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Abstract: The problem of reducing the number of customers waiting for service in a modifiedM/G/k queueing
model is considered. We assume that the optimizer can decide how many servers are working at any time instant.
The optimization problem ends as soon as the objective has been achieved or a time limit has been reached.
Cases when dynamic programming can be used to determine the optimal control even if the service time is not
exponentially distributed are presented.
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1 Introduction

Assume that customers arrive in a queueing system
according to a Poisson process with rate λ and are
served one at a time. Then, the time A between two
customers has an exponential distribution with pa-
rameter λ. If there are k servers and if the service
time S has an exponential distribution with parameter
µ for any server, then the queueing system is denoted
byM/M/k. It is also assumed that the service times
are independent random variables, and are also inde-
pendent of the times between successive customers.
The system capacity c can be finite or infinite. Fi-
nally, the service policy is First in First out (FIFO).

When the queueing system is in equilibrium, or
steady state, customers leave according to a Poisson
process. As this is a Markovian stochastic process,
the notationM is used to denote the model.

When the service timeS has a general distribution,
the notation becomes M/G/k. Important particular
cases are when S is a constant, when it is uniformly
distributed, and when it has a gamma distribution.

Next, suppose that at the initial time t0 the total
number X(t0) of customers in the system is equal to
k+ l, where l ≥ 1. Moreover, they are all waiting for
service. The time t0 could be the opening time of a
store.

In, [1], the following stochastic optimal control
problem was considered: assuming that the optimizer
can choose the number n(t) of servers who are work-
ing at any time instant t, find how many servers must
be used in order to minimize the expected value of the

cost (or reward) function

J(t0, l) :=

∫ T (t0,l)

t0

{q0n(t)−m[n(t)]} dt. (1)

In the cost function, q0 is a positive constant,
m[n(t)] is the money earned by the system, per unit
time, when n(t) ∈ {1, . . . , k} servers are working,
and T (t0, l) is a first-passage time defined by

T (t0, l) = inf{t > t0 : X(t) = k + r or t = t1},
(2)

where 0 ≤ r < l and t1 > t0.
The above problem, which is an extended homing

problem, was treated in, [1], in the case of the (modi-
fied)M/M/k/c queueing system.

Homing problems, in which a stochastic process is
controlled until a given event occurs, were studied for
n-dimensional diffusion processes in, [2]. The author
also considered the case when the cost criterion takes
the risk-sensitivity of the optimizer into account in,
[3].

The author has written many papers on homing
problems; see, for instance, [4]. See also, [5], [6],
and, [7].

In, [1], the authors used dynamic programming to
prove the following proposition, in which the function
F (t0, l) is defined by

F (t0, l) := inf
n(t)

t ∈ [t0, T )

E[J(t0, l)]. (3)

The function F (t0, l) (called the value function) is
such that it satisfies the condition F (t0, l) = 0 if
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l ≤ r. Moreover, the authors assumed that a cost
F1 is incurred if the objective has not been achieved
by time t1:

F (t0, l) = F1 > 0 if T (t0, l) = t1. (4)

Proposition 1.1. Let η = n(t0). The value function
F (t0, l) satisfies the dynamic programming equation

− ∂

∂t0
F (t0, l) = inf

η
{q0η −m(η) + F (t0, l + 1)λ

+ F (t0, l − 1)ηµ− F (t0, l)(λ+ ηµ)} . (5)

In the current paper, we suppose that the service
time S is not exponentially distributed. In, [8], the
author assumed that the random variable S is actually
a constant. Here, in particular, the case when S has a
uniform distribution will be considered.

Optimal control of queuing systems has been the
subject of numerous research papers. See, for exam-
ple, [9], [10], and, [11], for very recent ones. Here,
contrary to other articles found in the literature, the
final time is a random variable.

2 Non-exponential service times
Let W be an exponentially distributed random vari-
able with parameter α. We have

P [W ≤ t] = 1− e−αt = αt+ o(t). (6)

Moreover, if W1, . . . ,Wj are independent random
variables distributed as W , then, as is well known,
min{W1, . . . ,Wj} has an exponential distribution
with parameter jα.

It follows that in the case of the modified
M/M/k/c model considered in, [1], we can write
that

P [A ≤ ∆t] = λ∆t+ o(∆t) (7)

and
P [D ≤ ∆t] = ηµ∆t+ o(∆t), (8)

whereA is the time taken for a new customer to arrive
in the system after time t0 andD is the time taken for
a customer to leave the system if there are η servers
working at time t0.

Both Eq. (7) and Eq. (8) are needed to derive the
dynamic programming equation (5). Unfortunately,
in the case of anM/G/k queueing system, the equa-
tion

P [D ≤ ∆t] = κ∆t+ o(∆t), (9)

where κ is a positive constant, is generally not valid.
Assuming that the service time is exponentially

distributed is a simplifying assumption. Indeed, this
hypothesis is often made because then it is not neces-
sary to consider what happened since the initial time.
One only needs to observe the state of the system at a
given time instant to determine the future.

In practice, the service time S cannot be exactly
exponentially distributed. More realistic cases in-
clude the ones when S is deterministic, or uniformly
distributed, etc.

In this section, we will present three distributions
for which Eq. (9) does hold. Let S1, . . . , Sj be inde-
pendent random variables distributed as S andM :=
min{S1, . . . , Sj}.
Case I. Assume first that the service time S is uni-
formly distributed on the interval (0, L). We have

P [M > t] =

(
L− t

L

)j

for t ∈ (0, L). (10)

If follows that

P [M ≤ ∆t] = 1−
(
L−∆t

L

)j

= 1− 1

Lj
(L−∆t)j

= 1− 1

Lj

[
Lj − jLj−1∆t+ o(∆t)

]
=

1

L
j∆t+ o(∆t), (11)

as required.

Case II. Assume next that the probability density
function of the service time is given by

fS(s) =
1

ln(1 + L)

1

1 + s
for s ∈ (0, L). (12)

We calculate

FS(s) =
ln(1 + s)

ln(1 + L)
for s ∈ (0, L). (13)

Hence, making use of the formula

ln(1 + x) = x− x2

2
+

x3

3
+ . . . for |x| < 1, (14)

we can write that

P [M ≤ ∆t] = 1−
[
1− ln(1 + ∆t)

ln(1 + L)

]j
= 1−

[
1− 1

ln(1 + L)
[∆t+ o(∆t)]

]j
= 1−

[
1− j

ln(1 + L)
∆t+ o(∆t)

]
=

1

ln(1 + L)
j∆t+ o(∆t). (15)

Case III. Finally, we suppose that the probability den-
sity function of S is

fS(s) =
cos(s)

sin(L)
for s ∈ (0, L), (16)
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where L ≤ π/2. This time, we use the formula

sin(x) = x− x3

3!
+ . . . for x ∈ R (17)

to write that

P [M ≤ ∆t] = 1−
[
1− sin(∆t)

sin(L)

]j
= 1−

[
1− 1

sin(L)
[∆t+ o(∆t)]

]j
= 1−

[
1− j

sin(L)
∆t+ o(∆t)

]
=

1

sin(L)
j∆t+ o(∆t). (18)

In the next section, we will present a case when
Eq. (9) does not hold, but the problem can be trans-
formed into the one considered in, [1].

3 Gamma distributed inter-arrival

and service times
As mentioned in the previous section, in practice, the
service time S cannot be exactly exponentially dis-
tributed. Similarly, the time A between arrivals can-
not exactly follow an exponential distribution either.
A distribution that generalizes the exponential distri-
bution and is more more likely to be a good (approxi-
mate) model for S is the gamma distribution. Indeed,
because the gamma distribution has a shape param-
eter, there are many real-life situations for which S
could be well approximated by a gamma distribution.

Let X be a random variable having a gamma dis-
tribution with shape parameterα and inverse scale pa-
rameter β, whichwill be denoted byG(α, β). Assume
that α = 2 and β = 1, so that

fX(x) = xe−x for x > 0. (19)

We have

FX(x) = 1− (x+ 1)e−x for x > 0. (20)

Therefore,

P [X ≤ ∆x] = 1− (∆x+ 1)[1−∆x+ o(∆x)]

= o(∆x). (21)

Remark. The above result is also valid for a random
variable Y having a G(2, µ) distribution, for which

fY (y) = µ2ye−µy for y > 0. (22)

Moreover, if M := min{X1, . . . , Xj}, where
Xn ∼ G(2, µ) for n = 1, . . . , j and X1, . . . , Xj are
independent, then we find that

P [M ≤ ∆t] = o(∆t). (23)

Assume next, for the sake of simplicity, that both
the inter-arrival time A and the service time S have
a G(2, 1) distribution. Let us define Z = X2. We
calculate

fZ(z) =
1

2
e−

√
z for z > 0. (24)

It follows that

P [Z ≤ ∆z] = 1−
(√

∆z + 1
)
e−

√
∆z

=
1

2
∆z + o(∆z). (25)

Similarly, proceeding as in the previous section,
we find that

P [min{Z1, . . . , Zj} ≤ ∆t] =
j

2
∆t+ o(∆t), (26)

where the random variables Z1, . . . , Zj are indepen-
dent and distributed as Z.

Now, in order to obtain the dynamic programming
equation (5), we must also have∫ t0+∆t

t0

{q0n(t)−m[n(t)]} dt = γ∆t+ o(∆t),

(27)
where γ is a constant.

Suppose that the cost function J(t0, l) defined in
Eq. (1) is replaced by

C(t0, l) :=

∫ T (t0,l)

t0

{q0n(t)−m[n(t)]} tdt. (28)

If we make the change of variable z = t2, we obtain
that ∫ t0+∆t

t0

{q0n(t)−m[n(t)]} tdt

=

∫ (t0+∆t)2

t20

{
q0n(

√
z)−m[n(

√
z)]

} 1

2
dz

≈ {q0n(t0)−m[n(t0)]}
1

2

[
(∆t)2 + 2t0∆t

]
= {q0n(t0)−m[n(t0)]} t0∆t+ o(∆t). (29)

From what precedes, we can state that if A and S
have a G(2, 1) distribution and the cost function is the
one defined in Eq. (28), then by making the change of
variable z = t2, the optimal control problem consid-
ered in this note (with t0 > 0) is transformed into a
problem for which the dynamic programming equa-
tion that corresponds to Eq. (5) can be derived.
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4 Conclusion
In this note, the problem of reducing the size of a wait-
ing line as quickly as possible, taking into account
control costs, has been extended to the case where the
inter-arrival and service times are not exponentially
distributed.

In Section 2, we gave three probability density
functions for which Eq. (9) is valid. This equation is
necessary for the derivation of the dynamic program-
ming equation in Proposition 1.1.

Then, in Section 3, we presented a problem that,
although Eqs. (7) and (9) do not hold, we were able to
transform into a problem for which it is possible to use
dynamic programming to obtain the optimal solution.

Once the dynamic programming equation has been
derived, we need to solve difference equations in or-
der to determine the optimal control.

Finally, it would be interesting to try to solve prob-
lems for which only one of Eqs. (7) and (9 holds. As
we saw in Section 3, we must also define the cost
function appropriately. Moreover, in general one can-
not use dynamic programming to obtain the optimal
control.
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