[1] T. Hanyu, T. Endoh, D. Suzuki, H. Koike, Y. Ma
et al., “Standby-power-free integrated circuits using
MTJ-based VLSI computing,” Proc. IEEE, vol. 104,
no. 10, pp. 1844–1863, 2016.
[2] W. J. Gallagher, E. Chien, T. Chiang, J. Huang,
M. Shih et al., “22nm STT-MRAM for reflow
and automotive uses with high yield, reliability,
and magnetic immunity and with performance and
shielding options,” in Proc. IEDM Conf., 2019, pp.
2.7.1–2.7.4.
[3] S. H. Han, J. M. Lee, H. M. Shin, J. H. Lee,
K. S. Suh et al., “28nm 0.08 mm2/Mb embedded
MRAM for frame buffer memory,” in Proc. IEDM
Conf., 2020, pp. 11.2.1–11.2.4.
[4] Y.-C. Shih, C.-F. Lee, Y.-A. Chang, P.-H. Lee,
H.-J. Lin et al., “A reflow-capable, embedded 8Mb
STT-MRAM macro with 9ns read access time in
16nm FinFET logic CMOS process,” in Proc. IEDM
Conf., 2020, pp. 11.4.1–11.4.4.
[5] V. B. Naik, K. Yamane, T. Lee, J. Kwon,
R. Chao et al., “JEDEC-qualified highly reliable
22nm FD-SOI embedded MRAM for low-power
industrial-grade, and extended performance to-
wards automotive-grade-1 applications,” in Proc.
IEDM Conf., 2020, pp. 11.3.1–11.3.4.
[6] C. Abert, M. Ruggeri, F. Bruckner, C. Vogler,
G. Hrkac et al., “A three-dimensional spin-diffusion
model for micromagnetics,” Sci. Rep., vol. 5, no. 1,
p. 14855, 2015.
[7] C. Abert, M. Ruggeri, F. Bruckner, C. Vogler,
A. Manchon et al., “A self-consistent spin-diffusion
model for micromagnetics,” Sci. Rep., vol. 6, no. 1,
p. 16, Dec. 2016.
[8] S. Lepadatu, “Unified treatment of spin torques us-
ing a coupled magnetisation dynamics and three-
dimensional spin current solver,” Sci. Rep., vol. 7,
no. 1, p. 12937, 2017.
[9] D. Braess, Finite Elements: Theory, Fast Solvers,
and Applications in Solid Mechanics, 3rd ed. Cam-
bridge University Press, 2007.
[10] M. G. Larson and F. Bengzon, The Finite Ele-
ment Method: Theory, Implementation, and Ap-
plications. Springer Berlin Heidelberg, 2013.
[11] R. Anderson, J. Andrej, A. Barker, J. Bramwell,
J.-S. Camier et al., “MFEM: A modular finite ele-
ment library,” Comp. & Math. with Appl., 2020.
[12] F. Alouges and P. Jaisson, “Convergence of a finite
element discretization for the Landau-Lifshitz equa-
tions in micromagnetism,” Math. Models Methods
Appl. Sci., vol. 16, no. 2, p. 299 – 316, 2006.
[13] S. Bartels, J. Ko, and A. Prohl, “Numerical
analysis of an explicit approximation scheme
for the Landau-Lifshitz-Gilbert equation,” Math.
Comput., vol. 77, no. 262, p. 773 – 788, 2008.
[14] F. Alouges, “A new finite element scheme for
Landau-Lifchitz equations,” Discrete Contin. Dyn.
Syst. S, vol. 1, no. 2, pp. 187–196, 2008.
[15] F. Alouges, E. Kritsikis, and J.-C. Toussaint, “A
convergent finite element approximation for Lan-
dau–Lifschitz–Gilbert equation,” Physica B, vol.
407, no. 9, pp. 1345–1349, 2012.
[16] F. Bruckner, D. Suess, M. Feischl, T. F¨uhrer,
P. Goldenits et al., “Multiscale modeling in micro-
magnetics: Existence of solutions and numerical
integration,” Math. Models Methods Appl. Sci.,
vol. 24, no. 13, pp. 2627–2662, 2014.
[17] C. Abert, G. Hrkac, M. Page, D. Praetorius,
M. Ruggeri, and D. Suess, “Spin-polarized transport
in ferromagnetic multilayers: An unconditionally
convergent FEM integrator,” Comp. & Math. with
Appl., vol. 68, no. 6, pp. 639 – 654, 2014.
[18] C. Abert, “Micromagnetics and spintronics: Models
and numerical methods,” Eur. Phys. J. B, vol. 92,
no. 6, p. 120, June 2019.
[19] G. Hrkac, C.-M. Pfeiler, D. Praetorius, M. Ruggeri,
A. Segatti, and B. Stiftner, “Convergent tangent
plane integrators for the simulation of chiral
magnetic skyrmion dynamics,” Adv. Comput.
Math., vol. 45, no. 3, pp. 1329–1368, June 2019.
[20] J. Ender, M. Mohamedou, S. Fiorentini, R. L.
de Orio, S. Selberherr et al., “Efficient demagne-
tizing field calculation for disconnected complex ge-
ometries in STT-MRAM cells,” in Proc. SISPAD
Conf., 2020, pp. 213–216.
[21] M. Bendra, J. Ender, S. Fiorentini, T. Hadamek,
R. L. de Orio et al., “Finite element method ap-
proach to MRAM modeling,” in Proc. MIPRO
Conf., 2021, pp. 70–73.
[22] S. Fiorentini, J. Ender, S. Selberherr, R. L. de
Orio, W. Goes, and V. Sverdlov, “Coupled spin and
charge drift-diffusion approach applied to magnetic
tunnel junctions,” Solid-State Electron., vol. 186,
p. 108103, 2021.
[23] S. Fiorentini, M. Bendra, J. Ender,
R. L. de Orio, W. Goes et al., “Spin and
charge drift-diffusion in ultra-scaled MRAM cells,”
Sci. Rep., vol. 12, no. 1, p. 20958, Dec. 2022.
[24] B. Jinnai, J. Igarashi, K. Watanabe, T. Funatsu,
H. Sato et al., “High-performance shape-anisotropy
magnetic tunnel junctions down to 2.3 nm,” in Proc.
IEDM Conf., 2020, pp. 24.6.1–24.6.4.
[25] G. Hu, G. Lauer, J. Z. Sun, P. Hashemi, C. Safranski
et al., “2X reduction of STT-MRAM switching cur-
rent using double spin-torque magnetic tunnel junc-
tion,” in Proc. IEDM Conf., 2021, pp. 2.5.1–2.5.4.
[26] W. J. Loch, S. Fiorentini, N. P. Jørstad, W. Goes,
S. Selberherr, and V. Sverdlov, “Double refer-
ence layer STT-MRAM structures with improved
performance,” Solid-State Electron., vol. 194,
p. 108335, 2022.
[27] N. P. Jørstad, S. Fiorentini, W. J. Loch,
W. Goes, S. Selberherr, and V. Sverdlov, “Finite
element modeling of spin–orbit torques,” Solid-
State Electron., vol. 194, p. 108323, 2022.
References
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.64
S. Fiorentini, R. L. De Orio, J. Ender,
S. Selberherr, M. Bendra, N. Jørstad,
Wolfgang Goes, V. Sverdlov