434 27.930 99.96 
1.0 14.491 14.501 13.992 99.93 16.068 16.079 15.571 99.93 18.459 18.464 17.957 99.97 
1.5 8.052 8.056 7.539 99.95 8.791 8.795 8.280 99.95 10.070 10.072 9.559 99.98 
2.0 5.548 5.549 5.024 99.98 5.949 5.951 5.428 99.97 6.724 6.724 6.204 100.00 
2.5 4.291 4.292 3.759 99.98 4.531 4.533 4.002 99.96 5.042 5.043 4.515 99.98 
3.0 3.556 3.557 3.016 99.97 3.710 3.711 3.172 99.97 4.068 4.069 3.534 99.98 
4.0 2.749 2.749 2.193 100.00 2.821 2.821 2.267 100.00 3.021 3.021 2.471 100.00 
5.0 2.322 2.322 1.752 100.00 2.359 2.359 1.790 100.00 2.484 2.484 1.920 100.00 
h 3.856962   3.178866   1.047840   

 
Table 5. Comparison of ARL1 between NIE method and explicit formulas and SDRL1 of CUSUM chart for a long-memory 

4SARFIMA(1, 0.1)(1,0.1, 1)  model where 1 0.7  at ARL0 = 370  

  
k = 2.5 

SDRL1 Acc% 
k = 3.0 

SDRL1 Acc% 
 k = 5.0 

SDRL1 Acc% 
NIE Explicit NIE Explicit NIE Explicit 

0.025 314.394 315.038 314.538 99.80 316.970 317.537 317.037 99.82 319.820 320.013 319.513 99.94 
0.05 269.760 270.293 269.793 99.80 273.994 274.472 273.972 99.83 278.516 278.680 278.180 99.94 
0.10 202.799 203.172 202.671 99.82 208.789 209.131 208.630 99.84 215.205 215.325 214.824 99.94 
0.25 98.990 99.139 98.638 99.85 105.153 105.298 104.797 99.86 112.219 112.274 111.773 99.95 
0.50 41.650 41.696 41.193 99.89 45.516 45.565 45.062 99.89 50.474 50.494 49.991 99.96 
0.75 22.788 22.807 22.301 99.92 25.139 25.161 24.656 99.91 28.448 28.458 27.954 99.96 
1.0 14.688 14.698 14.189 99.93 16.190 16.202 15.694 99.93 18.477 18.482 17.975 99.97 
1.5 8.141 8.144 7.628 99.96 8.851 8.856 8.341 99.94 10.081 10.083 9.570 99.98 
2.0 5.594 5.595 5.070 99.98 5.983 5.985 5.462 99.97 6.730 6.731 6.211 99.99 
2.5 4.318 4.319 3.786 99.98 4.553 4.554 4.023 99.98 5.047 5.048 4.520 99.98 
3.0 3.572 3.573 3.032 99.97 3.725 3.725 3.186 100.00 4.072 4.073 3.538 99.98 
4.0 2.756 2.756 2.200 100.00 2.828 2.828 2.274 100.00 3.023 3.023 2.473 100.00 
5.0 2.325 2.325 1.755 100.00 2.363 2.363 1.795 100.00 2.485 2.485 1.921 100.00 
h 3.779928   3.11,8004   0.997154   

 

 
(a) 2.5k   

 
(b) 3.0k   

 
(c) 5.0k   

 
 
 

Fig. 1: Graphical displays of approximating the ARL1 accurately using the NIE method on the CUSUM control 
chart for a long-memory   4ARFIMA 1, 0.1 0,0.1, 1  model with coefficient value 1 0.1  : (a) 2.5,k   

(b) 3.0k  and (c) 5.0k   
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(a) 1 0.1   

 

 
 (b) 1 0.3   

 

 
(c) 1 0.5   

 

 
(d) 1 0.7   

 
Fig. 2: Graphical displays of approximating the ARL1 accurately using NIE method on the CUSUM control 

chart:(a) 1 0.1,   (b) 1 0.3,  (c) 1 0.5  and (d) 1 0.7   
 

 

6   Conclusions and Recommendations 
The ARL can be derived by using the NIE approach 
initially introduced by [2]. The ARL can be used to 
compare the performances of different control charts. 
The CUSUM control chart performs well at detecting 
small-to-moderate changes in the process mean. In 
this study, we applied the Gauss-Legendre quadrature 
to solve the integral equations for the NIE approach 
used to derive the ARL for changes in the mean of a 
long-memory ARFIMA( , )( , , )sp d P D Q

ARFIMA( , )( , , )sp d P D Q  model with underlying 
exponential white noise running on a CUSUM 
control chart. In addition to calculating the ARL
using both the NIE and explicit formula approaches, we 
also calculated the SDRL.  It was found that the 
ARL1 and SDRL1 values decreased rapidly and in the 
same direction. 

The results indicate that the proposed NIE method 
is a good candidate for ARL determination in future 
research in this scenario. The method could be 
adapted for new memory-type control charts. In 
addition, the NIE method could be applied to real-life 
applications involving time series models. 
 

 

Acknowledgments: 

This research was funded by Thailand Science 
Research and Innovation Fund (NSRF) and King 
Mongkut's University of Technology North Bangkok 
with Contract no. KMUTNB-FF-66-62.  

 
 

References: 

[1]  D. C. Montgomery, (2005). Introduction to 
statistical quality control, edited by N.J. 
Hoboken, John Wiley. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.39 Wilasinee Peerajit

E-ISSN: 2224-2856 379 Volume 18, 2023



[2]  E. S. Page, (1954). “Continuous Inspection 
Schemes,” Biometrika. 41, 1/2, pp.100-114.  

[3]  S.W. Robert, (1959). “Control Chart Test Based 
on Geometric Moving Averages,” 
Technometrics, 1, pp.239-250. 

[4]  J. M. Lucas and M. S. Saccucci, (1990). 
“Exponentially weighted moving average 
control schemes: properties and 
enhancements,” Technometrics. 32, 1, pp.1-12. 

[5]  I. M. Zwetsloot and W. H. Woodall, (2017). 
“A head-to-head comparative study of the 
conditional performance of control charts 
based on estimated parameters,” Qual. Eng. 29, 
2, pp.244-253. 

[6]  B. C. Khoo and S. Y. Teh, (2009). “A Study on 
the Effects of Inertia on EWMA and CUSUM 
Charts,” Journal of Quality Measurement and 

Analysis JQMA, Vol. 5, 2, pp.73-80. 
[7]  A. Mukherjee, M. Graham and S. Chakraborti, 

(2013). “Distribution-Free Exceedance 
CUSUM Control Charts for Location,” 
Communications in Statistics—Simulation and 

Computation, Vol. 42, pp.1153-1187. 
[8]  A. L. Goel and S. M. Wu, (1971). 

“Determination of A.R.L. and a contour 
nomogram for CUSUM charts to control 
normal mean,” Technometrics. 13, 2, 221-230.   

[9]  J. M. Lucas and R. B. Crosier, (1982). “Fast 
initial response for CUSUM quality control 
schemes: Give your CUSUM A Head Start,” 
Technometrics. 24, 3, pp.199-205.  

[10]   C. W. Lu and M.R. Reynolds, (2001). 
“CUSUM charts for monitoring an 
autocorrelated process,” J. Qual. Technol. 33, 
3, pp.316-334.  

[11]  S. Suparman, (2018). “A new estimation 
procedure using a reversible jump MCMC 
algorithm for AR models of exponential white 
noise,” Int. J. Geomate, 15, 49, pp.85-91.  

[12]  W. Peerajit and Y. Areepong, (2023). 
“Alternative to detecting changes in the mean 
of an autoregressive fractionally integrated 
process with exponential white noise running 
on the modified EWMA control chart,” 

Processes. 11, 2, pp.503-525.  
[13]  W. Peerajit,  (2022). “Cumulative sum control 

chart applied to monitor shifts in the mean of a 
long-memory ARFIMAX(p, d*, q, r) process 
with exponential white noise,” Thail. 20, 1, 
pp.144-161.  

[14]  C. W. J. Granger and R. Joyeux, (1980). “An 
Introduction to Long Memory Time Series 
Models and Fractional Differencing,” J. Time 

Ser. Anal. 1, 1, pp.15-29.  
[15]  J. R. M. Hosking, (1981). “Fractional 

differencing,” Biometrika. 68, 1, pp.165-176.  
[16]  K. Ray, (1993). “Long-range forecasting of 

IBM product revenues using a seasonal 
fractionally differenced ARMA model,” Int. J. 

Forecast. 9, pp.255–269.  
[17]  W. Palma, (2007). "Long-Memory Time Series 

— Theory and Methods", New Jersey, John 

Wiley.  
[18]  L. Rabyk and W. Schmid, (2016). “EWMA 

control charts for detecting changes in the 
mean of a long-memory process,” Metrika. 79, 
pp.267–301.  

[19]  W. Peerajit, (2023). “Accurate Average Run 
Length Analysis for Detecting Changes in a 
Long-Memory Fractionally Integrated MAX 
Process Running on EWMA Control Chart,” 
WSEAS Transactions on Mathematics.  22, 
pp.514–530, 
https://doi.org/10.37394/23206.2023.22.58.  

[20]  D. Brook and D.A. Evans, “An approach to the 
probability distribution of the CUSUM Run 
Length,” Biometrika. 59, 3, 539-549 (1972). 

[21]  D. M. Hawkins, (1981). “A CUSUM for a 
Scale Parameter,” J. Qual. Technol. 13, 
pp.228-231.  

[22]  C. A. Acosta-Mejía, J. J. Pignatiello and B.V. 
Rao, (1999). “A comparison of control charting 
procedures for monitoring process dispersion,” 
IIE Transactions, 31, pp.569–579.  

[23]  C. W. Champ and S. E. Rigdon, (1991). “A 
Comparison of the Markov chain and the 
integral equation approaches for evaluating the 
run length distribution of quality control 
charts,” Commun Stat-Simul C. 20, pp.191-
204.  

[24]  L. Zhang and P. Busababodhin, (2018). “The 
ARIMA(p,d,q) on upper sided of CUSUM 
procedure,” Lobachevskii J. Math. 39, pp.424–
432.  

[25]  Y. Areepong and W. Peerajit, (2022). “Integral 
equation solutions for the average run length 
for monitoring shifts in the mean of a 
generalized seasonal ARFIMAX(P, D, Q, r)s 
process running on a CUSUM control chart,” 
PLoS ONE. 17, 2, e0264283. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.39 Wilasinee Peerajit

E-ISSN: 2224-2856 380 Volume 18, 2023

https://www.scopus.com/sourceid/21100838131
https://www.scopus.com/sourceid/21100838131


[26]  R. Sunthornwat, Y. Areepong and S. 
Sukparungsee, (2018). “Average run length 
with a practical investigation of estimating 
parameters of the EWMA control chart on the 
long memory AFRIMA process,” Thail. 16, 
pp.190–202. 

[27]  D. Bualuang and W. Peeraji, (2022). 
“Performance of the CUSUM control chart 
using approximation to ARL for long-memory 
fractionally integrated autoregressive process 
with exogenous variable,”  Appl. Sci. 

Eng. Prog. 16, 2, 5917.  
[28]  P. Paichit and W. Peerajit, (2022). “The 

average run length for continuous distribution 
process mean shift detection on a modified 
EWMA control chart,” Asia-Pacific Journal of 
Science and Technology, Vol. 27,  pp.109-118. 

[29]  S. Knoth, (2006). “Computation of the ARL 
for CUSUM-S2 schemes,” Comput. Stat. Data 

Anal. 51, pp.499-512.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

Conceptualization: Wilasinee Peerajit.  
Data curation: Wilasinee Peerajit.  
Formal analysis:  Wilasinee Peerajit.  
Funding acquisition: Wilasinee Peerajit.  
Investigation: Wilasinee Peerajit.  
Methodology: Wilasinee Peerajit. 
Software: Wilasinee Peerajit.  
Validation: Wilasinee Peerajit. 
Writing – original draft: Wilasinee Peerajit.  
Writing – review and editing: Wilasinee Peerajit 

 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

The author would like to express her gratitude to the 
Faculty of Applied Science, King Mongkut’s 
University of Technology North Bangkok, Thailand 
for support with research grant No. 662130. 
 

Conflict of Interest 

Please declare anything related to this study. 

The authors have no conflict of interest to declare.  
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en_
US 
 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.39 Wilasinee Peerajit

E-ISSN: 2224-2856 381 Volume 18, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



