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Abstract: - In this paper is studied the stabilization problem by state-derivative feedback for linear time-
invariant continuous-time systems. In particular, explicit necessary and sufficient conditions are established for 
the stability of a closed-loop system, obtained by state-derivative feedback from the given linear time-invariant 
continuous-time system. Furthermore a procedure is given for the computation of stabilizing state-derivative 
feedback. Our approach is based on properties of real and polynomial matrices. 
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1 Introduction 
What are the conditions under which the closed-loop 
system obtained by state-derivative feedback from a 
given linear time-invariant continuous-time system 
is stable? This simple question is known as 
stabilization of linear time-invariant continuous-
time systems by state-derivative feedback. In [1] are 
established sufficient conditions for the solution of 
the stabilization problem by state-derivative 
feedback for linear time-invariant continuous-time 
systems. In particular is proven that if the given 
linear time-invariant continuous-time system is 
either controllable or uncontrollable with stable 
uncontrollable poles and all its controllable poles 
are nonzero then the closed-loop system obtained by 
state- derivative feedback from a given linear time-
invariant continuous-time system is stable. In [2], 
see also [3], is proven that if the given linear time-
invariant continuous-time system has at least one 
zero pole then the closed-loop system obtained by 
state- derivative feedback from a given linear time-
invariant continuous-time system has also at least 
one zero pole; therefore the stabilization problem by 
state-derivative feedback has  no solution. The state-
derivative feedback design methods have been 
extensively studied over the last twenty years. The 
motivation for the study of these methods comes 
from some practical applications such as controlled 
vibration suppression of mechanical systems, for 
more complete references we refer the reader to [1-
5] and references given therein. 

To the best of our knowledge the stabilization 
problem by state-derivative state feedback for linear 
time-invariant continuous-time systems in its full 
generality, is still an open problem. This motivates 
the present study. In this paper, are established 
explicit necessary and sufficient conditions for the 
solution of the stabilization problem by state- 
derivative feedback for linear time-invariant 
continuous-time systems. In particular it is proved 
that the sufficient conditions of [1] for the solution 
of stabilization problem by state-derivative feedback 
for linear time-invariant continuous-time systems 
are also necessary. Furthermore a procedure is given 
for the computation of stabilizing state- derivative 
feedback.  
 
 
2 Problem Formulation 
Consider a linear time-invariant continuous-time 
system described by the following state-space 
equations 

𝐱̇(t)  =Ax(t) + Bu(t)                       (1)                                                     

where A and B are real matrices of size (n x n) and 
(n x m) respectively, x(t) is the state vector of 
dimensions (n x 1) and u(t) is the vector of inputs of 
dimensions (m x 1). Consider the control law 

                       u(t) = D𝐱̇(t)  + v(t)                       (2) 

where D is a real matrix of size  (m x n) and v(t) is 
the reference input vector of size (m x 1). By 
applying the state-derivative feedback (2) to the 
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system (1), the state-space equations of closed–loop 
system are 

                   [I - 𝐁𝐃]𝐱̇(t) = Ax(t) + Bv(t)             (3)                                                     

Let R be the field of real numbers. Also let R[s] be 
the ring of polynomials with coefficients in. R. The 
stabilization problem by state-derivative feedback 
considered in this paper can be stated as follows: 
Does there exists a state-derivative state feedback 
(2) such that  

                 𝑑𝑒𝑡[(𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀] = 𝑐(𝑠)            (4)                                         

where c(𝑠) is a monic, strictly Hurwitz polynomial 
over R[s] of degree n (i.e., all roots of c(𝑠) have 
negative real parts ). If so, give conditions for 
existence and a procedure for the computation of 
matrix D. It is pointed out that relationship (4) 
ensures that the closed-loop system (3) is a stable 
regular state-space system [6]. 
 
 
3 Basic Concepts and Preliminary 
Results 
This section contains lemmas which are needed to 
prove the main results of this paper and some basic 
notions from linear control theory that are used 
throughout the paper. Let C be the field of complex 
numbers, also let C+ be the set of complex numbers 
λ with Re(λ)≥ 0. A matrix whose elements are 
polynomials over R[s] termed polynomial matrix. A 
polynomial matrix U(s) over R[s] of dimensions (k 

x k) is said to be unimodular if and only if  

                            det[U(s)] = μ                          (5) 

where μ is a finite nonzero real number; therefore 
every unimodular polynomial matrix has a 
polynomial inverse. Every polynomial matrix W(s) 
of size (p x m) with rank[W(s)]=r, can be 
expressed as [7] 

                      U1(s)W(s)U2(s)=M(s)                   (6)                                                                                                    

The polynomial matrices U1(s) and U2(s) are 
unimodular and the matrix M(s) is given by 

                         𝐌(𝑠) =  [
𝐌𝑟(𝑠) 𝟎

𝟎 𝟎
]                   (7) 

The non-singular polynomial matrix 𝐌𝑟(𝑠) of 
size (r x r) in (7) is given by 

                𝐌𝑟(𝑠) = diag[a1(s),  a2(s), ..., ar(s)]       (8) 

The nonzero polynomials ai(s) for i=1,2,...,r are 
termed invariant polynomials of W(s) and have the 
following property 

           ai(s) divides ai+1(s), for i = 1,2,..., r-1       

(9)  

 The relationship (6) is called Smith-McMillan form 
of W(s) over R[s]. Since the matrices U1(s) and 
U2(s) are unimodular and the polynomial matrix 
𝐌𝑟(𝑠) given by (8) is non-singular, from (6) and 
(7) it follows that  

           rank[W(s)] = rank[𝐌𝑟(𝑠)] =  r               (10) 

Let A(s), be a polynomial matrix over R[s] if there 
are polynomial matrices P(s) and Q(s) of 
appropriate dimensions such that  

                        A(s) = P(s) Q(s)                           (11) 

Then the polynomial matrix P(s) over R[s]  termed 
the left divisor of A(s) [7]. Let A(s) and B(s), be 
polynomial matrices over R[s] if 

                        A(s) = D(s) M(s)                          (12) 

                        B(s) = D(s) N(s)                           (13) 

for polynomial matrices M(s), N(s) and D(s) over 
R[s], then D(s) termed the common left divisor of 
polynomial matrices A(s) and B(s) [7]. A greatest 
common left divisor of two polynomial matrices 
A(s) and B(s) is a common left divisor which is a 
right multiple of every common left divisor [8]. Let 
A and B be real matrices of size (n x n) and (n xm) 
respectively. Then there always exists a unimodular 
matrix U(s) over R[s] such that  

                  [𝐈𝑠 − 𝐀, B] = [V(s), 0] U(s)               (14) 

    The non-singular polynomial matrix V(s) of size  

(n x n) is a greatest common right divisor of the 
polynomial matrices [𝐈𝑠 − 𝐀] and B [8]. Since the 
polynomial matrix U(s) is unimodular from (14) it 
follows that 

rank[𝐈𝑠 − 𝐀,B] = rank[V(s),0]=rank[V(s)] = n (15)                                                                 

Definition 1: The nonzero polynomial c(s) over 
R[s] is said to be strictly Hurwitz if and only if 
c(s)≠ 0, ∀𝑠 ∈ C+.  

Definition 2: Let V(s) be a non-singular matrix 
over R[s] of size (n x n).  Also let ci(s) for i=1,2, 
…,n be the invariant polynomials of polynomial 
matrix V(s). The polynomial matrix V(s) is said to 
be strictly Hurwitz if and only if the polynomials 
ci(s) are strictly Hurwitz for every i=1,2,…,n, or 
alternatively if and only if det[V(s)] is a strictly 
Hurwitz polynomial. 

 Definition 3: The matrix A over R matrices of size 

(n x n), is said to be Hurwitz stable if and only if all 
eigenvalues of the matrix A have negative real parts 
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or alternatively if and only if the characteristic 
polynomial of matrix A is a strictly Hurwitz 
polynomial. 

Definition 4: Let A and B be matrices over R 
matrices of size (n x n) and (n x m), respectively. 
Then the pair (A, B) is said to be stabilizable if and 
only if there exists a real matrix K of size (m x n),  

such that the matrix [A+𝐁K] is Hurwitz stable [9]. 
The following Lemma is taken from [10]. 

   Lemma 1: Let A and B be matrices over R of size 
(n x n) and (n xm), respectively. The pair (A, B) is 
stabilizable if and only if the following condition 
holds: 

(a) 𝑟𝑎𝑛𝑘[𝐈𝑠 − 𝐀, 𝐁] =  𝑛 , ∀𝑠 ∈ C+   

   Lemma 2: Let V(s) be a non-singular polynomial 
matrix over R[s], of size (n x n). Also let ci(s) for 
i=1,2, …, n be the invariant polynomials of the 
polynomial matrix V(s). The polynomial matrix 
V(s) is strictly Hurwitz if and only if the following 
condition holds 

   (a) rank[V(s)] = n  , ∀s ∈ C+ 

    Proof: Let V(s) be a non-singular and strictly 
Hurwitz polynomial matrix of size (n x n) with 
invariant polynomials ci(s) for i=1,2,…,n  From 
Definition 2 it follows that the polynomials ci(s) 
are strictly Hurwitz for every i=1,2,…,n and 
therefore from Definition 1 it follows that 

                   ci(s) )≠ 0 , ∀𝑠 ∈ C+ ,  ∀ i=1,2, …,n  (16) 

we define the polynomial matrix 

          𝐕n(𝑠)= diag [c1(s), c2(s), …., cn(s)]        (17) 

From (16) and (17) it follows that 

𝑟𝑎𝑛𝑘[𝐕n(𝑠)]=rank[diag[c1(s),c2(s),….,cn(s)]}=n
, ∀𝑠 ∈C+                                                               (18)                                                                                                                       

  The Smith-McMillan form of polynomial matrix 
V(s) over R[s] is given by              

                          K(s) V(s) L(s) = 𝐕n(𝑠)                (19) 

where K(s) and L(s) are unimodular matrices. 
Since the matrices K(s), L(s) are unimodular, 
from (10), (17), (18) and (19) it follows that 

                           rank[V(s)]=n  , ∀s ∈ C+          (20) 

This is condition (a) of the Lemma. To prove 
sufficiency, we assume that condition (a) holds. 
Using (10) from (17) and (19) we have that 

rank[𝐕(𝑠)] = 𝑟𝑎𝑛𝑘[𝐕n(𝑠)]= 

=rank{diag[c1(s),c2(s),….,cn(s)]}=n                 (21)                        

Since by assumption condition (a) holds we have 
that 

                     rank[V(s)]=n ,    ∀𝑠 ∈ C+               (22) 

Relationships (21) and (22) imply 

𝑟𝑎𝑛𝑘[𝐕n(𝑠)]=rank{diag[c1(s),c2(s),….,cn(s)]}= 

= n, ∀𝑠 ∈C+                                                        (23)                                                                                                                              

From (23) it follows that 

                 ci(s) )≠ 0 , ∀𝑠 ∈ C+ ,  ∀ i=1,2,…,n     (24) 

Relationship (24) and Definition 1 imply that 
polynomials ci(s) are strictly Hurwitz for every 
i=1,2,…,n, and therefore according to Definition 2 
the non-singular polynomial matrix V(s) over R[s], 
is strictly Hurwitz. This completes the proof. 

   Lemma 3: Let A and B be matrices over R 
matrices of size (n x n) and (n x m), respectively and 
B not zero. Further let V(s) be a greatest common 
left divisor of polynomial matrices [Is-A] and B of 
size (n x n). The pair (A, B) is stabilizable if and 
only if the following condition holds: 

   (a) The polynomial matrix V(s) is strictly Hurwitz. 

   Proof: Let the pair (A, B) is stabilizable. Then 
from Lemma 1 it follows that 

                       𝑟𝑎𝑛𝑘[𝐈𝑠 − 𝐀, 𝐁] = 𝑛 , ∀𝑠 ∈ C+       (25) 

Since by assumption the polynomial matrix V(s) is 
the greatest common left divisor of polynomial 
matrices [Is-A] and B, from (14) it follows that 
there exists a unimodular matrix U(s) such that 

                  [𝐈𝑠 − 𝐀, B] = [V(s, 0] U(s)                (26) 

   Since the polynomial matrix U(s) is unimodular 
from (15) and (26) it follows that 

rank[𝐈𝑠 − 𝐀,B] = rank[V(s, 0]=rank[V(s)] = n (27)                                                                 

From relationships (25) and  (27) it follows that 

                  rank[V(s)]=n  , ∀s ∈ C+                    (28) 

   Relationship (28) and Lemma 2 imply that the 
polynomial matrix V(s) is strictly Hurwitz. This is 
condition (a) of the Lemma. To prove sufficiency, 
we assume that the polynomial matrix V(s) is 
strictly Hurwitz. Then from Lemma 2 it follows that 

                   rank[V(s)]=n  , ∀s ∈ C+                    (29) 

Since the polynomial matrix V(s) is the greatest 
common left divisor of polynomial matrices [Is-A] 
and B, from (29) and (27) it follows that 
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                       𝑟𝑎𝑛𝑘[𝐈𝑠 − 𝐀, 𝐁] = 𝑛 , ∀𝑠 ∈ C+       (30) 

Lemma 1 and (30) imply that the pair (A, B) is 
stabilizable. This completes the proof. 

    Lemma 4: Let A and B be matrices over R 
matrices of size (n x n) and (n x m), respectively and 
B not zero. Further let V(s) be a greatest common 
left divisor of polynomial matrices [Is-A] and B of 
size (n x n). Further let D be a matrix over R of size 
(m x n) such that det[𝐈 − 𝐁𝐃] ≠ 0. Then the 
following condition holds: 

  (a) The polynomial matrix [(𝐈 − 𝐁𝐃)−1 V(s) is a 
left divisor of the matrix [𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀]. 

Proof: Since by assumption det[𝐈 − 𝐁𝐃] ≠ 0 the 
matrix [𝐈 − 𝐁𝐃] is non-singular and therefore the 
matrix [𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀]  can be rewritten as 
follows 

[𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀] =  

=[𝐈 − 𝐁𝐃]−𝟏[(𝐈 − 𝐁𝐃)s – A] = 

= [𝐈 − 𝐁𝐃]−𝟏[Is–A, B][ 𝐈
−𝐃𝑠

]                             (31) 

Since by assumption the polynomial matrix V(s) is 
the greatest common left divisor of polynomial 
matrices [Is-A] and B, from (12) and (13) it follows 
that 

                    [Is – A] = V(s) X(s)                         (32) 

                           B = V(s) Y(s)                           (33) 

for polynomial matrices X(s) and Y(s) over R[s] of 
appropriate dimensions. Using (32) and (33) and 
after simple algebraic manipulations, the 
relationship (31) can be rewritten as  

[𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀] =  

= [𝐈 − 𝐁𝐃]−𝟏V(s)[X(s) –Y(s)(Ds]                      (34)                        

Using (11) from (34) it follows that the matrix 
[𝐈 − 𝐁𝐃]−𝟏V(s) is a left divisor of the polynomial 
matrix [𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀]. This is condition (a) of 
the Lemma and the proof is complete. 

   Lemma 5: Let A be a Hurwitz stable matrix over 
R of size (n x n). Then the following condition 
holds: 

   (a) The matrix A is non-singular. 

   Proof: Let A be a Hurwitz stable matrix over R of 
size (n x n). The characteristic polynomial c(𝑠) of 
matrix A is given by [11] 

                              𝑑𝑒𝑡[(𝐈𝑠 − 𝐀] = 𝑐(𝑠)                 (35) 

From Definition 3 it follows that  c(𝑠) is a strictly 
Hurwitz polynomial over R[s] of degree n. Let ξi  
for  i=1,2,…,n, be the roots of c(𝑠). Then 

                       c(ξi) = 0  , ∀ i=1,2,…,n                  (36) 

Since c(𝑠) is a strictly Hurwitz polynomial of 
degree n from Definition 1 and (36) it follows that  

                                Re(ξi  ) ≤ 0 , ∀ i=1,2,…,n    (37) 

Since the polynomial c(𝑠) in (35) is the 
characteristic polynomial of the matrix A, the 
complex numbers ξi for i=1,2,…,n, are the 
eigenvalues of the  matrix A. From (37) it follows 
that 

                           ξi  ≠ 0 , ∀ i=1,2,…,n                       (38) 

From (38) it follows that all eigenvalues of the  
matrix  A are nonzero and therefore the matrix A is 
non-singular [11]. This is condition (a) of the 
Lemma and the proof is complete. 
   The following Lemma is partially based on the 
main results of [1] and [12]  

    Lemma 6: Let A and B be matrices over R 
matrices of size (n x n) and (n x m), respectively 
with A being non-singular and B not zero. Further 
let D be a matrix over R of size (m x n) such that  

det[𝐈 − 𝐁𝐃] ≠ 0. 

Then there exists real matrices F of appropriate size 
and D given by  

D = F[A –BF]-1 

such that the matrix (𝐈 − 𝐁𝐃)−𝟏𝐀 is Hurwitz stable 
if and only if the following condition holds: 

  (a) The pair (A, B) is stabilizable. 

   Proof: Let there exists real matrices F and D of 
appropriate dimensions with D given by  

                       D = F[A + BF]-1                          (39) 

such that the matrix (𝐈 − 𝐁𝐃)−𝟏𝐀 is Hurwitz stable. 
Since by assumption the matrix A is non-singular, 
from (39) we have that  

(𝐈 − 𝐁𝐃)−𝟏𝐀 = [𝐈 − 𝐁𝐅[𝐀 + 𝐁𝐅]−1]-1 A= 

= [𝐀 + 𝐁𝐅] [𝐀 − 𝐁𝐅 +𝐁𝐅]-1A= 

= [𝐀 + 𝐁𝐅]A-1A =[𝐀 + 𝐁𝐅 ]                                (40) 

Since by assumption the matrix (𝐈 − 𝐁𝐃)−𝟏𝐀 is 
Hurwitz stable, from (40) it follows that the matrix 
[𝐀 + 𝐁𝐅] is Hurwitz stable. Hurwitz stability of the 
matrix  [𝐀 + 𝐁𝐅] and Definition 4 imply that the 
pair (A, B) is stabilizable. This is condition (a) of 
the Lemma. To prove sufficiency we assume that     
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the pair (A, B) is stabilizable. Stabilizability of the 
pair (A, B) and Definition 4 imply the existence of 
matrix F of appropriate size such that the 
matrix [𝐀 + 𝐁𝐅] is Hurwitz stable. Hurwitz stability 
of the matrix  [𝐀 + 𝐁𝐅] and Lemma 5 imply that the 
matrix [𝐀 + 𝐁𝐅] is non-singular and therefore 
invertible. Invertibility of the real matrix [𝐀 + 𝐁𝐅] 
implies the possibility of calculation of the matrix D 
given by (39).Taking in the mind the above, from 
relationship (40) we conclude that the real matrix 

                             (𝐈 − 𝐁𝐃)−𝟏𝐀                           (41) 

with D given by (39) is Hurwitz stable. This 
completes the proof.  
The following Lemma was first published by 
Wonham in [9] and can be also found in any 
standard text of linear control theory. 

   Lemma 7. Let A and B be matrices over R 
matrices of size (n x n) and (n x m), respectively. 
Then the  pair (A, B) is controllable if and only if for 
every monic polynomial c(s) over R[s] of degree n  
there exists a matrix F over R of size m x n, such 
that the matrix [A+BF] has characteristic 
polynomial c(𝑠). 
The standard decomposition of uncontrollable 
systems given in the following Lemma was first 
published by Kalman in [13] and can be also 
found in any standard text of linear control  
theory. 
The following Lemma is taken from [7]. 

   Lemma 8: Let A and B be matrices over R 
matrices of size (n x n) and (n x m), respectively 
Further let the pair (A, B) is uncontrollable and B 
not zero. Then there exists a non-singular matrix 
T such that  

𝐓−1AT = [
𝐀11 𝐀12

𝟎 𝐀22
], 

 𝐓−1B = [𝐁1

𝟎
] 

The pair (𝐀11, 𝐁11) is controllable and the 
eigenvalues of the matrix 𝐀22 are the uncontrollable 
eigenvalues of the pair (A, B). 

Lemma 9: Let A and B be matrices over R matrices 
of size (n x n), (n x m), respectively and B not zero. 
Further let  

𝐓−1AT= [
𝐀11 𝐀12

𝟎 𝐀22
] ,  𝐓−1B = [𝐁1

𝟎
]     

with (𝐀11, 𝐁1)  controllable. The pair (A, B) is 
stabilizable if and only if the following condition 
holds: 

   (a) The matrix 𝐀22 is Hurwitz stable or 
alternatively all uncontrollable eigenvalues of the 
pair (A, B) are stable (i.e., the eigenvalues of the 
matrix 𝐀22 have negative real parts). 

   Proof: From the statement of the Lemma we have 
that                            

           A = 𝐓 [
𝐀11 𝐀12

𝟎 𝐀22
] 𝐓−1,  B = 𝐓 [

𝐁1

𝟎
]         (42) 

with (𝐀11, 𝐁1) controllable. If the pair (A, B) is 
stabilizable, then from Definition 4 it follows that 
there exists a matrix F such that the matrix [A +BF] 
is Hurwitz stable. Using (42) we have that 

 A  +BF = 𝐓 [
𝐀11 𝐀12

𝟎 𝐀22
] 𝐓−1 + 𝐓 [

𝐁1

𝟎
]F =  

= 𝐓{[
𝐀11 𝐀12

𝟎 𝐀22
] + [𝐁1

𝟎
]FT}𝐓−1                         (43) 

Let 

                                 FT = [𝐅1, 𝐅2]                      (44) 

Substituting (44) to (43) and after simple algebraic 
manipulations we have that 

 A +BF = 𝐓 [
𝐀11 + 𝐁1𝐅1 𝐀12 + 𝐁1𝐅2

𝟎 𝐀22
] 𝐓−1    (45)                      

From (45) it follows that the matrices 

    [A + BF],  [
𝐀11 + 𝐁1𝐅1 𝐀12 + 𝐁1𝐅2

𝟎 𝐀22
]      (46) 

are similar; therefore Hurwitz stability of [A+BF] 
implies Hurwitz stability of 𝐀22. Since the matrix 
𝐀22 is Hurwitz stable, from Lemma 8 and 
Definition 3 it follows that all uncontrollable 
eigenvalues of the pair (A, B) are stable. This is 
condition (a) of the Lemma. To prove sufficiency 
we assume that condition (a) holds. Controllability 
of the pair (𝐀11, 𝐁1) and Lemma 7 imply the 
existence of matrix 𝐅1 of appropriate size such that 
the matrix  

      det[𝐈s − 𝐀11−𝐁1𝐅1] ] = φ(s)             (47)            
where φ(s) is an arbitrary monic, strictly Hurwitz 
polynomial over R[s] of appropriate degree. The 
matrix 𝐅1 can be calculated using known methods 
for the solution of pole assignment problem by state 
feedback [7]. Let  

                                F= [𝐅1, 0]𝐓−1                       (48) 

Substituting (48) to (45) we have that 
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           A + BF = 𝐓 [
𝐀11 + 𝐁1𝐅1 𝐀12

𝟎 𝐀22
] 𝐓−1     (49) 

Using (47), from (49) it follows that Hurwitz 
stability of 𝐀22 implies Hurwitz stability of 
[A+BF]. Hurwitz stability of [A+BF] and Definition 
4 imply stabilizability of the pair (A, B). This 
completes the proof. 
 
 
4 Problem Solution 
The following theorem is the main result of this 
paper and gives explicit necessary and sufficient 
conditions for the solution over R of the 
stabilization problem by state-derivative feedback 
for linear time-invariant continuous-time systems 
with state-space equations given by (1). 
   Theorem 1. The stabilization problem by state-
derivative feedback for linear time-invariant 
continuous-time systems with state-space equations 
given by (1) has solution over R if and only if the 
following condition holds: 
      (a) The matrix A is non-singular. 

(b) The pair (A, B) is stabilizable. 
 Proof: Let system (1) is stabilizable by state-
derivative feedback. Then from (4) we have that 
                     𝑑𝑒𝑡[(𝐈𝑠 − (𝐈 − 𝐁𝐃)−1𝐀] = 𝑐(𝑠)      (50)      

where c(𝑠) is a monic, strictly Hurwitz polynomial 
over R[s] of degree n.  Relationship (50) and 
Definition 3 imply that the matrix [(𝐈 − 𝐁𝐃)−1𝐀] is 
Hurwitz stable. Hurwitz stability of the matrix 
(𝐈 − 𝐁𝐃)−1𝐀 and Lemma 5 imply non-singularity 
of (𝐈 − 𝐁𝐃)−1𝐀 and therefore non-singularity of 
matrix A. This is condition (a) of the Theorem. Let 
V(s) be a greatest common left divisor of 
polynomial matrices [Is-A] and B of size (n x n). 

Then from Lemma 4 it follows that the polynomial 
matrix [(𝐈 − 𝐁𝐃)−1 V(s) is a left divisor of the 
polynomial matrix [𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀] that is 

   [𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀] = [(𝐈 − 𝐁𝐃)−1 V(s) X(s) (51) 

where X(s) is a matrix over R[s] of appropriate size. 
From (51) we have that 
 
det[𝐈𝑠 − (𝐈 − 𝐁𝐃)−𝟏𝐀] =  
= 𝑑𝑒𝑡[(𝐈 − 𝐁𝐃)−1] det[V(s)] det[X(s)]              (52) 

From relationship (50) and (52) it follows that 

                  det[V(s)] divides (c(𝑠))                     (53) 

Since by assumption c(𝑠) is a monic, strictly 
Hurwitz polynomial over R[s] of degree n, from 
(53) it follows that det[V(s)] is a strictly Hurwitz 

polynomial over  R[s]; therefore by Definition 2 the 
polynomial matrix V(s) is strictly Hurwitz. Since 
V(s) is strictly Hurwitz, from Lemma 3 it follows 
that the pair (A, B) is stabilizable. This is condition 
(b) of the Theorem. 
 To prove sufficiency, we assume that conditions (a) 
and (b) hold. Stabilizability of the pair (A, B) imply 
that the pair (A, B) is either controllable or 
uncontrollable with stable uncontrollable 
eigenvalues (i.e. all uncontrollable eigenvalues have 
negative real parts).  
  If the pair (A, B) is controllable, then from  
Lemma 7 it follows that there exists a matrix F of 
appropriate size over R such that 

     det[𝐈s −A  −BF] = det[𝐈s −A − BF] = χ(s) (54) 

where χ(s) be an arbitrary monic, strictly Hurwitz 
polynomial over R[s] of degree n. The matrix F can 
be calculated using known methods for the solution 
of pole assignment problem by state feedback [7]. 
   If the pair (A, B) is uncontrollable with stable 
uncontrollable eigenvalues, then from Lemma 8 and 
Lemma 9  it follows that there exists a matrix T 
such that 

        𝐓−1AT = [
𝐀11 𝐀12

𝟎 𝐀22
] ,  𝐓−1B = [𝐁1

𝟎
]     (55) 

The pair (𝐀11, 𝐁1) is controllable and the matrix 
𝐀22 is Hurwitz stable. Controllability of the pair 
(𝐀11, 𝐁1)  and Lemma 7 imply the existence of a 
matrix 𝐅1 over R of appropriate dimensions such 
that 

            det[𝐈s − 𝐀11−𝐁1𝐅1] ] = φ(s)             (56) 

where φ(s)  is an arbitrary monic, strictly Hurwitz 
polynomial over R[s] of appropriate degree. The 
matrix 𝐅1 can be calculated using known methods 
for the solution of pole assignment by state feedback 
[7]. According to (49) the matrix [A+BF] with F 
given by 

                   F= [𝐅1, 0]𝐓−1                        (57)              
is Hurwitz stable. Conditions (a) and (b) and 
Lemma 6 imply the existence of the matrix D given 
by 

                       D = F[A +BF]-1                            (58)                  

such that the matrix (𝐈 − 𝐁𝐃)−𝟏𝐀 is Hurwitz stable 
that is 
                     𝑑𝑒𝑡[(𝐈𝑠 − (𝐈 − 𝐁𝐃)−1𝐀] = 𝑐(𝑠)      (59)      

where c(𝑠) is a monic, strictly Hurwitz polynomial 
over R[s] of degree n.  From (59) and (4) it follows 
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that the closed-loop system (3) is a stable regular 
state-space system. This completes the proof.  
   The sufficiency part of the proof of Theorem 1 
provides a construction of the matrix D of state- 
derivative feedback which stabilizes the system (1). 
The major steps of this construction are given 
below. 

Construction 

Given: A, B  
Find: D 

   Step 1: Check conditions (a) and (b) of Theorem 
1. If these conditions are satisfied go to Step 2. If 
conditions (a) and (b) are not satisfied go to Step 4. 

  Step 2: Stabilizability of the pair (A, B) implies 
that the pair (A, B) is either controllable or 
uncontrollable with stable uncontrollable 
eigenvalues. If the pair (A, B) is controllable, then 
from  Lemma 7 it follows that there exists a matrix 
F over R such that 

det[𝐈s −A  −BF] = det[𝐈s −A − BF] = χ(s) 

where 𝜒(𝑠) be an arbitrary monic and strictly 
Hurwitz polynomial over R[s] of degree n. The 
matrix F can be calculated using known methods 
for the solution of pole assignment problem by state 
feedback [7].  
   If the pair (A,B) is uncontrollable with stable 
uncontrollable eigenvalues then from Lemma 8 and 
Lemma 9  it follows that there exists a matrix T 
such that 

𝐓−1AT = [
𝐀11 𝐀12

𝟎 𝐀22
] 

 𝐓−1B = [𝐁1

𝟎
] 

The pair (𝐀11, 𝐁1) is controllable and the matrix 
𝐀22 is Hurwitz stable. Controllability of the pair 
(𝐀11, 𝐁1)  and Lemma 7 imply the existence of a 
matrix 𝐅1 over R of appropriate dimensions such 
that 

det[𝐈s − 𝐀11−𝐁1𝐅1] ] = φ(s) 
where φ(s) is an arbitrary monic, strictly Hurwitz 
polynomial over R[s] of appropriate degree. The 
matrix 𝐅1 can be calculated using known methods 
for the solution of pole assignment by state feedback 
[7]. According to (49) the matrix [A+BF] with F 
given by 

F= [𝐅1, 0]𝐓−1        
is Hurwitz stable. 

   Step 3: Put 

                       D = F[A +BF]-1                            

  Step 4: The stabilization problem by state- 
derivative state feedback has no solution. 
 
 
5 Conclusions 
In this paper the stabilization problem by state-
derivative feedback for linear time-invariant 
continuous-time systems is studied and completely 
solved. The proof of the main results of this paper is 
constructive and furnishes a procedure for the 
computation of stabilizing state-derivative feedback. 
As far as we know the stabilization problem by 
state-derivative feedback for linear time-invariant 
continuous-time systems in its full generality, is still 
an open problem. This clearly demonstrates the 
originality of the contribution of the main results of 
this paper with respect to existing results. 
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