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1  Introduction 
Fractional differential equations are practiced to 
sample expansive space of physical problems 
including non-linear vacillation of earth shakes,             
[1], fluid-dynamic passing (in 1999), [2], and 
hesitancy dependent on the waning behavior of 
many relativistic materials. 

Fractional differential equations that contain 
only one fracture derivative are a good 
understandable tool, they are often emploied for the 
sporty depiction of plenty material procedures, but 
they are not eternity enough to reverse all suitable 
phenomena 

The authors in, [3], investigated strategies for 
the numerical solution of the initial value problem 
with initial conditions where 0<α1<α2<⋯<αν. 
Here 𝑦(𝛼𝑗) denotes the derivative of order 𝑦(𝛼𝑗)˃0 
(not necessarily α j ∈ ℕ) in the sense of Caputo. 

The authors in, [4], returned and expanded 
multi-term homogeneous differential equations with 
caputo-type derivatives and fixed transactions 
through the necessary stability, instability conditions 
and stability and caffeine.  

The authors in, [5], reviewed two methods of 
the most action groups of digital methods of 
fractional arrangement problems and discussed 
some major mathematical issues such as the 
effective treatment of the term continuous memory 
and the solution of nonlinear systems participating 
in implicit ways. 

The use of fractional differential operators in 
mathematical models has become increasingly 
widespread in recent years. Several forms of 
fractional differential equations have been proposed 
in standard models, and there has been significant 
interest in developing numerical schemes for their 
solution the authors in, [6], show how the numerical 
approximation of the multi-wheel -term differential 
differential formula solution can be calculated by 
reducing the problem to a system of regular 
differential equations and fracture in each unit in 
most unit. 

The author described in, [7], two sports ways to 
use equations of multi-term and multi-arranged 
systems have shown the relationships between these 
two concepts. Then examine its most important 
analytical characteristics. Finally, he is considerd 
the digital methods of its approach solution. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.33 Marwa Mohamed Ismaeel, Wasan Ajeel Ahmood

E-ISSN: 2224-2856 329 Volume 18, 2023



The author was collected in, [8], with the linear 
way to devise the Adams Fource Molton method for 
real, non-linear, non-linear equations with a firm 
delay or change of time, then use this method to 
estimate the late fractures- arrange differential 
equations. 

The authors in, [9], introduced a new method of 
analytical and digital solution of a non-Dynican N-
Range N-Range by the well-known vibration 
engineers, that is, the average consensual balance 
method. 

The authors have suggested at, [10], the 
definition of Mittag-Lfler's stability and entered the 
direct Lyapunov method. The principle of broken 
comparison is presented and the Riemann -Liouville 
Fairville system is extended using the Order Caputo 
systems. 

The authors were presented in, [11], and used 
the results of modern stability of broken equations 
and methods of analytical types include linear, non-
linear and chronological delay differential 
equations. Some of the inferences of regularity are 
similar to the inferences of differential equations for 
the classic order. 

The authors were obtained in, [12], for multi-
term homogeneous differential equations with three 
Caputo derivatives and fixed laboratories through 
the necessary and sufficient stability of instability 
conditions. 

In 2013, the authors in, [13], were informed of 
the theories of stable point, the presence and 
peerless of solutions for non -linear non -non-linear 
equations, and presented two examples to clarify the 
results. 

The authors in, [14], built two new schemes to 
solve a numerical solution to the non-linear 
differential equation of fractional kinds in one-
dimensions and two-dimension. The scheme-I one 
and two-dimension mythical (SLP) uses 
fundamental functions while the chart-II uses 1D 
and 2D (IBF) basis functions as main functions. 

The authors in, [15], presented a simple and 
effective analytical algorithm of two steps from two 
steps to solve multidimensional times. 
 

 

2  Formulation of Issue with the 

Solution Algorithm 
 
2.1 First method: Adomian decomposition 

method 
Let  

𝜉𝑘 ∈ (𝑘 − 1, 𝑘), k = 1, … , n, 0 < 𝜉1 < ξ2 < ⋯ < ξm

< 𝑛, 𝑘, 𝑚 
 
Let nonlinear fractional differential equation: 
 

𝑑𝑛𝑥(𝑡)

d𝑡𝑛

= f (t, x,
𝑑𝜉1𝑥(𝑡1)

d𝑡𝜉1

,
𝑑𝜉2𝑥(𝑡2)

d𝑡𝜉2

, … ,
𝑑𝜉𝑚𝑥(𝑡𝑚)

d𝑡𝜉𝑚

), 

𝑥(𝑗)(0) = 𝑐,       𝑗 = 0,1,2, … , 𝑛 − 1 
 (1) 

 
Where 𝑥 = 𝑥(𝑡), 𝑡 ∈  𝐽 = [0, 𝑇], 𝑇 ∈ 𝑅+, 𝑥 ∈ 𝐶( 𝐽) 
and the fractional derivative is, 
 

𝑑𝜉𝑥(𝑡)

d𝑡𝜉
= 𝐼𝑛−𝜉

𝑑𝑛𝑥(𝑡)

𝜕𝑑𝑡𝑛
, 𝑛 − 1 < 𝜉 ≤ 𝑛 

 
𝐼𝜉𝑥(𝑡)= 1

𝛤(𝜉)
∫ (𝑡 − 𝜏)𝑥(𝜏)𝑑𝜏.

𝑡

0
 

 
Let f confirmed Lipschitz condition with constant L 
such as 
 

|f(t, y0, y2, … , ym) − f(t, z0, z1, … , zm)|

≤ L ∑|yi − zi|.                      (2)

𝑚

i=0

 

 
which implies that, 

|f (t, ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛𝑦(𝑡), … , 𝐼𝑛−𝜉𝑚𝑦(𝑡))

− f (t, ∑ 𝑐𝑗

𝑡𝑗

𝑗!

𝑛−1

𝑗=0

+ 𝐼𝑛𝑧(𝑡), … , 𝐼𝑛−𝜉𝑚𝑧(𝑡))|

≤ L ∑|𝐼𝑛−𝜉𝑖𝑦(𝑡)

m

i=0

− 𝐼𝑛−𝜉𝑖𝑧(𝑡)|.                              (3) 
 
 
The solution algorithm by using the domain 
decomposition method is: 

𝑦0(𝑡) = 𝑝(𝑡),                        (4) 
 

           𝑦𝑗(𝑡) = 𝐴𝑗−1(𝑡), 𝑗 ≥ 1.                   (5) 
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Where, Aj are Adomian polynomials of non-linear 

𝑓 (𝑡, ∑ 𝑐𝑗
𝑡𝑗

𝑗!
+𝑛−1

𝑗=0 𝐼𝑛𝑦(𝑡), … ,  𝐼𝑛−𝜉𝑚𝑦(𝑡)) which take 
the form, 
 
Aj

=
1

j!
[

d

dλj
𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!

𝑛−1

𝑗=0

+ ∑ 𝜆𝑖

∞

𝑖=0

𝐼𝑛𝑦𝑖 … , ∑ 𝜆𝑖

∞

𝑖=0

𝐼𝑛−𝜉𝑚𝑦𝑖)]

λ=0

                   (6) 

 
And the solution of the equations (1) and (2) will be, 

𝑦(𝑡) = ∑ yi(t) 
∞

i=0
 

 (7) 
 

Finally, 

𝑥(𝑡) = ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+ 𝑋(𝑡)

𝑛−1

𝑗=0

 

         = ∑ cj

tj

j!
+ 𝐼𝑛y(t)

n−1

j=0

 

(8) 
 
 

3  Convergence Analysis 
Consider F is  mapping with Banach space E, 

(C(J), ‖. ‖). 
 
All continual functions on J with  

∥ 𝑦 ∥= max
𝑡∈𝐽

𝑒−𝑁𝑡│ 𝑦(𝑡) │, N˃ 0. 

 
Theorem 3.1.(Existence and uniqueness): Let f 
satisfies the Lipschitz condition 
 

|f(t, y0, y2, … , ym) − f(t, z0, z1, … , zm)|

≤ L ∑|yi − zi|.                      (9)

𝑚

i=0

 

 
Then, the nonlinear fractional differential equation 
has a unique solution 
 

𝑦 ∈ C(J). 
Proof:  

 

Let  F: E →E is defined as 
 

𝐹𝑦 = 𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛𝑦(𝑡), … , 𝐼𝑛−𝜉𝑚𝑦(𝑡)).  

(10) 
 
Let   

𝑦, z ∈ 𝐸 
then,  
 

𝐹𝑦 − 𝐹𝑧

=  f (t, ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛𝑦(𝑡), … , 𝐼𝑛−𝜉𝑚𝑦(𝑡))

− f (t, ∑ 𝑐𝑗

𝑡𝑗

𝑗!

𝑛−1

𝑗=0

+ 𝐼𝑛𝑧(𝑡), … , 𝐼𝑛−𝜉𝑚𝑧(𝑡))                                   (11) 

 
 
This implies that: 
 

|𝐹𝑦 − 𝐹𝑧|

= |𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛𝑦(𝑡), … , 𝐼𝑛−𝜉𝑚𝑦(𝑡))

− 𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!

𝑛−1

𝑗=0

+ 𝐼𝑛𝑧(𝑡), … , 𝐼𝑛−𝜉𝑚𝑧(𝑡))|                                (12) 

 

≤ 𝐿 ∑|𝐼𝑛−𝜉𝑖𝑦 − 𝐼𝑛−𝜉𝑖𝑧|

𝑚

𝑖=0

 

≤ 𝐿 ∑ |
1

𝛤(𝑛 − 𝜉𝑖)
∫ (𝑡 − 𝜏)𝑛−𝜉𝑖−1(𝑦 − 𝑧)𝑑𝜏.

𝑡

0

|

𝑚

𝑖=0

 

𝑒−𝑁𝑡|𝐹𝑦 − 𝐹𝑧|

≤ 𝐿 ∑ |
1

𝛤(𝑛 − 𝜉𝑖)
∫ 𝑒−𝑁(𝑡−𝜏)𝑒−𝑁𝜏(𝑡 − 𝜏)𝑛−𝜉𝑖−1(𝑦

𝑡

0

𝑚

𝑖=0

− 𝑧)𝑑𝜏.| 

          (13) 
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𝑚𝑎𝑥
𝑡∈𝐽

𝑒−𝑁𝑡|𝐹𝑦 − 𝐹𝑧|

≤ 𝐿 ∑ |
1

𝛤(𝑛 − 𝜉𝑖)
𝑚𝑎𝑥

𝑡∈𝐽
 ∫ 𝑒−𝑁(𝑡−𝜏)𝑒−𝑁𝜏(𝑡

𝑡

0

𝑚

𝑖=0

− 𝜏)𝑛−𝜉𝑖−1(𝑦 − 𝑧)𝑑𝜏.     | 

 (14) 
 

‖𝐹𝑦 − 𝐹𝑧‖

≤ 𝐿 ∑
1

𝛤(𝑛 − 𝜉𝑖)
‖𝑦 − 𝑧‖ ∫ 𝑒−𝑁𝑠𝑠𝑛−𝜉𝑖−1𝑑𝑠.

𝑡

0

     

𝑚

𝑖=0

 

 

≤ 𝐿 ∑
1

𝛤(𝑛 − 𝜉𝑖)
‖𝑦 − 𝑧‖ ∫ 𝑒−𝑁𝑠𝑠𝑛−𝜉𝑖−1𝑑𝑠.

∞

0

     

𝑚

𝑖=0

 

≤ 𝐿 ∑
1

𝑁𝑛−𝜉𝑖
 ‖𝑦 − 𝑧‖

𝑚

𝑖=0

 

(15) 
 

Now, we choosen N large enough s.t 
 
 𝐿 ∑

1

𝑁𝑛−𝜉𝑖
 < 1𝑚

𝑖=0 ,             
 
then,  we get: 
 

‖𝐹𝑦 − 𝐹𝑧‖ ≤ ‖𝑦 − 𝑧‖                                          (16) 

 
Therefore, the mapping F is constriction. 
 
Theorem 3.2.  (Proof of convergence): 

 the series solution  

y(t) = ∑ yi(t)
∞

i=0
 

 
Then, by using Adomain decomposition method 
converges if  |𝑦1(𝑡)| < 𝑐, where c is positive no. 
 
Proof: 

Let seq. {𝑆𝑝}, s.t. 𝑆𝑝 = ∑ yi(t)
p
i=0  of partial sums 

from the series  ∑ yi(t)∞
i=0  since, 

  

𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛𝑦(𝑡), … , 𝐼𝑛−𝜉𝑚𝑦(𝑡)) = 𝑆𝑝 

 
So, we can write 
 

𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛𝑆𝑝, … , 𝐼𝑛−𝜉𝑚𝑆𝑝) = ∑ 𝐴𝑖(𝑡)

𝑝

𝑖=0

 

 

From equations (4) and (5), we have: 

∑ 𝑦𝑖(𝑡)

∞

𝑖=0

= p(t) + ∑ 𝐴𝑖−1

∞

𝑖=0

 

 
Let Sp and Sq be partial sums and p greater than q, 
one can have: 

𝑆𝑝 = ∑ 𝑦𝑖(𝑡)

𝑝

𝑖=0

= p(t) + ∑ 𝐴𝑖−1

𝑝

𝑖=0

 

 And 

𝑆𝑞 = ∑ 𝑦𝑖(𝑡)

𝑞

𝑖=0

= p(t) + ∑ 𝐴𝑖−1

𝑞

𝑖=0

 

 
 
Now, the Cauchy sequence {Sp} in this E, 
 

𝑆𝑝 − 𝑆𝑞 = ∑ 𝐴𝑖−1

𝑝

𝑖=0

− ∑ 𝐴𝑖−1

𝑝

𝑖=𝑞+1

= ∑ 𝐴𝑖

𝑝−1

𝑖=𝑞

 

= 𝑓 (𝑡, ∑ 𝑐𝑗
𝑡𝑗

𝑗!
+𝑛−1

𝑗=0 𝐼𝑛𝑆𝑝−1, … , 𝐼𝑛−𝜉𝑚𝑆𝑝−1) −

𝑓 (𝑡, ∑ 𝑐𝑗
𝑡𝑗

𝑗!
+𝑛−1

𝑗=0 𝐼𝑛𝑆𝑞−1, … , 𝐼𝑛−𝜉𝑚𝑆𝑞−1) 

|𝑆𝑝 − 𝑆𝑞| = |𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!

𝑛−1

𝑗=0

+ 𝐼𝑛𝑆𝑝−1, … , 𝐼𝑛−𝜉𝑚𝑆𝑝−1)

− 𝑓 (𝑡, ∑ 𝑐𝑗

𝑡𝑗

𝑗!

𝑛−1

𝑗=0

+ 𝐼𝑛𝑆𝑞−1, … , 𝐼𝑛−𝜉𝑚𝑆𝑞−1)| 

 

≤ 𝐿 ∑|𝐼𝑛−𝜉1𝑆𝑝−1 − 𝐼𝑛−𝜉1𝑆𝑞−1|

𝑚

𝑖=0

 

 
 

≤ 𝐿
1

𝛤(𝑛 − 𝜉𝑖)
∫ (𝑡 − 𝜏)𝑛−𝜉𝑖−1|𝑆𝑝−1 − 𝑆𝑞−1|𝑑𝜏.

𝑡

0

 

𝑒−𝑁𝑡|𝑆𝑝 − 𝑆𝑞| ≤ 𝐿 ∑
1

𝛤(𝑛 − 𝜉𝑖)
∫ 𝑒−𝑁(𝑡−𝜏)(𝑡

𝑡

0

𝑚

𝑖=0

− 𝜏)𝑛−𝜉𝑖−1𝑒−𝑁𝜏 |(𝑆𝑝−1 − 𝑆𝑞−1| 𝑑𝜏 
 

‖𝑆𝑝 − 𝑆𝑞‖ ≤ 𝐿 ∑
1

𝑁𝑛−𝜉𝑖

𝑚

𝑖=0

‖𝑆𝑝−1 − 𝑆𝑞−1‖ 

≤ 𝛽‖𝑆𝑝−1 − 𝑆𝑞−1‖ 
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Let p=q+1 then, 
 
‖𝑆𝑞+1 − 𝑆𝑞‖ ≤ 𝛽‖𝑆𝑞 − 𝑆𝑞−1‖ ≤ 𝛽2‖𝑆𝑞−1 − 𝑆𝑞−2‖

≤ ⋯ ≤ 𝛽𝑞‖𝑆1 − 𝑆0‖ 
 
‖𝑆𝑝 − 𝑆𝑞‖ ≤ ‖𝑆𝑞+1 − 𝑆𝑞‖  ≤ ‖𝑆𝑞+2 − 𝑆𝑞+1‖ +

⋯ + ‖𝑆𝑝 − 𝑆𝑝−1‖  

 
≤ 𝛽𝑞 + 𝛽𝑞+1 + ⋯ + 𝛽𝑝−1‖𝑆1 − 𝑆0‖ 

≤ 𝛽𝑞[1 + 𝛽 + ⋯ + 𝛽𝑝−𝑞−1]‖𝑆1 − 𝑆0‖ 

≤ 𝛽𝑞 [
1 − 𝛽𝑝−𝑞

1 − 𝛽
] ‖𝑦1‖ 

 
Since, 0 < 𝛽 = 𝐿 ∑

1

𝑁𝑛−𝜉𝑖
<𝑚

𝑖=0 1, and 𝑝 >

𝑞 𝑡ℎ𝑒𝑛, (1 − 𝛽𝑝−𝑞) ≤ 1. Consequently,  
 

‖𝑆𝑝 − 𝑆𝑞‖ ≤ [
𝛽𝑞

1 − 𝛽
] ‖𝑦1‖ 

≤ [
𝛽𝑞

1 − 𝛽
] 𝑚𝑎𝑥

𝑡∈𝐽
|𝑦1(𝑡)| 

 
But, |𝑦1(𝑡)| < 𝑐, and as 𝑞 → ∞ then, ‖𝑆𝑝 − 𝑆𝑞‖ →

0, and hence, {𝑆𝑝} is a Cauchy sequence in Banach 
space E so,  ∑ yi(t)∞

i=0  convergence. 
 
Theorem 3.3. (Error analysis): 

The max. absolute trunc. error of solution equation 
(6) to the problem (1) is estimated to be, 
 

‖𝑥 − ∑ 𝑥𝑖

𝑞

𝑖=0
‖ ≤ (∑

−𝑇𝑘

𝑘! 𝐾𝑛−𝑘

𝑛−1

𝑘=0
)

𝛽𝑞

1 − 𝛽
‖y1‖. 

   if n is odd 
 
And n is even 
 
  ‖𝑥 − ∑ 𝑥𝑖

𝑞
𝑖=0 ‖ ≤ (∑

(−1)𝑘+1(𝑇𝑘_

𝑘!𝐾𝑛−𝑘
𝑛−1
𝑘=1 )

𝛽𝑞

1−𝛽
‖y1‖      

 
 

Proof: 

By theorem (3.2), we have 
 

‖𝑆𝑝 − 𝑆𝑞‖ ≤
𝛽𝑞

1 − 𝛽
(𝑚𝑎𝑥

𝑡∈𝐽
) 𝑒−𝑁𝑡 |𝑦1(𝑡)| 

 
but, 

𝑆𝑝 = ∑ yi,
𝑝

i=0
 

 
then     

𝑃 → ∞,     𝑆𝑝 → 𝑦(𝑡), 
 

So, 

‖𝑦 − 𝑆𝑞‖ ≤
𝛽𝑞

1 − 𝛽
‖x1‖ 

 
 
So, 

‖𝑦 − ∑ 𝑦𝑖

𝑞

𝑖=0
‖ ≤

𝛽𝑞

1 − 𝛽
‖y1‖ 

(17) 
 
From equation (1), we get 
 

∑ 𝑥(𝑡) =

∞

𝑖=0

∑ 𝑐𝑗

𝑡𝑗

𝑗!
+

𝑛−1

𝑗=0

𝐼𝑛 ∑ 𝑦𝑖

𝑛−1

𝑗=0

(𝑡). 

(18) 
By using equation (1) and the above equation, we 
can get: 
 

𝑥(𝑡) − ∑ 𝑥𝑖(𝑡) = 𝐼𝑛

𝑞

𝑖=0

𝑦(𝑡) + 𝐼𝑛 ∑ 𝑦𝑖

𝑞

𝑗=0

(𝑡) 

 

= ∫ … 𝑛 − 𝑓𝑜𝑙𝑑 … ∫ (𝑦(𝜏) − ∑ 𝑦𝑖

𝑞

𝑗=0

(𝜏)) 𝑑𝜏 … 𝑑𝜏

𝑡

0

𝑡

0

 

𝑒−𝑁𝑡 |𝑥(𝑡) − ∑ 𝑥𝑖(𝑡) = 𝐼𝑛

𝑞

𝑖=0

|

= ∫ … 𝑛

𝑡

0

− 𝑓𝑜𝑙𝑑 … ∫ 𝑒−𝑁(𝑡−𝜏)𝑒−𝑁𝜏 (|𝑦(𝜏)

𝑡

0

− ∑ 𝑦𝑖

𝑞

𝑗=0

(𝜏)|) 𝑑𝜏 … 𝑑𝜏 

 

‖𝑥(𝑡) − ∑ 𝑥𝑖(𝑡) = 𝐼𝑛

𝑞

𝑖=0

‖

≤ ‖𝑦(𝜏) − ∑ 𝑦𝑖

𝑞

𝑗=0

(𝜏)‖ ∫ … 𝑛

𝑡

0

− 𝑓𝑜𝑙𝑑 … ∫ 𝑒−𝑁(𝑡−𝜏)𝑑𝜏 … 𝑑𝜏

𝑡

0

 

 
from the equation (17), we get: 
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‖𝑥 − ∑ 𝑥𝑖

𝑞

𝑖=0
‖ ≤ (∑

−𝑇𝑘

𝑘! 𝐾𝑛−𝑘

𝑛−1

𝑘=0
)

𝛽𝑞

1 − 𝛽
‖y1‖. 

   If n is odd 
(19) 

 
and  
  ‖𝑥 − ∑ 𝑥𝑖

𝑞
𝑖=0 ‖ ≤ (∑

(−1)𝑘+1(𝑇𝑘_

𝑘!𝐾𝑛−𝑘
𝑛−1
𝑘=1 )

𝛽𝑞

1−𝛽
‖y1‖      

If n is even 
 (20) 

 
This completes the proof. 
 
 
4   Numerical Examples 
Example (4.1), [16]: 

 
The Bagley-Torvik equation  

𝑎
𝑑2𝑥(𝑡)

d𝑡
+ 𝑏

𝑑
3
2𝑥(𝑡)

𝑑𝑡
+ 𝑐𝑥(𝑡) = 𝑐(𝑡 + 1),         (21) 

 
  0 ≤ 𝑡 ≤ 5, 

𝑥(0) = 𝑥′ = 1, 
 

x(t)=(t+1), 
 
is the valid solution 
 
By using Adomian decomposition method, we will 
solve it: 
 

X(t)=x(t)-t-1, 
 

equation (21): 
 

𝑎
𝑑2𝑋(𝑡)

d𝑡
+ 𝑏

𝑑
3
2𝑋(𝑡)

𝑑𝑡
+ 𝑐𝑋(𝑡) = 0,          (22) 

 
𝑋(0) = 𝑋′ = 1, 

 
Applying the Adomian decomposition method gets: 
 

𝑦0(𝑡) = 0,                                 (23) 
 

𝑦𝑖(𝑡) =
−1

𝑎
(𝑏𝐼

1

2𝑦𝑖 + 𝑐𝐼2𝑦𝑖) , 𝑖 ≥ 1         (24) 
 
From the equation (23) and (24), the solution: 

y(t) = ∑ yi(t)m
i=0                           (25) 

 
The solution of equation (22) is: 

𝑋(𝑡) = 𝐼2𝑦(𝑡) = 0. 
 

Finally, the above equation (21) is: 
 

𝑥(𝑡) = 𝑋(𝑡) + (1 + 𝑡) = (1 + 𝑡). 
 
is the valid solution. 
 
Example (4.2):  

Let non-linear FDE, 
𝑑3𝑥(𝑡)

d𝑡
= 6 −

72

5𝜋
𝑡 +

1

10 
(

𝑑5 2⁄ 𝑥(𝑡)

 d𝑡
)

2

 

(26) 
 

𝑥 = 𝑥′ = 𝑥′′ = 0, 
 
which has x(t)=𝑡3. 
 
By using the equations (23) and (24), the solution is: 

𝑦 = 6 −
72

5𝜋
𝑡 +

1

10 
(𝐼1 2⁄ 𝑦(𝑡))

2

, 
Applying the Adomian decomposition method gets: 

𝑦0(𝑡) = 6 −
72

5𝜋
𝑡 

 

𝑦𝑖(𝑡) =
1

10
(𝐴𝑖−1),    𝑖 ≥ 1. 

 
Where  𝐴𝑖 are Adomain polynomials of non-linear 

(𝐼1 2⁄ 𝑦(𝑡))
2
. Finally, the solution (26): 

𝑥(𝑡) = (𝐼3𝑦(𝑡)) = 𝐼3 ∑ yi(t)
m

i=0
 

 (27) 
Table 1. illustrates the absolute error of the ADM 
solution, while Table 2. illustrates the max. absolute 
sectioned. The figure shows ADM and exact 
solutions (when m=15). 
 

Table 1. Absolute Error 
m max. error (N=5) 
5 0.00418546 
10 0.000325204 
15 0.0000366795 

 
Table 2. Maximum absolute error 

m max. error (N=5) 

5 0.0093013 

10 0.00050822 

15 0.0000277689 

 
4.1 Second Method: Proposed Numerical 

Method 
This method is a disadvantage to numerail method. 
It solve only fractional differential equations with 
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initial condition, we get past this shortcoming by 
using PNM. 
 
The solution of steps: 

Step 1: Use the transform the initial conditions to 
homogenous. 
 
By the substitution for eqs. (1) and (2), 
 

𝑥 = ∑ 𝑐𝑗

𝑡𝑗

𝑗!
+ 𝑋

𝑛−1

𝑗=0

, 

(28) 
Step 2: Acquire solution algorithm. 
By using the next equations: 

𝐷𝜉𝑖𝑋 = ℎ−𝜉𝑖 ∑ 𝑤𝑗
𝜉𝑖  𝑋𝑚−𝑗

𝑚

𝑗=0

 

𝑤𝑗
𝜉𝑖 = −1𝑗

𝛤(𝜉𝑖 + 1)

𝛤(𝜉𝑖 + 1 − 𝑗)
, 

𝑡𝑚 = 𝑚ℎ(𝑚 = 0,1,2, … ), 𝑋(𝑡) = 𝑋〗_𝑚( 𝑡𝑚) 
    
obtain values of  𝑋𝑚. 
 
Step 3: coming back to the main new conditions. 
By relevance (28), we receive: 
 

𝑥𝑚 = ∑ 𝑐𝑗

(𝑡𝑚)𝑗

𝑗!
+ 𝑋𝑚

𝑛−1

𝑗=0

. 

 
 
5   Numerical Examples 
Example (5.1):  

Let  non-linear FDE: 
 

𝑑𝑥(𝑡)

d𝑡
+

𝑑
1

2𝑥(𝑡)

𝑑𝑡
− 2𝑥2(𝑡) = 0,     𝑥(0) = 𝑐. 

(29) 
Set 

X(t)=x(t)-c, 
 

The equation (27) will be: 
 
𝑑𝑋(𝑡)

d𝑡
+

𝑑
1
2𝑋(𝑡)

𝑑𝑡
− 2𝑋2(𝑡) − 4𝑐𝑋(𝑡) − 2𝑥2 = 0,

𝑋(0) = 0.  
(30) 

 
The solution algorithm of equation (30) is: 
 
 

𝑋𝑚 =
(ℎ−1+4𝑐)𝑋𝑚−1−ℎ

−1
2 ∑ 𝑤

𝑗

−1
2  𝑋𝑚−𝑗+2(𝑋𝑚−1)2+2𝑐2𝑚

𝑗=1

ℎ−1−ℎ
−1
2

  

𝑋0 = 0,    𝑚 = 1,2, …  . 
 
The solution of equation (29) is  

𝑥𝑚 = 𝑋𝑚 + 𝑐. 
 
Figure 1, shows PNM and ADM solutions (when  
m=5,  h=0.01). 

 
Fig. 1: PNM and ADM solutions. 
 
Example (5.2):  

Let non-linear FDE, 

𝑎
𝑑3𝑥(𝑡)

d𝑡
+ 𝑏

𝑑𝛼2𝑋(𝑡)

d𝑡
+ 𝑐

𝑑𝛼1𝑋(𝑡)

d𝑡
+ 𝑒𝑥2 = 𝑓(𝑡) 

 
 (31) 

0 < 𝛼1 ≤ 1, 1 < 𝛼2 < 2, 
 

𝑓(𝑡) =
𝑐𝑡1−𝛼1

 Γ(1 − 𝛼1)
+ 𝑒𝑡2 

 
𝑥(0) = 0, 𝑥′(0) = 1, 𝑥′′(0) = 0 

 
The exact solution x(t)=𝑡3. 
 

X(t)=x(t)-t 
 
Equation (31): 
 
𝑎

𝑑3𝑋(𝑡)

d𝑡
+ 𝑏

𝑑𝛼2𝑋(𝑡)

d𝑡
+ 𝑐

𝑑𝛼1𝑋(𝑡)

d𝑡
+ 𝑒𝑋2 + 2𝑒𝑡𝑋 = 0  

 

𝑋 =  𝑋′ =  𝑥′′ = 0                 (32) 
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By algorithm of equation (32) is: 

𝑋𝑚 =
1

𝑎ℎ−3 + 𝑏ℎ−𝛼2 + 𝑐ℎ−𝛼1
(𝑎ℎ−3(3𝑋𝑚−1

− 3𝑋𝑚−2 + 𝑋𝑚−3)

− 𝑏ℎ−𝛼2 ∑ 𝑤𝑗
𝛼2𝑋𝑚−𝑗

𝑚

𝑗=1

− 𝑐 ℎ−𝛼1 ∑ 𝑤𝑗
𝛼2𝑋𝑚−𝑗 − 𝑐

𝑚

𝑗=1

− 𝑒(𝑋𝑚−1)2 − 2𝑒𝑡𝑚𝑋𝑚−1), 

𝑋0 = 𝑋1 = 𝑋2 = 0, 𝑚 = 3,4, …. 
 
Finally, the solution of equation (31) is 

𝑥𝑚 = 𝑋𝑚 + 𝑡𝑚. 
 
 
Table 3. illustrates the results passed from PNM and 
ADM solutions. 
 

Table 3. Absolute Error at (t=1) 
PNM ADM 

h N 
0.1 2 

0.01 4 
0.001 6 

 
We used two methods to solve FDEs, each 

method has an advantage over the other. If the 
solution is needed in a narrow interval, ADM is 
preferred to be used, as it gives a more accurate 
solution but if the solution is needed in a wide 
interval, PNM is preferred to be used (see the result 
in Table 3). We see that after we overcome the 
disadvantage of the numerical method it gives a 
more accurate solution than the numerical methods. 
 

 

6  Conclusion 
We used the ADM for solving the non-linear 
fractional differential equations, we introduced 
some new theorems are give the existence, 
uniqueness, convergence, and maximum absolute 
truncation error to the Adomian decomposition 
method series solution when applied to these 
equations. Some numerical examples are discussed 
and solved by using the Adomian decomposition 
method. 

We see from the results that the exact error 
coincides with the approximate error obtained from 
using the theorems, see for example. 

 
We use a numerical method for comparison, we 

see that after we overcome the disadvantage of this 
method. In the two methods that we used to solve 
fractional differential equations (ADM with 
numerical method), each method has an advantage 
over the other.  

The method is still open for investigation, 
especially in fractional differential equations with 
higher orders. 
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