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Abstract: This paper highlights the problem of tuning the gains of a non-adaptive backstepping controller in an 

electrohydraulic servo system. While the other non-adaptive controllers in the literature have precise gains 

tuning methods, the non-self-tuning backstepping controller has no rigorous gain tuning method. The proposed 

study aims to analyze the contribution of each backstepping controller gain in the closed-loop performance. Our 

final goal is to establish a rigorous gains-tuning method for the non-adaptive backstepping controller. The study 

starts with the development of three-stage gains backstepping controller using a non-conventional time 

derivative Lyapunov function. This particular Lyapunov function makes it possible to analyze the response of 

the system when all the controller gains are cancelled. Then, we analyze the effect of each gain by cancelling 

out the values of the others. The first simulation results show that the convergence of the tracking error to zero 

is not maintained when all gains are set to 0 despite the presence of a negative definite of the Lyapunov 

function time derivative. In this case, the equilibrium point is not the expected one as time goes to infinity. The 

second set of results indicates that adjusting the gain related to the feedback of the actual output only ensures 

the asymptotic convergence of the tracking error to zero as time goes to infinity. However, developing a 

heuristic tuning of the three controller gains like Ziegler Nichols tuning remains a challenge. 
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1 Introduction 
Electro-Hydraulic Servo Systems (EHSS) are used 

to handle large mechanical loads with a fast, 

accurate, and robust response. In these systems, 

pressurized hydraulic oil is used to transmit power. 

Some industrial EHSS applications include 

aerospace actuation, [1], automobile actuation, [2], 

and machine tools, [3]. Most of these 

electrohydraulic actuators are implanted using PID 

control laws because of their well-known and 

flexible methodology. PID controller consists of 

tuning three gains. The literature identifies rigorous 

approaches for non-self-tuning controllers like 

Ziegler Nichols, [4]. Good results but only in a 

limited operating point range are achieved using the 

PID control strategy, [4]. The EHSS dynamics have 
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strong nonlinearities, [5], making the linear control 

theory inadequate to guarantee satisfactory 

performances over a large panel of operating points. 

PID control may be combined with some methods 

like fuzzy logic, [6], sliding mode, [7], fractional 

order strategy, [8], and optimization tools, [9], to 

improve the performance. However, when linear 

control is used on nonlinear systems, it is difficult to 

ensure both improved performances and expanded 

working conditions, [10].  

Of all the control laws encountered in the 

literature, the backstepping control has advantages, 

especially when faced with system nonlinearities. 

Unlike feedback linearization control, this approach 

allows choosing which nonlinearity to cancel, [11], 

thus improving the robustness of the closed-loop 

system. Moreover, the recursive construction of the 

Lyapunov function allows the flexibility of the 

architecture of the control law, [12]. Backstepping 

control consists of dismantling the system into first-

order subsystems where a state variable is 

considered as a control signal, [13]. These virtual 

controls or desired system variable states, [14], are 

chosen to ensure the negative definition of the 

Lyapunov function time derivative. Experimental 

and numerical results show that the backstepping 

controller is more efficient than the PID controller, 

[15].  

There are two drawbacks to using the 

backstepping approach. The first one is the 

explosion of complexity due to repeated calculations 

when the plant model has a high order, [15]. The 

second drawback, and the one discussed in this 

paper, is the lack of a rigorous gains-tuning 

approach. At each recursive step in the design of the 

backstepping controller, a gain to be adjusted 

appears. In this paper, we focus on non-self-

adjusting backstepping controller gain strategies. In 

[16], the authors show that there is a trade-off 

between the chattering effect and the convergence 

of the tracking error while adjusting the gains of the 

backstepping controller. An optimal gain is difficult 

to find in the absence of a rigorous tuning method. 

The literature identifies rigorous methods for tuning 

the parameters of non-self-tuning controllers like 

Ziegler Nichols, [17], for PID controllers and pole 

placement for feedback linearizing controllers, [18]. 

However, to our knowledge, authors in the literature 

adjust the gains of the non-self-tuning backstepping 

controller via trial and error. Few authors try to 

analyze the effect of the gain in the closed loop 

performance. Authors, [19], show that the 

backstepping controller gains affect the robustness 

against parametric uncertainties. For each gain, they 

found a minimum value, an optimum value and a 

maximum value to guarantee convergence of the 

error. However, the contribution of each gain is not 

highlighted. In [20], authors show that the three 

gains of the backstepping controller affect the 

performance of the electrohydraulic brake system by 

varying one gain and setting the others to zero. They 

found that two of the three gains affect overshoot 

and steady state. However, their backstepping 

control law contains two input variables that operate 

alternately. The three gains appear in these input 

variables. The complex conditions of these inputs 

weaken the actual influence of the three gains. 

The main contributions of this article are listed 

below: 

- an unconventional Lyapunov function that 

makes possible the analysis of the performance 

while the controller gains are set to 0; 

- an actual analysis of each gain contribution in 

the closed loop performance using a simple non-

self-tuning backstepping control law with one input 

variable; 

- a discussion of the perspective of tuning 

methods.  

 

 

2 System Modelling 
Fig. 1 shows the electrohydraulic servo system 

considered in this study. It is the same system 

presented in our previous work, [21]. It consists of a 

hydraulic motor that drives a rotating load. The 

hydraulic unit includes the pump, tank, pressure 

relief valve, and accumulator. It provides hydraulic 

oil flow at constant pressure. The electrohydraulic 

servo-valve is the interface between the operative 

part and the control part. The electric signal u(t) acts 

on the servo-valve spool by varying the oil flow into 

the hydraulic motor. Because a mechanical load is 

attached to the motor, a pressure difference PL(t) is 

noted across the hydraulic motor lines. The 

objective of the control law is that the actual angular 

velocity tracks the desired angular velocity. The 

measure of the actual angular velocity is sent to the 

control law via a sensor. The state-space equation 

(1) is developed from three equations. The first 

equation describes the motion equation of the load. 

The second equation is the continuity equation 

through the motor lines. The third equation shows 

the dynamics of the servo valve. 
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Fig. 1: Electro-hydraulic servo system  
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Where  

 1x t is the angular velocity  t  

 2x t  is the motor pressure difference due to the load 

 3x t  is the servo-valve opening area due to the 

input signal 

 u t  is the control current input 

J  is the hydraulic motor's total inertia 

md  is the volumetric displacement of the motor 

  is the fluid bulk modulus 

mV  is the total oil volume of the hydraulic motor 

dc  is the servo-valve discharge coefficient 

  is the fluid mass density 

smc  is the leakage coefficient of the hydraulic motor 

sP  is the supply pressure at the inlet of the servo 

valve 

K  is the servo-valve amplifier gain 

  is the servo-valve time constant 

 

To satisfy the Lipschitz condition in this paper, 

we choose to approximate the sign function to the 

continuous function (2) proposed in the work of 

[22]. 
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3 Backstepping Controller Design 
In this section, the angular velocity backstepping 

controller is derived. It is the same controller 

presented in [21]. Here, we focus on the controller 

gains locations and tuning. The desired state 

variables are denoted by xid(t).  

Now, consider the first subsystem 
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m md B

t
J J

x x t x t  of the state space model (1). 

The first candidate Lyapunov function for this 

subsystem is 
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2
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If we choose x2d(t) as the first virtual control such 

that 
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Where the first gain controller
1 0k  , we obtain 
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Now, we choose the second candidate Lyapunov 

function for the second subsystem of (1) 
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Its time derivative gives 
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If we choose  3dx t  as the second virtual control 

such that 
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Where the second controller
2 0k  , we obtain  
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Finally, consider the third subsystem
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The time derivative of this Lyapunov function gives 
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If we choose the control signal  u t  such that 
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Where the third controller gain 3 0k  , we obtain 
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Fig. 2 shows the implementation of the 

backstepping controller in Matlab /Simulink with 

the highlight of the three steps. 

 
Fig. 2: Closed-loop controlled system block diagram 

in Matlab /Simulink environment 

 

3.1 Tuning Issue Analysis 
One can note that the gains of our backstepping 

controller are chosen such that the time derivative of 

the final Lyapunov function gives (14). In most 

works, [13], [19], [20], these gains are located such 

that the other terms mb

J
, 

4 sm

m

c

v


 and 1


 do not 

appear in the time derivative of the Lyapunov 

function. Because (14) leads to inequality (15), the 

Lasalle principle states that the tracking errors 

   1 2,e t e t and  3e t  go to zero as time goes to infinity.  
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Unlike the feedback linearization controller or 

PID controller, the backstepping controller does not 

show a weighted sum of the angular velocity error 

and its time derivatives. The different tracking 

errors  ie t  are not related in a direct sense. The 

angular velocity tracking error occurs in the first 

virtual control. The pressure difference tracking 

error occurs in the second virtual control and so on. 

The gains of the different tracking errors, 1k , 
2k  and 

3k  must be adjusted in a given order shown by the 

work of [16], where certain dynamics of the state 

variables are neglected. In [20], the authors show 

that varying the controller gains one by one may 

affect the robustness of the closed-loop response 

under parametric uncertainties. Their backstepping 

controller has two variable inputs. Our control law 

has one variable input. Additionally, no disturbance 

is present and the focus is on the effect of each gain 

in the closed-loop performance. We vary the value 

of each gain while the others are set to zero. Our 

objective is to see if a heuristic method like the one 

of Ziegler Nichols can be developed. 
 

 

4 Results 
In this section, the results of the numerical 

simulation are presented. The performances of the 

proposed backstepping controller are obtained in the 
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Matlab/ Simulink environment using the closed-

loop block diagram of Fig. 2. The sampling time is 

0.01 seconds and the simulation is performed in 20 

seconds. Table 1 lists the numerical value used for 

the simulation.  

 

Table 1. Numerical values used for the simulation 

Symbol Description 
Value and 

units 

EHSS 

  Sigmoid function constant  102 

  Servo valve time constant 0.01 s 

K Servo valve amplifier gain 8.10-7m2/mA 

Vm Total oil volume of the 

hydraulic motor 
3 10-4m3 

  Fluid bulk modulus 8 108 Pa 

cd Flow discharge coefficient 0.61 

Ps Supply pressure 9 106 

csm Leakage coefficient 9 10-13 m5/ 

(N.s) 
dm Volumetric displacement of the 

motor 
3 10-6m3/rad 

  Fluid mass density 900 Kg/m3 

J Total inertia of the motor and 

the load 

0.05  N.m.s2 

B Viscous damping coefficient 0.2 N.m.s  

 

Fig. 3 shows the reference signal describing the 

desired trajectory of the angular velocity used for 

the simulation. In the first ten seconds, the desired 

angular velocity is a step of amplitude 1 rad/s. In the 

last ten seconds, the desired angular velocity has a 

sinusoidal waveform with an amplitude of 1 rad/s 

and a frequency of 2 rad/s. 

 

 
Fig. 3: Reference signal used for the simulation 

 

The first sets of simulations present the 

performances of the backstepping controller when 

the gains 1k , 2k  and 3k  equal 0. Fig 4 shows that 

angular velocity tracking error does not converge to 

zero as time goes to infinity. To appreciate the 

infinity response behaviour, the time of simulation 

is extended to 80 seconds. The tracking error does 

not go to infinity as time goes to infinity. It is seen 

that its value is limited to approximately 90 rad/s. 

According to (14), the time derivative of the 

deducing Lyapunov function is negative define. 

Hence, the equilibrium state   0ie t   is 

asymptotically stable. In Fig 5, at the start of the 

simulation, the zoomed view shows that the tracking 

error is negligible before 4 seconds. The tracking 

error converges to 0 before 4s. However, without a 

disturbance in the closed loop system at 3,5 seconds, 

the system response starts to diverge from the 

desired output. We can conclude that the 

equilibrium state is not asymptotically stable and 

diverges to a limit cycle or other equilibrium state.  

 

 
Fig. 4: System response when 

1 2 3 0k k k    

 

 
Fig. 5: Zoomed view of system response when 

1 2 3 0k k k    

 

4.1 k2 and k3 Gains Tuning Results 
The next set of figures shows the backstepping 

controller performances where the first gain 1k  is 0. 

The gains 2k  and 3k  are varied to see the effect of 

these gains on the backstepping controller 

performance. Fig. 6 and Fig. 7 show that the 

response obtained with 1 0k   gives the same result 

obtained in the previous section. The angular 

velocity tracking error converges to 0 at the start of 

the simulation. As time goes to infinity, the tracking 

error diverges from zero but remains bounded 

around 90 rad/s. The variation of 2k  and 3k  gains 
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does not affect the backstepping controller 

performances.  

 

 
Fig. 6: System response when 

1 3 0k k   a) 
2 0k   b)

2 100k   and c)
2 1000k   

 

 
Fig. 7: System response when 1 2 0k k   a) 3 0k   b)

3 100k   and c)
3 1000k   

 

4.2 k1 Gain Tuning Results 
In this section, the response of the proposed 

backstepping controller is analyzed by varying the 

1k  gain while the other gains are set to 0. Fig 8 

shows that the 
1k  gain strongly affects the behaviour 

of the closed-loop response. The convergence of the 

angular velocity varies while changing the tuning of 

the 
1k  gain. The closed-loop response displays the 

same behaviour encountered in the previous section 

when 
1 0k  . The response behaviour drastically 

changes when 
1 0k  . In Fig.8 a and Fig. 8 b, we note 

that the response remains limited at 90 rad/s. 

Meanwhile, in Fig 8 c, when 
1 1000k  , high-

frequency sustained oscillations with amplitude less 

than 40 rad/s are visible in the response. In Fig 9, 

the 
1k  gain is varied with a larger sweep to observe 

further changes. However, beyond the value of 

1000, the response shows the same profile. 

Fig. 10 shows that the tracking error converges to 0 

when the value of the 
1k  gain is close to 27. In Fig 

10. b, the tracking error is negligible when 
1 27.2k  . 

In Fig 10. a, the tracking error shows large 

overshoots at 10 s when the reference signal 

changes its form. The zoomed view of the response, 

when 
1 27k  according to Fig. 11, shows that the 

tracking error is small on either side of the change in 

the profile of the reference. In Fig 10. c, the 

chattering effect or high frequency sustained 

oscillations with small amplitude occurs in the 

backstepping controller response when 
1 27.5k  . 

According to [16], there is a trade-off between the 

robustness and the chattering effect in the closed-

loop response while adjusting the k1 gain. The 

robustness, in the simulations where k1 is about 27, 

is described by the change in the reference signal. 

As one can see, large overshoots occur in Fig.10 a 

while no overshoot is visible in Fig. 10 c. 

 

 
Fig. 8: System response when 

3 2 0k k   a) 
1 0k   b)

1 100k   and c)
1 1000k   
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Fig. 9: System response when 

3 2 0k k   a) 
1 1000k   b)

1 2000k   and c)
1 3000k   

 

 
Fig. 10: System response when 

3 2 0k k   a) 
1 27k   b)

1 27.2k   and c)
1 27.5k   

 

 
Fig. 11: Zoomed view of system response when 

3 2 0k k   and 
1 27k   

 

 

5 Discussion and Gains Tuning 

Method Perspective 
In this section, we discuss two issues encountered in 

the results section.  

The first problem concerns the change in the 

response profile by varying the k1 gain while no 

change is noted with the other gains. In (5), the k1 

gain is the coefficient of the feedback term 

appearing in the second virtual control. When k1 is 

0, the first virtual control does not give the desired 

second state variable. Since the second virtual 

control depends on the first one via the backstepping 

effect, the desired third state variable is also biased. 

The k1 value provides feedback on the actual 

angular velocity in the backstepping controller. This 

feedback link guarantees the convergence of the 

tracking error to zero. However, without this link, 

the tracking error does not maintain the convergence 

as time goes to infinity.  

The second problem concerns the limit values 

indicated in certain simulations. This problem may 

be related to the first one because the biased virtual 

control leads to biased tracking errors. Indeed, our 

tracking error is calculated using the reference 

signal. However, without the feedback link, the 

equilibrium point in the Lyapunov function is not 

the desired one. The limit value noted in some 

simulations may be the biased equilibrium point. 

 

 

6 Conclusion 
In this paper, we address the problem of adjusting 

the gains of the non-self-tuning backstepping 

controller. The objective is to analyze the effect of 

each controller gain in the closed-loop response to 

propose a standardized approach to tune these gains. 

The results show that only one of the three gains 

affects the convergence of the tracking error to zero 

as time tends to infinity. This gain provides the 

feedback link of the actual angular velocity in the 

backstepping controller. The calculated virtual 

controls are not those expected when this gain is not 

well adjusted. Future works will investigate the 

analytic value of this critical gain. The effect of the 

other gains once the critical gain is adjusted, will be 

studied to propose a rigorous gain tuning method.  
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