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Abstract: - The grasshopper optimization algorithm (GOA), inspired by the behavior of grasshopper swarms, 
has proven efficient in solving globally constrained optimization problems. However, the original GOA 
exhibits some shortcomings in that its original linear convergence parameter causes the exploration and 
exploitation processes to be unbalanced, leading to a slow convergence speed and a tendency to fall into a local 
optimum trap. This study proposes an adaptive average GOA (AAGOA) with a nonlinear convergence 
parameter that can improve optimization performance by overcoming the shortcomings of the original GOA. 
To evaluate the optimization capability of the proposed AAGOA, the algorithm was tested on the CEC2021 
benchmark set, and its performance was compared to that of the original GOA. According to the analysis of the 
results, AAGOA is ranked first in the Friedman ranking test and can produce better optimization results 
compared to its counterparts. 
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1 Introduction 
Optimization is important for producing fast and 
accurate solutions to various problems. Most 
optimization problems are challenging to solve 
because of their nonlinearity, multimodal objective 
landscape, and nonlinear constraints, [1]. 
Optimization techniques for solving such problems 
can be divided into two main categories, [2], 
traditional and nature-inspired. Traditional 
algorithms for solving optimization problems 
include gradient-based, interior-point, and trust-
region methods. Even with modern computers, these 
algorithms can be computationally intensive when 
computing derivatives, particularly for problems 
with discontinuities in their objective functions, and 
may not have derivatives in certain regions. Such 
limitations of traditional methods have diverted 
optimization research towards solutions based on 
nature-inspired methods. Nature-inspired algorithms 
work as global optimizers based on interacting 
agents to generate search moves within the search 
space.  

In recent years, numerous nature-inspired 
algorithms have been developed that can be 
categorized as single- or population-based. A single-
agent algorithm generated a single solution for each 
run. Examples of single-based algorithms are 
Guided Local Search (GLS), [3], Variable 
Neighborhood Search (VNS), [4], and Iterated Local 

Search (ILS) [5]. Under population-based agents, all 
algorithms emulate the behavior of nature, such as 
swarming, physics, evolutionary, and human 
behavior, where they generate a set of multiple 
solutions in each run, [6]. Under the swarming 
category, the algorithm’s source of information is 
collective behavior in nature, such as bee movement 
when collecting honey or deciding to move to a new 
nest, or the movement of ants foraging for food. 
Popular algorithms in this category include Particle 
Swarm Optimization (PSO), [7], Artificial Bee 
Colony (ABC), [8], [9], Bat algorithm (BA), [10], 
and Ant Colony Optimization (ACO), [11]. It is also 
possible to create an algorithm based on physics 
phenomena such as the Gravitational Search 
Algorithm (GSA), [12], Water Evaporation 
Optimization (WEO), [13], and Thermal Exchange 
Optimization (TEO), [14]. Another category 
involves algorithms inspired by evolutionary 
phenomena such as selection, recombination, and 
mutation. Popular algorithms in this category 
include the Genetic Algorithm (GA), [15], [16], 
Evolution Strategy (ES), [17], and Differential 
Evolution (DE), [18], [19]. The last category 
comprises algorithms that emulate human behavior. 
Examples of algorithms in this category are the 
Teaching Learning-Based Algorithm (TLBA), [20], 
Imperialist Competitive Algorithm (ICA), [21], and 
Harmony Search (HS), [22]. 
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Although nature-inspired algorithms have 
different approaches and methodologies for solving 
optimization problems, they all have one common 
set of phases during the search process: exploration 
and exploitation. In the exploration phase, the 
algorithm explores the search space as w idely as 
possible for solutions, whereas during exploitation, 
the algorithm focuses its searches on areas 
surrounding promising regions for potential optimal 
solutions. A key to nature-inspired algorithms is to 
achieve a balance between exploration and 
exploitation. 

With numerous optimization algorithms, there is 
no conclusion regarding which algorithm performs 
best for all optimization problems, [23]. This 
problem is highlighted in the “No Free Lunch (NFL) 
theorem”, [24], which states that no single state-of-
the-art optimization algorithm can be expected to 
perform better than any other algorithm on a ll 
classes of optimization problems. Therefore, using 
this inference, building a nature-inspired algorithm 
should be based on the application on w hich the 
algorithm is to be used, instead of building an all-
around working algorithm. 

Among the various nature-inspired algorithms, 
the Grasshopper Optimization Algorithm (GOA) 
has been successfully applied to various 
applications, such as optimizing parameters on 
support vector machines, [25], solving optimization 
problems in an automatic voltage regular system, 
[26], and obtaining the values of seven unknown 
parameters of a proton exchange membrane fuel-cell 
stack, [27]. Although the GOA can produce well-
optimized solutions, it has several shortcomings, 
[28]. One of these is its linear convergence 
parameter, which causes the exploration and 
exploitation phases to become unbalanced, leading 
to a slow convergence speed and a tendency to fall 
into one of the local optima traps. Various studies 
have been conducted to overcome these 
shortcomings, and enhanced GOA can be 
categorized into variant and hybrid versions. Under 
the variant category, the original GOA was 
improved by integrating the Levy Flight, [29], 
employing chaotic maps to balance exploration and 
exploitation, [30], and using a natural selection 
strategy and dynamic feedback mechanism, [31]. 
The modified algorithms are categorized as GOA 
variants. In the hybrid category, the original GOA 
algorithm or its variants are combined with other 
nature-inspired algorithms, such as the Genetic 
Algorithm (GA), [32], ABC, [33], and Grey Wolf 
Optimizer (GWO), [34]. The hybrid strategy usually 
provides a better ability for the algorithm to move 
out of a local optimum trap or solve any movement 

issues, but usually at the cost of additional 
complexity and a longer computational time. 

This work aims to overcome the disadvantages 
of the GOA through two improvements, producing a 
GOA variant referred to as AAGOA. The first 
improvement to the AAGOA employs a modified 
parameter convergence value that balances the 
exploitation and exploration of the GOA, and the 
second improvement is the implementation of an 
adaptive average for enhanced fitness of 
grasshopper agents. The proposed AAGOA was 
tested using the CEC2021 real-parameter 
optimization benchmark problems, [35], and 
compared with the original GOA. 

The remainder of this paper is organized as 
follows. Section 2 introduces the concept of the 
original GOA. The proposed AAGOA is explained 
in detail in Section 3. This is followed by Section 4, 
which presents and compiles the experimental 
results based on the CEC2021 benchmark or test 
functions to assess AAGOA performance. Finally, 
Section 5 c oncludes the study based on the 
simulation results. 
 
 
2 Grasshopper Optimization 
Algorithm (GOA) 
Grasshoppers behave differently, depending on their 
environment. In a swarm, one grasshopper tends to 
first move independently and then try its best to 
evade the other grasshoppers. Only when a 
grasshopper is triggered by other grasshoppers, such 
as a touch on its leg will it become aggressive and 
begin swarming. A swarm of grasshoppers moves to 
find a source of food from one place to another, 
[36]. This swarm intelligence behavior was used as 
the basis for the computational GOA development. 

In [37], the authors used the behavior of a swarm 
of grasshoppers to develop a search strategy in the 
search space for optimization problems. A key 
aspect that enables the GOA to converge to a 
solution is the interaction between the grasshoppers 
and agents. In a sw arm, the GOA considers three 
primitive corrective zones of behavior among 
grasshopper agents: the attraction, comfort, and 
repulsion zones. Fig. 1 illustrates how the GOA 
implements interactions between grasshoppers. 
Each grasshopper had a comfort zone represented 
by a sphere, as shown in Fig. 1. Any grasshopper 
within the radius of the comfort zone will have a 
neutral force, that is, its attraction force will be the 
same as the repulsion force. Grasshopper A was 
used as a reference. Grasshopper B is within the 
comfort zone; hence, it is not attracted to or repelled 
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by Grasshopper A owing to a neutral force. 
Grasshoppers that move closer to grasshopper A 
within the comfort zone, such as grasshopper C, 
repel themselves away from grasshopper A. 
Grasshoppers that are outside the comfort zone, 
such as grasshopper D, tend to be attracted to move 
towards grasshopper A. All the explained 
movements continue to be executed by a swarm of 
grasshopper populations until they converge on a 
solution. 

A mathematical formulation can be used to 
represent the natural behavior of the grasshopper’s 
movement in a swarm. GOA’s main equation can be 
expressed based on the position of the grasshopper 
given by [37], 

 ( )
1, 2

d dN
j id dd d

i j i
j j i ij

x xub lb
X c c s x x T

d= ≠

 −−
= − +  

 
∑  (1) 

where 𝑋𝑋𝑖𝑖   refers to the position of the i-th 
grasshopper in all dimensions, and D is the 
dimensionality of the search space, where d=1,2,⋯, 
D. 𝑥𝑥𝑖𝑖𝑑𝑑  and 𝑥𝑥𝑗𝑗𝑑𝑑  are the current positions of the i-th 
and j-th grasshoppers in the d-th dimension, 
respectively. Where T denotes the best solution 
currently available. Equation (1) involves two 
terms: The first term involves a summation term in 
the bracket multiplied by c, and the second term is 
T. The first term considers the position of the other 
grasshoppers and implements their interaction in the 
natural environment within an area specified by ubd 
and lbd, representing the upper and lower bounds in 
the search space in the d-th dimension, respectively. 
Dij is the distance between the two grasshoppers the 
i-th and j-th and is calculated using �𝑥𝑥𝑗𝑗𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑 �. 
Parameter s in the first term represents the strength 
of the social forces between two grasshoppers, given 
by [37]: 

 ( ) /r l rs r fe e− −= −  (2) 

Where f and l are the attraction intensity and 
attraction length scale, respectively, and their best 
values in the original GOA are f=0.5, l=1.5, and r is 
the normalized value of �𝑥𝑥𝑗𝑗𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑 � between 1 and 4, 
[37]. The c parameter in (1) is a monotonically 
decreasing coefficient that reduces linearly with 
every iteration and plays a vital role in GOA 
exploration and exploitation, as it controls the 
shrinking and expansion of grasshoppers’ comfort, 
repulsive, and attraction zones. In the original GOA, 
a balance between exploration and exploitation was 
implemented by linearly decreasing the value of 
parameter c using the following equation, [37]: 

 max min
max

c c
c c iter

L
−

= −  (3) 

where cmax is the maximum value, cmin is the 
minimum value, iter is the current iteration, and L is 
the maximum number of iterations. The second term 
in (1) simulates grasshoppers’ tendency to move 
toward the food source. Iterating (1) for all 
grasshoppers yields a converged solution. 
 

 
Fig. 1: Primitive corrective patterns among 
individuals in a swarm of grasshoppers 
 
 
3 Adaptive Average Grasshopper 
Optimization Algorithm (AAGOA) 
First, AAGOA implements a nonlinear convergence 
parameter to balance the exploration and 
exploitation phases. Second, the best solution found 
thus far in (1) was replaced with the adaptive 
average value calculated from the current and 
previous best solutions. Both modifications were 
implemented concurrently using the modified 
version of equation (1). 
 
3.1 Modified Parameter Convergence Value 
Parameter c in the original GOA starts from a value 
close to unity at the beginning of the iteration and 
decreases linearly to a s mall constant value to 
support the exploitation phase. However, using a 
linear decrement of the c value would cause the 
algorithm to converge to a solution too quickly and 
may miss possible optimal solutions in the search 
space during the exploration phase. 

To overcome this limitation, the version of the 
GOA variant proposed in this study, AAGOA, 
adopts a n onlinear decreasing value called cm. 
Following the studies of [38], [39], this study 
adopted a nonlinear approach to the cm parameter 
value. The value of the cm parameter starts at unity, 
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similar to that of c in the original GOA. However, 
instead of using a single equation to calculate the cm 
parameter value with increasing iterations, the 
calculation of the cm parameter depends on the 
following three conditions. 

 
, 0 0.6

0.1, 0.6 0.9
0.05, 0.9

m

iter L
c L iter L

L iter L

α < ≤ ⋅
= ⋅ < < ⋅
 ⋅ < <

 (4) 

where 

 

2

exp 0.5 , if 0.1

0.1, otherwise

iter
L

α
α σ

     − ≥   =    


 (5) 

Equation (1) is updated using cm, and is represented 
as follows: 

( )
1, 2

d dN
j id dd d

i m m j i
j j i ij

x xub lb
X c c s x x T

d= ≠

 −−
= − +  

 
∑  (6) 

In the proposed modification, the nonlinear cm 
changes in three stages. In the first stage, which 
occurred for the first 60% of the maximum 
iterations, the cm value of every iteration was 
changed based on (4) and (5). In these equations, σ 
controls the rate of the decrease in cm. A smaller σ 
value will decrease the decrement rate, causing the 
cm value to remain high during the earlier executions 
of the algorithm. Conversely, a l arge value of σ 
causes a steeper change in cm. The selection of the σ 
value depends on the nature of the optimization 
problem, but a typical value between 3 a nd 5 
produces acceptable results in most optimization 
problems, [38]. Based on trial-and-error simulation 
runs, this study used σ = 4 t o produce optimum 
results. During the first stage, the value of cm is set 
to 0.1 if the calculation produces a cm value less than 
or equal to 0.1. The second stage occurs between 
60% and 90% of the maximum number of iterations. 
During this phase, cm is set to a co nstant value of 
0.1. The third and last stages occurred at more than 
90% of the maximum iteration, where the value of 
cm was set to a constant of 0.05. 

Fig. 2 compares the changes in the c value 
obtained using the original GOA and the proposed 
nonlinear cm method applied to AAGOA. Based on 
this graph, the value of cm in the proposed method 
supports more exploration during the first 50 
iterations. Subsequently, as it approaches 250 
iterations, the cm values converge rapidly to the 
target position. As it reaches a steady position, the 
constant value in the second stage allows the 
algorithm to search globally within the entire space. 

During the last stage, the search space becomes 
narrower because of the smaller cm value. This 
provides an opportunity for the algorithm to search 
intensely around the local optimal solution position. 
This signifies a more focused exploitation stage. 
Therefore, by using nonlinear cm equations, the 
algorithm should be able to improve its exploration 
and exploitation. These changes can also accelerate 
the convergence of the algorithm. 

 

 
Fig. 2: Variation in convergence parameter values 
for the GOA and AAGOA 
 
3.2 Adaptive Average for Target Fitness 
In the original GOA, the i-th grasshopper position is 
calculated using Equation (1). Currently, the 
equation works by adding the current best position, 
T, found throughout the dimensional space. The 
second proposed improvement uses the predicted 
position, P, instead of T. Hence, (1) can be modified 
as follows: 

( )
1, 2

d dN
j id dd d

i m m j i
j j i ij

x xub lb
X c c s x x P

d= ≠

 −−
= − +  

 
∑  (7) 

where the predicted position can be calculated using 
the following formula: 

 P T A= +  (8) 

where �̂�𝐴 is the unit difference between the current 
best position and the mean of the previous k number 
of T values represented by 𝑇𝑇𝑤𝑤����  and can be calculated 
using the following equation: 

  w

w

T T
A

T T
−

=
−

 (9) 

where 

 
1

1 n

w i
i n k

T T
k = − +

= ∑  (10) 

Variable n in (10) represents the total number of T 
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currently recorded. Equations (7) to (10) are 
executed if the total number of recorded best 
positions is equal to or greater than k. Otherwise, the 
value of the predicted position is set to the current 
best position. 

The purpose of using the predicted position is to 
improve the exploitation process by considering past 
search trends and providing a possible target 
position that is better than the current position. 
However, considering different types of 
optimization problems, using only the predicted 
position in certain types of problems will not 
produce better results than using the current best 
position, as in the original GOA. Hence, the best 
way to obtain benefits from using both the predicted 
position and the current best position is to 
interchange both methods using probability. Based 
on the trial-and-error method, the best results were 
achieved when the change was implemented using 
0.1 probability, i.e., a 10% chance of using P instead 
of T when calculating the grasshopper’s next 
position. 
 
3.3 AAGOA Implementation 
The pseudocode for the proposed AAGOA is 
presented in Algorithm 1. Table 1 lists the 
parameter settings used to simulate these 
algorithms. These parameters were based on the 
original GOA research to test the performance of the 
algorithm, [37]. Additional parameter values, such 
as σ and k, are specific to the proposed modification 
of the GOA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1 Pseudocode for AAGOA 
1. Generate the initial population of Grasshoppers 

𝑋𝑋𝑖𝑖(𝑖𝑖 = 1,2,⋯ ,𝑛𝑛) randomly with a selected D 
value. 

2. Set parameter setting values 
3. Set probability value of adaptive average 

implementation  
4. Evaluate the fitness 𝑓𝑓(𝑋𝑋𝑖𝑖) of each grasshopper 𝑋𝑋𝑖𝑖 . 
5. 𝑇𝑇 = best solution 
6. while ((𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 < 𝑳𝑳) do 
7. Update cm using equations (4) and (5) 
8. for 𝒊𝒊 = 𝟏𝟏 to 𝑵𝑵 (all N grasshoppers in the 

population) 
do 

9. Normalize the distance between grasshoppers 
10. Calculate the possibility with a 10% chance of 

executing equation (7) 
11. if the possibility is fulfilled then 
12. Update the position of the current search agent 

using equation (7) 
13. else 
14. Update the position of the current search agent 

using equation (6) 
15. end if 
16. Bring back the current search agent if it goes 

outside the boundaries 
17. end for 
18. Update 𝑇𝑇 if there is a better solution 
19. Update record of 𝑇𝑇 
20. if the number of records 𝑇𝑇 is larger than k 
21. Calculate the predicted position using equation 

(8)  
22. else 
23. Predicted position = 𝑇𝑇 
24. end if 
25. 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 + 1 
26. end while 
27. Return the best solution of 𝑇𝑇 
 

Table 1. Parameter settings of selected algorithms 
Algorithm Parameter setting 

GOA 𝑁𝑁 = 30, 𝐿𝐿 = 500 𝑐𝑐𝑚𝑚𝑚𝑚𝑥𝑥 = 1, 𝑐𝑐𝑚𝑚𝑖𝑖𝑛𝑛 =
0.00004, 𝑓𝑓 = 0.5, 𝑙𝑙 = 1.5 

AAGOA 𝑁𝑁 = 30, 𝐿𝐿 = 500, 𝑐𝑐𝑚𝑚𝑚𝑚𝑥𝑥 = 1, 𝑐𝑐𝑚𝑚𝑖𝑖𝑛𝑛 =
0.00004, 𝑓𝑓 = 0.5, 𝑙𝑙 = 1.5, 𝜎𝜎 = 4, 𝑘𝑘 = 10 

 
The procedure of the algorithm starts with the 

initialization of 𝑋𝑋𝑖𝑖 , and settings of the parameter 
values for, 𝐿𝐿, 𝑐𝑐𝑚𝑚𝑚𝑚𝑥𝑥 ,  𝑐𝑐𝑚𝑚𝑖𝑖𝑛𝑛 ,  a nd 𝜎𝜎. One run loop 
iterates the entire procedure for a preset number of 
maximum iterations while updating the cm value 
using equations (4) and (5) and the current best 
position. 

Referring to the pseudocode, the nested 
repetition loop involves the execution of equations  
(1) and (2) for each grasshopper in the population. 
Probability is calculated to determine which 
equation will be implemented during a particular 
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iteration. The best solution was updated at the end 
of each repetition loop. At the beginning of the 
iteration, the total number of recorded 𝑇𝑇 was less 
than k. Therefore, the value of  𝑃𝑃 was assigned to 
the value of 𝑇𝑇. The process stops after the execution 
of the 500-th iterations, the maximum preset 
iteration number for each simulation run. This 
maximum number of iterations followed most 
previously published studies. Thirty grasshopper 
agents were used for each simulation. In addition, 
30 independent simulations were run for every 
parameter setting, and all runs used 20 dimensions, 
that is D=20. 

 
 

4 Performance Evaluation 
All algorithms in this work were implemented and 
executed on MATLAB R2021a using a workstation 
with an Intel(R) Core(TM) i7-9750H CPU @ 
2.60GHz 2.59 GHz processor and 32GB RAM. The 
performance of the proposed AAGOA is assessed in 
this section using four experiments. The first 
experiment evaluated the GOA and AAGOA based 
on the average values, standard deviations, and best 
values using ten standard benchmark functions for 
five different operators and generated a total of 50 
standard functions. The second test strictly tested 
the convergence performance of the AAGOA and 
GOA. The third experiment aimed to test the 
AAGOA using Wilcoxon's nonparametric ranking 
test and Friedman's ranking test. The fourth test 
presents the complexity of the AAGOA. 
 
4.1 CEC2021 Benchmark Test Functions 
In this study, CEC2021 benchmark functions were 
employed to test the efficacy of the proposed 
AAGOA over its original algorithm. Table 2 
presents the CEC2021 benchmark function suites. 
There are ten functions in CEC2021 with four 
different types: Function F1 represents unimodal 
functions, functions F2 to F4 represent basic 
functions, and functions F5 to F7 represent hybrid 
functions. Finally, functions F8 to F10 represent 
composition functions. where Nf represents the 
number of basic functions forming a particular 
function. The search space is defined by the upper 
and lower bounds defined as [-100,100] D, where D 
represents the dimension number that can be used 
with the function. These benchmark functions of 
CEC2021 are single-objective bounds constrained 
by transformations in bias, shift, and rotation. 
 

Table 2. Summary of CEC2021 bound-constrained 
real-parameter benchmark functions 

Types No Functions 
Unimodal 
Functions F1 Shifted and Rotated Bent Cigar 

Function  

Basic 
Functions 

F2 Shifted and Rotated Schwefel’s 
Function  

F3 Shifted and Rotated Lunacek bi-
Rastrigin Function  

F4 Expanded Rosenbrock’s plus 
Griewangk’s Function  

Hybrid 
Functions 
 

F5 Hybrid Function 1 (Nf = 3)  
F6 Hybrid Function 2 (Nf = 4)  
F7 Hybrid Function 3 (Nf = 5)  

Composition 
Functions 
 

F8 Composition Function 1 (Nf = 3)  
F9 Composition Function 2 (Nf = 4)  

F10  Composition Function 3 (Nf = 5)  
Search range: [-100,100] D, D = 10, D = 20 

 
Because the operators parameterize the 

benchmark functions, this suggests that the 
proposed algorithm can be evaluated by testing it 
with various possible configurations of operators on 
all benchmark test functions. Different 
transformations of bias, shift, and rotation can be 
represented by binary parameters, with 1 indicating 
activated and 0 indicating deactivation. The 
investigated transformations were (000), (010), 
(011), (100), and (110). For each parameter setting 
and transformation, the results were evaluated based 
on the mean of the best values from the 30 
independent trial runs. The best algorithm is the one 
that is able to produce the lowest mean results for 
most of the benchmark functions.  
 
4.2 Experimental Results 
The benchmark functions for the unimodal, basic, 
hybrid, and composition functions use 30 search 
agents over 500 iterations. The presented results 
were recorded based on 3 0 independent trials with 
random initial conditions to calculate statistical 
results. These results include the mean fitness 
(mean), which represents the average performance 
and reliability of the algorithm; the standard 
deviation of fitness (std), which represents the 
stability of the algorithm; and best fitness (best), 
which represents the best optimization ability of the 
algorithm. 

The CEC2021 benchmark test functions were 
optimized using the proposed AAGOA and the 
original GOA. The optimization results for all 
compared algorithms on a ll benchmark test 
functions are presented in Table 3, Table 4, Table 5, 
Table 6, and Table 7. To present a qualitative 
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evaluation of the proposed algorithm, the 
convergence curves of each benchmark function 
type for the (000) and (111) transformations are 
presented in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 
8, Fig. 9 and Fig. 10. 

There is only one extreme point in the unimodal 
test function F1. This type of function is suitable for 
benchmarking the exploitation behavior of the 
algorithm. Based on Table 3 until Table 7, AAGOA 
outperforms GOA in terms of best, mean, and std 
values for all different types of transformations, 
indicating reliable and better performance compared 
to GOA with better stability. Fig. 3 and Fig. 7 show 
that AAGOA can converge quickly compared to 
GOA, especially during the iteration where the 
convergence parameter cm is steeper. Based on this 
result, it can be concluded that AAGOA has good 
exploitation capability. The main reason for the 
better results compared to the GOA is the adaptive 
average for target fitness which provides a better 
target position. 

The basic functions, F2 to F4 in CEC2021, have 
several local optima that are used to evaluate the 
exploration ability. The results in Table 3 until 
Table 7 show that AAGOA works best in 10 out of 
the 15 benchmark tests. Although the AAGOA does 
not achieve the best results in the remaining five 
benchmark functions, most of the results were close 
to the GOA. Fig. 4 shows that the AAGOA is able 
to quickly converge towards a better fitness position 
compared to the GOA. A similar result is shown in 
Fig. 8; however, in the beginning, the GOA had 
better results than AAGOA. As cm becomes steeper 
and with the use of an adaptive average to predict 
better target fitness, the AAGOA convergence 
capability significantly increases. These results 
indicate that AAGOA has a competitive exploration 
ability. 

Hybrid function, F5 to F7 consists of 
combinations of basic functions that are unimodal or 
multimodal. It can be used to evaluate the 
performance of both the exploitation and 
exploration of the algorithm. The results in Table 3 
until Table 7 show that the AAGOA performs better 
than the GOA. AAGOA outperformed GOA i n 
terms of the best, mean, and std values for all 
different types of transformation, indicating reliable 
and better performance compared to GOA. AAGOA 
did not achieve good std values in functions F6(010) 
and F6(110), but the difference compared to the 
GOA std values was close. The convergence curves 
in Fig. 5 and Fig. 9 show that the AAGOA 
converges faster than the GOA. It was concluded 
that AAGOA has good exploitation and exploration 
for hybrid functions. 

The ability of an algorithm to avoid local optima 
can be evaluated using the composition functions F8 
to F10. They are suitable for benchmarking 
exploration and exploitation simultaneously for a 
large number of local optima. The AAGOA results 
in Table 3 until Table 7 manage to achieve better 
results than the GOA in five out of 15 functions. 
Although it was less than half of the functions, the 
difference between the GOA and AAGOA results 
was small. Fig. 6 and Fig. 10 indicate that AAGOA 
still converges better than GOA despite having a 
higher fitness value in F8(000) compared to GOA in 
the early iteration, but AAGOA significantly 
produces better fitness values with increasing 
iterations. Based on these results, AAGOA has 
acceptable exploitation and exploration capabilities 
for composition functions. 

 
Table 3. Optimized results for (000) transformation 

Functions Criteria AAGOA GOA 
F1 best 1.27E+03 1.02E+05 

 mean 3.88E+03 6.19E+05 
 std 2.73E+03 4.91E+05 
 rank 1 2 

F2 best 1.45E+03 1.63E+03 
 mean 2.43E+03 2.63E+03 
 std 4.35E+02 5.38E+02 
 rank 1 2 

F3 best 7.26E+01 4.31E+01 
 mean 1.25E+02 9.88E+01 
 std 3.37E+01 3.60E+01 
 rank 2 1 

F4 best 2.45E+00 3.21E+00 
 mean 5.66E+00 7.43E+00 
 std 2.07E+00 2.53E+00 
 rank 1 2 

F5 best 4.40E+03 3.06E+04 
 mean 5.39E+04 3.53E+05 
 std 9.31E+04 2.09E+05 
 rank 1 2 

F6 best 7.95E+01 2.09E+02 
 mean 5.15E+02 6.39E+02 
 std 2.61E+02 2.78E+02 
 rank 1 2 

F7 best 1.68E+03 5.31E+03 
 mean 1.44E+04 8.77E+04 
 std 2.47E+04 7.54E+04 
 rank 1 2 

F8 best 2.69E+02 3.95E+02 
 mean 1.63E+03 1.80E+03 
 std 6.91E+02 9.09E+02 
 rank 1 2 

F9 best 3.65E+00 5.83E+00 
 mean 3.81E+01 1.73E+01 
 std 2.92E+01 1.49E+01 
 rank 2 1 

F10 best 5.05E+01 5.10E+01 
 mean 7.71E+01 7.02E+01 
 std 1.73E+01 1.46E+01 
 rank 2 1 
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Table 4. Optimized results for (010) transformation 
Functions Criteria AAGOA GOA 

F1 best 1.77E+03 2.88E+04 
 mean 1.21E+04 5.18E+05 
 std 7.24E+03 4.30E+05 
 rank 1 2 

F2 best 1.40E+03 1.45E+03 
 mean 2.41E+03 2.49E+03 
 std 4.70E+02 6.13E+02 
 rank 1 2 

F3 best 6.03E+01 7.62E+01 
 mean 1.27E+02 1.14E+02 
 std 3.48E+01 2.82E+01 
 rank 2 1 

F4 best 2.85E+00 2.72E+00 
 mean 6.79E+00 7.08E+00 
 std 4.17E+00 2.47E+00 
 rank 1 2 

F5 best 3.20E+03 1.05E+04 
 mean 1.09E+05 6.44E+05 
 std 1.45E+05 6.04E+05 
 rank 1 2 

F6 best 2.09E+02 3.36E+02 
 mean 6.66E+02 6.88E+02 
 std 2.67E+02 2.25E+02 
 rank 1 2 

F7 best 4.16E+03 9.40E+03 
 mean 4.77E+04 2.25E+05 
 std 4.66E+04 1.93E+05 
 rank 1 2 

F8 best 1.00E+02 1.03E+02 
 mean 7.79E+02 9.30E+02 
 std 1.19E+03 1.45E+03 
 rank 1 2 

F9 best 4.49E+02 4.44E+02 
 mean 5.06E+02 5.12E+02 
 std 5.71E+01 5.82E+01 
 rank 1 2 

F10 best 4.86E+02 4.21E+02 
 mean 5.07E+02 5.00E+02 
 std 3.14E+01 2.98E+01 
 rank 2 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Optimized results for (011) transformation 
Functions Criteria AAGOA GOA 

F1 best 1.40E+03 1.82E+05 
 mean 5.51E+03 9.28E+05 
 std 3.99E+03 8.48E+05 
 rank 1 2 

F2 best 1.39E+03 1.79E+03 
 mean 2.46E+03 2.60E+03 
 std 5.49E+02 4.77E+02 
 rank 1 2 

F3 best 7.63E+01 5.92E+01 
 mean 1.26E+02 1.27E+02 
 std 4.18E+01 3.51E+01 
 rank 1 2 

F4 best 3.54E+00 2.85E+00 
 mean 9.93E+00 7.32E+00 
 std 6.06E+00 2.42E+00 
 rank 2 1 

F5 best 3.92E+03 5.51E+04 
 mean 1.41E+05 4.80E+05 
 std 1.39E+05 4.37E+05 
 rank 1 2 

F6 best 1.62E+02 1.62E+02 
 mean 6.28E+02 7.54E+02 
 std 2.68E+02 2.86E+02 
 rank 1 2 

F7 best 2.70E+03 1.20E+04 
 mean 5.35E+04 1.28E+05 
 std 6.60E+04 1.39E+05 
 rank 1 2 

F8 best 1.00E+02 1.04E+02 
 mean 1.83E+03 1.78E+03 
 std 1.58E+03 1.51E+03 
 rank 2 1 

F9 best 4.38E+02 4.27E+02 
 mean 4.97E+02 4.94E+02 
 std 4.46E+01 5.90E+01 
 rank 2 1 

F10 best 4.02E+02 4.01E+02 
 mean 4.60E+02 4.47E+02 
 std 3.09E+01 3.61E+01 
 rank 2 1 
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Table 6. Optimized results for (110) transformation 
Functions Criteria AAGOA GOA 

F1 best 1.77E+03 2.88E+04 
 mean 1.21E+04 5.18E+05 
 std 7.24E+03 4.30E+05 
 rank 1 2 

F2 best 1.40E+03 1.45E+03 
 mean 2.41E+03 2.49E+03 
 std 4.70E+02 6.13E+02 
 rank 1 2 

F3 best 6.03E+01 7.62E+01 
 mean 1.27E+02 1.14E+02 
 std 3.48E+01 2.82E+01 
 rank 2 1 

F4 best 2.85E+00 2.72E+00 
 mean 6.79E+00 7.08E+00 
 std 4.17E+00 2.47E+00 
 rank 1 2 

F5 best 3.20E+03 1.05E+04 
 mean 1.09E+05 6.44E+05 
 std 1.45E+05 6.04E+05 
 rank 1 2 

F6 best 2.09E+02 3.36E+02 
 mean 6.66E+02 6.88E+02 
 std 2.67E+02 2.25E+02 
 rank 1 2 

F7 best 4.16E+03 9.40E+03 
 mean 4.77E+04 2.25E+05 
 std 4.66E+04 1.93E+05 
 rank 1 2 

F8 best 1.00E+02 1.03E+02 
 mean 7.79E+02 9.30E+02 
 std 1.19E+03 1.45E+03 
 rank 1 2 

F9 best 4.49E+02 4.44E+02 
 mean 5.06E+02 5.12E+02 
 std 5.71E+01 5.82E+01 
 rank 1 2 

F10 best 4.86E+02 4.21E+02 
 mean 5.07E+02 5.00E+02 
 std 3.14E+01 2.98E+01 
 rank 2 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7. Optimized results for (111) transformation 
Functions Criteria AAGOA GOA 

F1 best 1.40E+03 1.82E+05 
 mean 5.51E+03 9.28E+05 
 std 3.99E+03 8.48E+05 
 rank 1 2 

F2 best 1.39E+03 1.79E+03 
 mean 2.46E+03 2.60E+03 
 std 5.49E+02 4.77E+02 
 rank 1 2 

F3 best 7.63E+01 5.92E+01 
 mean 1.26E+02 1.27E+02 
 std 4.18E+01 3.51E+01 
 rank 1 2 

F4 best 3.54E+00 2.85E+00 
 mean 9.93E+00 7.32E+00 
 std 6.06E+00 2.42E+00 
 rank 2 1 

F5 best 3.92E+03 5.51E+04 
 mean 1.41E+05 4.80E+05 
 std 1.39E+05 4.37E+05 
 rank 1 2 

F6 best 1.62E+02 1.62E+02 
 mean 6.28E+02 7.54E+02 
 std 2.68E+02 2.86E+02 
 rank 1 2 

F7 best 2.70E+03 1.20E+04 
 mean 5.35E+04 1.28E+05 
 std 6.60E+04 1.39E+05 
 rank 1 2 

F8 best 1.00E+02 1.04E+02 
 mean 1.83E+03 1.78E+03 
 std 1.58E+03 1.51E+03 
 rank 2 1 

F9 best 4.38E+02 4.27E+02 
 mean 4.97E+02 4.94E+02 
 std 4.46E+01 5.90E+01 
 rank 2 1 

F10 best 4.02E+02 4.01E+02 
 mean 4.60E+02 4.47E+02 
 std 3.09E+01 3.61E+01 
 rank 2 1 

 

 
Fig. 3: Convergence curves for unimodal function 
F1(000) 
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Fig. 4: Convergence curves for basic function 
F2(000) 
 

 
Fig. 5: Convergence curves for hybrid function 
F7(000) 
 

 
Fig. 6: Convergence curves for composition 
function F8(000) 
 
 
 

 
Fig. 6: Convergence curves for unimodal function 
F1(111) 
 

 
Fig. 7: Convergence curves for basic function 
F2(111) 
 

 
Fig. 8: Convergence curves for hybrid function 
F7(111) 
 
 
 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.13 Najwan Osman-Ali, Junita Mohamad-Saleh

E-ISSN: 2224-2856 130 Volume 18, 2023



 
Fig. 10: Convergence curves for composition 
function F8(111) 
 

In addition to evaluating the statistical 
performance based on the best, mean, and std results 
using benchmark functions, non-parametric multiple 
comparisons were used to further verify the validity 
of the results using the lowest mean value for all 
transformations. Two statistical analyses were used: 
the Friedman ranking test and Wilcoxon signed-rank 
test. The Friedman ranking test ranks the algorithms 
from best to worst. The best algorithm received the 
lowest rank, while the worst algorithm received the 
highest rank. The Wilcoxon signed-rank test with a 
95% confidence interval was used to validate the 
significance of the improvement provided by the 
proposed algorithm. 

The rank values for each benchmark function 
obtained using the Friedman ranking test are listed 
in Table 3 until Table 7. Table 8, Table 9, Table 10, 
Table 11, a nd Table 12 display the results for the 
Wilcoxon signed-rank test, and Table 13 together 
with  Table 14 display a summary result for the 
Friedman ranking test and Wilcoxon signed-rank 
test, respectively, based on the various 
transformations. 

From the statistical results in Table 13, it is clear 
that AAGOA p erforms best with a F riedman 
ranking test sum ranking value of 65, compared to 
GOA with a sum ranking value of 85. AAGOA 
ranked better for F1 to F7 for most transformations, 
with lesser results for F8 to F10.  

The mean and standard deviations are only used 
to compare the overall performance of the 
algorithm. Wilcoxon signed-rank test was used to 
prove that the results were statistically significant. 
Based on t he Wilcoxon signed-rank test, the 
AAGOA can improve 19 out of 50 benchmark 
functions while maintaining 29 similar results to the 
original GOA. Although AAGOA had two lesser 
results compared to the original GOA, the 
improvements were significantly greater. Based on 
the Wilcoxon signed-rank test, the improvements 
provided by AAGOA in terms of best, mean, and 

std with better ranking using the Friedman ranking 
test were statistically significant. 
 
Table 8. Wilcoxon signed-rank test results for (000) 

transformation. 
Functions Criteria AAGOA 

F1 p-values 1.73E-06 

 h + 
F2 p-values 1.16E-01 

 h = 
F3 p-values 1.25E-02 

 h - 
F4 p-values 2.26E-03 

 h + 
F5 p-values 2.88E-06 

 h + 
F6 p-values 6.83E-03 

 h + 
F7 p-values 2.16E-05 

 h + 
F8 p-values 2.80E-01 

 h = 
F9 p-values 1.04E-03 

 h - 
F10 p-values 9.78E-02 

 h = 
 
 
Table 9. Wilcoxon signed-rank test results for (010) 

transformation. 
Functions Criteria AAGOA 

F1 p-values 1.73E-06 

 h + 
F2 p-values 4.65E-01 

 h = 
F3 p-values 1.11E-01 

 h = 
F4 p-values 1.85E-01 

 h = 
F5 p-values 1.36E-05 

 h + 
F6 p-values 9.92E-01 

 h = 
F7 p-values 1.73E-06 

 h + 
F8 p-values 2.05E-04 

 h + 
F9 p-values 3.82E-01 

 h = 
F10 p-values 3.29E-01 

 h = 
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Table 10. Wilcoxon signed-rank test results for 
(011) transformation. 

Functions Criteria AAGOA 
F1 p-values 1.73E-06 

 h + 
F2 p-values 1.92E-01 

 h = 
F3 p-values 3.93E-01 

 h = 
F4 p-values 1.47E-01 

 h = 
F5 p-values 1.13E-05 

 h + 
F6 p-values 9.78E-02 

 h = 
F7 p-values 2.60E-05 

 h + 
F8 p-values 5.44E-01 

 h = 
F9 p-values 7.97E-01 

 h = 
F10 p-values 1.71E-01 

 h = 
 
 

Table 11. Wilcoxon signed-rank test results for 
(110) transformation. 

Functions Criteria AAGOA 
F1 p-values 1.73E-06 

 h + 
F2 p-values 4.65E-01 

 h = 
F3 p-values 1.11E-01 

 h = 
F4 p-values 1.85E-01 

 h = 
F5 p-values 1.36E-05 

 h + 
F6 p-values 9.92E-01 

 h = 
F7 p-values 1.73E-06 

 h + 
F8 p-values 2.05E-04 

 h + 
F9 p-values 3.82E-01 

 h = 
F10 p-values 3.29E-01 

 h = 
 
 
 
 
 
 
 
 

Table 12. Wilcoxon signed-rank test results for 
(111) transformation. 

Functions Criteria AAGOA 
F1 p-values 1.73E-06 

 h + 
F2 p-values 4.65E-01 

 h = 
F3 p-values 1.11E-01 

 h = 
F4 p-values 1.85E-01 

 h = 
F5 p-values 1.36E-05 

 h + 
F6 p-values 9.92E-01 

 h = 
F7 p-values 1.73E-06 

 h + 
F8 p-values 2.05E-04 

 h + 
F9 p-values 3.82E-01 

 h = 
F10 p-values 3.29E-01 

 h = 
 
 

Table 13. Summary of Friedman ranking test 
Operators GOA AAGOA 

000 13 17 
010 12 18 
011 14 16 
110 12 18 
111 14 16 
Sum 85 65 
Rank 2 1 

 
 

Table 14. Wilcoxon signed-rank test summary. 
Operators + = - 

000 5 3 2 
010 4 6 0 
011 3 7 0 
110 4 6 0 
111 3 7 0 
Sum 19 29 2 

 
4.3 Algorithm Complexity 
The complexity of the algorithms is measured by the 
amount of time and space required to solve a 
problem for a given input size. The complexities of 
the AAGOA and GOA algorithms were calculated 
using the method described by CEC2021, [35]. 
Table 15 shows the computational complexity of 
both algorithms in 20 dimensions where 𝑡𝑡0 is the 
time computed by running the following codes: 
 

0.55x =  
for i = 1:200000 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.13 Najwan Osman-Ali, Junita Mohamad-Saleh

E-ISSN: 2224-2856 132 Volume 18, 2023



( )
; / 2; * ; ( );

log( ); exp( ); 2 ;
x x x x x x x x x sqrt x
x x x x x x x
= + = = =

= = = +
  

end 
 
where t1 is the time required to execute 200,000 
evaluations of the benchmark F1 in 20 dimensions. 
t2 is the execution time of the algorithm for F1, 
using the same number of evaluations. 𝑡𝑡2�  is the 
mean value of t2 over the five runs.  

The procedure was applied to both the GOA and 
AAGOA. It can be observed in the last row of the 
table that the computational cost of AAGOA is 
higher than that of GOA. This is due to the 
implementation of an adaptive average for the target 
fitness that adds to the complexity of the AAGOA. 
Although having a higher computational cost, 
AAGOA can produce significantly better results 
than GOA. 
 
 

Table 15. Computational complexity of AAGOA 
and GOA for 20 dimensions 

Variable AAGOA GOA 

0t  8.49E-03 8.49E-03 

1t  2.44E+02 2.44E+02 

2t  7.67E+03 3.93E+03 

( )2 1 0t t t−  8.74E+05 4.34E+05 

 
 
5 Conclusion 
This study proposes a modified version of the GOA, 
referred to as AAGOA. The proposed improvements 
to the GOA introduced a nonlinear parameter 
convergence value and an adaptive average for the 
target fitness. Based on the optimization results 
using the CEC2021 benchmark functions, the 
AAGOA produced better results than the GOA on 
most tested benchmark functions in different 
transformation combinations (i.e., bias, shift, and 
rotation). The nonlinear convergence parameter 
helps the algorithm explore the search space 
efficiently at the beginning of the iteration and 
focuses on the local optimum towards convergence. 
The adaptive average for the target fitness provides 
the capability to move away from the local optimum 
entrapment by introducing the predicted target 
fitness based on t he previous target fitness. Future 
research should focus on reducing the complexity of 
the AAGOA and implementing the modification 
performed in AAGOA with other GOA variants to 
further improve the optimization results using 
improved benchmark functions. 
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