International Journal of Electrical and
Electronics Research. vol.3, issue 1, pp 156-164.
[8] Vivek Arya and J. Singh (2016). Robust image
compression using two dimensional discrete
cosine transform. International Journal of
Electrical and Electronics Research. vol.4, issue
2, pp.187-192.
[9] K.R. Rao and P. Yip (1990). Discrete cosine
transform: Algorithms advantages and
applications. Academic Press, New York.
[10] P.M. Fanelle and A.K. Jainn (1986). Recursive
block coding: A new approach to transform
coding. IEEE Trans. Communication. pp. 161-
179.
[11] M. Bosi and G. Davidson (1992). High quality
low bit rate audio transform coding for
transmission and multimedia applications.
Journal of Audio Eng. Soc. pp. 43-50.
[12] D. Solomaon, (2004). Data Compression: The
complete Reference. Springer Verlag, Newyork.
[13] F. J. Macwilliams and N.J.A. Slone (1977). The
Theory of Error Correcting Codes. Elsevier,
Amsterdam.
[14] Y. T. Chan, (1995). Wavelet Basics. Kluwer
Academic Publishers, Norwell, MA.
[15] C.S. Rawat and S. Meher (2013). A hybrid
image compression scheme using DCT and
fractal image compression. International Arab
Journal of Information Technology. vol.10, no.6.
[16] N. Wiener (1929). Hermitian polynomials and
Fourier analysis. J. Math. Phys., pp.70–73.
[17] E. U. Condon (1937). Immersion of the Fourier
transform in a continuous group of functional
transformations. Proc. Nat. Acad. Sci. USA,
pp.158–164.
[18] H. Kober and Wurzeln aus der Hankel (1939).
Fourier- und aus an-deren stetigen
transformationen. Q. J. Math. Oxford Ser., pp.
45–49.
[19] B. Santhanam, J. H. McClellan (1996). The
discrete rotational Fourier transform. IEEE
Trans. Signal Processing, pp. 94–998.
[20] A.W. Lohmann (1993). Image rotation, Wigner
rotation and the fractional Fourier transform. J.
Opt. Soc. Am, pp. 2181–2186.
[21] V. Namias (1980). The fractional order Fourier
transform and its application to quantum
mechanics. J. Inst. Maths. Appl., pp. 241–265.
[22] L.B. Almeida (1994). The fractional Fourier
transform and time frequency representations.
IEEE Trans. Signal Process, pp. 3084–3091.
[23] C. Vijaya, J.S. Bhat (2006). Signal compression
using discrete fractional Fourier transform and
set partitioning in hierarchical tree. Signal
Process, pp. 1976–1983.
[24] R.Tao, B. Deng, Y. Wang (2006). Research
progress of the fractional Fourier transform in
signal processing. Sci. China Ser. F Inf. Sci., pp.
1–25.
[25] Bracewell, R. N (1986). The Fourier Transform
and Its Applications. 2nd Revised. McGraw Hill,
New York.
[26] Abomhara, M., Zakaria, O., Khalifa, O.O
(2010). An overview of video encryption
techniques. Int. J. Comput. Theory Engineering,
pp. 103–110.
[27] R. C. Gonzalez and R. E. Woods (2008).
Digital Image Processing, 3rd edition.
[28] D. Mendlovic and H.M. Ozaktas (1993).
Fractional Fourier transforms and their optical
implementation. I. J. Opt. Soc. Am. A, pp. 1875–
1881.
[29] N. M. Atakishiyev, L. E. Vicent and K.B. Wolf
(1999). Continuous vs. discrete fractional Fourier
transforms. J. Comput. Appl. Math. pp. 73–95.
[30] S.I. Yetik, M.A. Kutay and M.H. Ozaktas
(2000). Continuous and discrete fractional
Fourier domain decomposition. In IEEE Trans.
pp. 93–96.
[31] M.H. Ozaktas, Z. Zalevsky and M.A. Kutay
(2000). The Fractional Fourier Transform with
Applications in Optics and Signal Processing.
Wiley, New York.
[32] S.C. Pei, M.H. Yeh (2001). A novel method for
discrete fractional Fourier transform
computation. ISCAS, pp. 585–588.
[33] M.H. Yeh and S.C. Pei (2003). A method for the
discrete-time fractional Fourier transform
computation. Signal Process, pp. 1663–1669.
[34] S.C. Pei, M.H. Yeh, C.C. Tseng (1999). Discrete
fractional Fourier transform based on orthogonal
projections. IEEE Trans. Signal Processing., pp.
1335–1348.
[35] I. Djurovic, S. Stancovic and I. Pitas (2001).
Digital watermarking in the fractional Fourier
transformation domain. Journal of Netw.
Comput. Applications. pp. 167–173.
[36] Rubio, J.G.V. and B. Santhanam (2005). On the
multiangle centered discrete fractional Fourier
transform. IEEE Signal Process. Letters.
[37] Gerek, O.N., Erden, M.F. (2000) The discrete
fractional cosine transform. Proceedings of the
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.3