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Abstract: The paper presents the application of an evolutionary recurrent neural network to control the swarm
of underwater vehicles. In the swarm, one vehicle is the leader and the others are followers. The leader leads
the swarm along a predefined trajectory without regard for the followers while the followers follow the leader
and avoid collisions with all other vehicles. Avoiding collisions by the swarm with external obstacles is done by
changing the depth. The leader is responsible for detecting the obstacles and informing all the followers about
the need to change the depth. To follow the leader, the followers use the information about the distance to it.
Directional information is unavailable to them. To avoid collisions inside the swarm, the followers use short-
range sensors.
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1 Introduction

Underwater vehicles are robots that allow the imple-
mentation of many different tasks in the underwater
environment. We distinguish remotely operated ve-
hicles (ROV), i.e. unmanned vehicles that are con-
trolled by a human-operator and connected to him/her
using a special cable transmitting control signals and
often also energy, and autonomous vehicles (AUV)
that can operate without human assistance.

Autonomous vehicles can perform their tasks
not only independently but also in larger teams or
swarms. The team of vehicles is understood in the
paper as loosely cooperating vehicles, each of which
can also operate independently of the others and is
equipped with a global underwater dead reckoning
navigation system for this purpose. Providing vehi-
cles operating in teams with the ability to operate in-
dependently makes these vehicles expensive and of-
ten very complicated to operate.

Another solution is a swarm of vehicles under-
stood in the paper as a group of vehicles closely co-
operating and moving in a compact formation. If we
assume that one of these vehicles, say leader, is re-
sponsible for global navigation and guiding the entire
swarm along a predefined path, then the remaining
vehicles, say followers, can be relieved of the need
for expensive devices for long-range underwater nav-
igation and thus become cheaper, smaller and easier
to use.

However, for followers to be able to follow the
leader and at the same time avoid obstacles and neigh-
bors, an appropriate control system is necessary. The

proposed system is a recurrent neural network (RNN)
trained using a neuro-evolutionary algorithm called
Hill Climb Assembler Encoding (HCAE) [1].

The network is supplied with two types of in-
formation, i.e. information about the distance from
the leader which is provided by the leader itself via
an acoustic communication channel, and information
about nearby objects which is provided by vehicle
sensors. Leader-related directional information is un-
available to followers which means that they know
how far away the leader is, but they have no idea in
what direction they can expect it, which is a serious
difficulty for the neural control system. What is more,
information about the distance is provided rarely. It
is delivered to the followers one by one, which means
that the more vehicles are in the swarm the less often
each of them receives information about the distance
from the leader.

Information about nearby objects comes from sen-
sors and is obtained much more often than distance
information. The problem, in this case, is that the fol-
lowers do not know the nature of the observed object.
They do not know if it is another follower, a leader, or
an obstacle. To facilitate the task of the followers, it
was assumed that the leader is responsible for detect-
ing obstacles and avoiding them consists in changing
the depth - vehicles pass over the obstacle. However,
for the leader to be able to detect obstacles, none of the
followers must be in the field of view of the leader’s
sensors. What is more, the lack of danger of colli-
sion with obstacles (at least in theory) does not mean
that followers do not see them. The swarm can move
close to obstacles, with the effect that the sensors of

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.30 Tomasz Praczyk, Piotr Szymak

E-ISSN: 2224-2856 300 Volume 18, 2023



the followers can still detect them. As a consequence,
followers have no fear of obstacles, but they still can
notice them and cannot distinguish them from swarm
vehicles.

To verify the proposed swarm control system, it
was tested in simulation conditions. Training of the
system took place on GPU servers, while the visu-
alization of swarm behavior was in MOOS IvP en-
vironment [2]. Both the leader and followers were
the same, i.e. they behaved according to the same
kinematic model. The swarm consisted of one leader
and four followers. The leader moved along a pre-
defined trajectory that had both straight sections and
turns. During the voyage, the leader did not pay at-
tention to other vehicles which means that in-swarm
collision avoidance was the task of the followers. The
tests were performed with and without external obsta-
cles.

The contribution of the paper is as follows:

1. Neural swarm control system for follower vehi-
cles is proposed,

2. The characteristic features of the system are: (i)
followers have to follow the leader based only on
distance information, directional information is
unavailable, (ii) distance information is rare, (iii)
followers cannot be in the field of view of the
leader sensors, (iv) follower sensors cannot dis-
tinguish external objects from in-swarm objects,

3. The system was verified in simulation condi-
tions.

The rest of the paper is as follows: section two out-
lines related work, section three details the proposed
system, section four reports experiments, and the final
section concludes the paper.

2 Related Work
The subject of robot swarm technology is increasingly
undertaken in world literature by both scientists and
practitioners. Papers in this field, however, mainly
apply to air, land, and sometimes surface robots. Due
to the complexity of the underwater environment and
the problems that the environment generates, papers
presenting examples of underwater swarms are rarer
than those referring to the aforementioned air and land
swarms.

Interesting examples of underwater swarms are
given inworks [3], [4]. They present aggregation, dis-
persion, and diffusion swarm behaviors. Underwater
robots concentrate in one place for some purpose or
fill some space as much as possible.

The fountain maneuver and circle formation are
presented in [5], [6], [7]. In this case, the task of pray
vehicles is to evade predators.

Hunting swarm behavior is presented in [8], [9],
[10], [11]. In this case, the task of the vehicles is to
reach a target vehicle, and then to form an encircling
formation around the target.

Leader-following swarm strategy with a fixed for-
mation is demonstrated in [12], [13], [14]. A special
case of the leader-following approach is the applica-
tion of consensus algorithms [15], [16], [17]. The task
of the algorithm is to achieve a consensus on a com-
mon goal in a group of cooperating robots.

3 Swarm control system
The task of the swarm control system is to lead the
followers to a certain endpoint along a predetermined
trajectory. The followers, according to the assump-
tion, are low-cost vehicles that cannot independently
move over long distances. As a consequence, to reach
the destination point, they must follow another vehi-
cle (leader) that shows them the way. To follow the
leader, the followers are fed with information about
the distance from the leader. However, this informa-
tion is provided relatively rarely - the more vehicles
in the swarm, the less often this information reaches
the followers.

To reach their destination, in addition to following
the leader, the followers must avoid other vehicles in
the swarm. To observe the surroundings, the follow-
ers use two different sensors, i.e. cameras placed on
the sides and rear of the vehicles, and sonar looking
forward. The cameras have a maximum range of 5m,
while the sonar range is 30 meters. The angular ob-
servations range of the camera and sonar is shown in
Figure 1.

Figure 1: Follower observation sectors

It is assumed that external obstacles are avoided
by changing the depth and the decision to avoid ob-
stacles is made by the leader which sends a new depth
for all vehicles. For the leader to be able to detect ob-
stacles and inform followers about them, none of the
followers can enter the leader’s field of vision. Oth-
erwise, every follower noticed by the leader would be
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interpreted as an obstacle to be avoided.
The above solution to the problem of avoiding ob-

stacles by the whole swarm results from the inability
of the vehicles to distinguish obstacles from other ve-
hicles. Using sonar as the main long-range sensor, it
is very difficult to determine what object you are deal-
ingwith. This makes it difficult for followers to adjust
the appropriate behavior strategy - when the object is
not dangerous because it moves in the same direction
and when the object is a threat because it does not
move or moves in the opposite direction. Moreover,
the echo seen in the sonar image may correspond to
several objects located at the same distance, but at dif-
ferent depths.

Due to the difficulties in interpreting the sonar im-
age, it was finally decided on a solution in which only
the leader detects obstacles and whatever it detects is
an obstacle that must be avoided. In turn, the follow-
ers are only responsible for avoiding other followers
and the leader. In this way, responsibility is divided
and each vehicle knows what it is dealing with in the
sonar image.

Since it is assumed that the leader deals only with
obstacles and moves along a predefined trajectory to
an endpoint, the task of keeping the swarm in its en-
tirety is the task of the followers only. To this end,
each follower is equipped with a recurrent neural net-
work that is fed with the following information:

1. Distance to the nearest object in sonar observa-
tion sector scaled to the range <0,1>,

2. Distances to the nearest objects in three camera
observation sectors scaled to the range <0,1>,

3. ∆DM
t = |DL

t − DD| − |DL
t−1 − DD|, where

DL
t is the distance to the leader received by the

follower at time t and DD is a desired distance
to the leader. ∆DM provides the network with
information about whether the distance error in-
creases (∆DM > 0) or decreases (∆DM < 0)
in the period between two leader messages, and
how big is the change. It is a counterpart of the
rate of change of error with respect to time ap-
plied in PID controller.

4. DS
<0,1>,t = DS

t

TDL
max

, where DS
t =

TDL

max

∑t
k=1∆DM

k > TDL

max

−TDL

max

∑t
k=1∆DM

k < −TDL

max∑t
k=1∆DM

k otherwise

,

and TDL

max is the maximum acceptable error of

the distance to the leader. DS
<0,1> accumulates

the changes of distance errors over time. It
can be negative if the distance error is positive
at the very beginning of the swarm operation.

It is equivalent to the sum of errors in a PID
controller.

The task of the network is to determine the heading
and speed of the vehicle by the following formulas:

1. HD
t+1 = A360(Ht) + 180OH

t , where HD is a
desired heading, H is actual heading, A360 is a
function which converts input angle to the range
< 0, 360), and OH , is output of the network cor-
responding to heading. In consequence, the task
of the network is not to determine the heading but
the change of the heading.

2. V D
t+1 = VmaxO

V
t , where V

D is a desired speed,
Vmax is maximum speed of the follower, andOV

is output of the network corresponding to speed.

The network does not specify the depth at which
the vehicle is to move. As already mentioned, the
depth at which each follower moves depends on the
leader. The leader sends the depth through the acous-
tic channel if it needs to be changed. The depth
change is handled by the low-level control system.

The neural network is trained using a neuro-
evolutionary algorithm called Hill Climb Assembler
Encoding [1]. It is an algorithm that represents a net-
work in the form of amatrix and constructs this matrix
in many successive evolutionary iterations. Unlike
other evolutionary algorithms, the genotype does not
represent the entire network (matrix) but some part of
it. As a consequence, the network is encoded not in
one genotype but in a sequence of genotypes coming
from other runs of the evolutionary process. The op-
eration of HCAE can be compared to a situation in
which the object subject to optimization is improved
little by little, piece by piece. Each piece is the re-
sult of a different evolutionary process. The detailed
specification of HCAE is given in [1].

4 Experiments
To verify the effectiveness of the swarm control sys-
tem described above, simulation tests were carried
out. During the tests, the task of the swarm consist-
ing of a leader and four followers was to move along
a predefined trajectory of 2000 meters. Two trajec-
tories were used to train the neural networks, and the
other two trajectories were used to verify the effec-
tiveness of the system. Each of the trajectories had
both straight sections and turns to the right and left.

In the first phase of testing, the vehicles had no ob-
stacles to deal with, while in the second phase, round
obstacles with a diameter of 20 meters were placed
along the route of the vehicles. Since it was assumed
that the leader can correctly detect obstacles and prop-
erly control the depth of the swarm, all obstacles were
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Figure 2: Example behavior of the swarm in the sce-
nario without obstacles (time in the images flows first
from left to right and then from top to bottom). The
visualization of vehicle behavior was carried out us-
ing the alogview MOOS application [2]

located under the trajectory of the swarm. As a conse-
quence, obstacles did not cause collisions, but if they
were within the range of the sensors, they were no-
ticeable by the control system.

All vehicles behaved by the kinematic model im-
plemented in the MOOS uSimMarine application [2].
The HCAE algorithm was used to train the networks
and the following fitness function was applied to eval-
uate the generated neural solutions: F (network)D =
N I + 1

1+ED
max

, whereN I is the number of simulation

steps (see further), andED
max is the maximum error of

the distance to the leader among all followers.

The number of steps in evaluating each of the
evolved networks (N I ) depended on their effective-
ness. The evaluation was interrupted in four situa-

tions. Firstly, when ED
max > TDL

max, i.e. if any fol-
lower was further from the leader than the assumed
threshold TDL

max. Secondly, when any follower entered
the leader’s field of vision. Thirdly, when all follow-
ers made the same decisions regarding the direction
of movement and speed for a short period. Fourthly,
when vehicles collided, i.e. the distance between any
pair of vehicles was less than 2 meters.

The more important parameters of the simulations
are as follows: the number of followers=4, DD =
30m, TDL

max = 40m, Vmax = 2m/s, the time interval
between successive sensor data=1s, the time interval
between successive messages containing information
about the distance to the leader=4s (as already men-
tioned, information about the distance was received
by the followers one by one, it was sent by the leader
to each follower every 1s, first to follower no. 1,
then to follower no. 2, and so on), simulation time
step=0.1s, the number of input neurons in the net-
work=6 (four inputs for observation sectors, one input
for∆DM

t , and one input forDS
<0,1>,t), the number of

output neurons in the network=2 (one for heading and
one for speed), the number of hidden neurons=12.

In the first phase of testing, when the vehicles did
not have to deal with obstacles, initially there were no
restrictions on the turning speed of the leader. This
speed depended only on the leader’s maneuverability.
It turned out, however, that in the absence of restric-
tions on the behavior of the leader, the followers were
unable to follow the leader without entering the field
of vision of its sonar.

To avoid the above problems, the turning maneu-
ver of the leader was slowed down in such a way
that at a distance of 10 meters, the leader could only
change course by 30 degrees. After using this solu-
tion, it turned out that the followers can effectively
follow the leader and not enter the field of vision of
its sensors. The vast majority of neural networks that
were constructed during the learning process were
able to control the followers along both test trajec-
tories, from the start point to the endpoint. Example
behavior of the swarm is depicted in Figure 2.

Regardless of the neural network, the behavior of
followers was very similar. Very often they moved
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Figure 3: Example behavior of the swarm in the sce-
nario with obstacles (if the vehicles are covered by
an obstacle, it means that they are over the obstacle
- in the alogview MOOS application used to visual-
ize the simulation results, all additional objects are
always presented in the foreground in relation to the
vehicles.)

close to each other, observing the behavior of neigh-
bors with the help of sensors. This behavior could
help followers to follow the leader even when infor-
mation about the distance from the leader is very rare.
By observing the neighbors, each follower obtains in-
direct information about the behavior of the leader.
A change in the direction of movement by a neigh-
bor may be due to the change in the direction of the
leader’s movement and the message about the dis-
tance received a moment ago by the neighbor. Al-
though only one follower at a time receives a dis-
tance message that allows it to adjust its behavior to
follow the leader, other vehicles in its vicinity, see-
ing the change in the neighbor’s behavior, can do the
same even though they have no information about the

leader’s location.
The behavior that allows the followers to avoid the

field of vision of the leader is to reduce speed or even
stop when the leader is making a turn toward the fol-
lowers. This behavior can be seen, for example, in
sub-figures (3,2), (3,3), (2,5) in matrix-Figure 2.

In the second phase of the tests, obstacles were in-
troduced into the environment. They had a circular
shape, and a diameter of 20 meters and were placed
at the end of the leader’s trajectory, i.e. on a straight
long section leading to the endpoint. During the sim-
ulation, it was assumed that the swarm moves above
obstacles that are detected by the leader - each time
the leader detects an obstacle, it orders a change of
depth to avoid obstacles by moving over them. This
approach means that the followers did not have to
avoid obstacles. All they had to do was to follow the
leader in a situation where, in addition to other vehi-
cles, obstacles indistinguishable from vehicles were
also visible in the sonar image. The exemplary be-
havior of a swarm in the presence of obstacles is pre-
sented in Figure 3.

The addition of obstacles on the trajectory of vehi-
cles introduced difficulties in the evolution of effec-
tive neural networks, i.e. those that were able to lead
a swarm from the starting point to the endpoint of the
trajectory. In contrast to the test scenario without ob-
stacles, the number of effective neural networks for
the scenario with obstacles decreased significantly. In
this case, only about 10% of the runs of the evolution-
ary process resulted in the generation of fully effective
neural networks.

As for the reaction of followers to obstacles, it oc-
curred only when vehicles passed over obstacles. Ob-
stacles on the side of the followers did not cause any
disturbances in proper movement behind the leader.
They were usually at a safe distance from the vehi-
cles and consequently were not considered a threat
that required a response. On the other hand, obstacles
located directly under the followers generated sonar
echoes in close proximity to the vehicles. In this case,
the reaction was mostly a slight change of course, as if
the obstacles were gently pushing the followers away.
There were also cases when followers considered ob-
stacles as an imminent collision hazard and performed
an evasivemaneuver consisting ofmaking a full circle
to the left or right - see sub-figures (1,4), (2,4), (3,4)
in matrix-Figure 3. After performing this maneuver,
the followers returned to the swarm.

5 Conclusions
The paper presents the use of recurrent neural net-
works constructed in an evolutionary way to control
underwater vehicles acting as followers in a swarm
consisting of one leader and a group of followers.
The only task of the followers is to follow the leader
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while avoiding collisions with neighboring vehicles.
No specific formation of followers is required.

During the experiments, the results of which are
presented in the paper, the vehicles were unable to
distinguish obstacles from other vehicles in the swarm
using the only long-range sensor which was sonar. In
consequence, it was decided that avoiding collisions
with obstacles external to the swarm is the responsi-
bility of the leader which detects obstacles and, in the
event of a threat, decides to change the depth for the
entire swarm. However, for the leader to be able to
detect obstacles and not confuse them with followers,
none of the followers must be in the field of vision
of the leader sonar. Such a limitation was a serious
challenge for the neural control system, especially on
bends.

If we assume that the leader is able to quickly de-
tect obstacles and change the immersion depth of the
swarm, then we can conclude that the followers are
not at risk of colliding with external objects. How-
ever, if followers move near obstacles, they are still
visible to them, which makes it difficult to follow the
leader because it is not known whether the detected
object is another vehicle or an obstacle. The impos-
sibility of correctly interpreting information from the
sonar is another problem that the neural control sys-
tem had to face.

An additional difficulty for the systemwas also the
limited information available for decision-making.
To follow the leader, the followers were supplied with
information about the distance to it. However, this
information was provided rarely, one by one to each
follower. Directional informationwas not available to
the followers. In addition, the followers used limited-
range sensors such as sonar and cameras to avoid col-
lisions.

Despite all the challenges that the neural control
system had to face, the simulations, the results of
which are presented in the paper, showed that the use
of recurrent neural networks as a high-level control
system of the followers, i.e. the system determining
the direction of movement and speed of vehicles, al-
lows for collective movement of vehicles along the
route designated by the leader. As it turned out, ve-
hicles equipped with a neural network can follow the
leader both in an ideal, obstacle-free marine environ-
ment where every nearby object is a threat - it is just
another vehicle in a swarm that can lead to a collision
and in an environment containing obstacles in which
followers have to deal with both other vehicles that
may pose a threat and with underwater objects that do
not pose a threat because they are at a different depth
away from the swarm.
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