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Abstract: Nowadays, plug-in electric vehicles (PEVs) have gained popularity because of their operational and 
environmental advantages. As a result, power systems must deal with new operation challenges from their 
integration. In this article, a method for the assessment of the effects of multi-objective optimal charging of 
PEVs at power system level is proposed. The proposed multi-objective optimization method takes into 
consideration the forecasts of power system load, Renewable Energy Sources (RES) and electricity price. 
Moreover, it is enhanced by the detailed modeling of the daily EV activity taking into consideration the 
characteristics of the area they are having activity, the type of the activity, the charging preferences of the 
driver as well as the technical characteristics of the EV. Moreover, Vehicle to Grid (V2G) operation can be 
modeled by the proposed method. Real-world data were used and the method was applied to the power system 
of Crete. The results obtained from the study of indicative application scenarios are presented and finally prove 
the efficiency of the proposed method. 
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1 Introduction 
Nowadays, automotive industry and researchers 
have focused their attention on Plug-in Electric 
Vehicles (PEVs) and Electric Vehicles (EVs) 
because of the lack of fossil fuels, the rise in oil 
prices and environmental concerns. In addition, EVs 
offer a lot of advantages such as low gas emissions 
and low operational costs. EVs may also help to 
improve grid reliability, operation security and the 
increase of the penetration of Renewable Energy 
Sources (RES). EVs can help RES as under suitable 
control EVs total power can be used to alleviate 
large power generation deviations from RES and fill 
the “valleys” of system load while “shave” the peak 
loads [1].  

Although PEVs feature many advantages in 
several aspects of power system operation, they can 
also be the source of power system operation 
problems. These problems become more evident if 
they are not suitably controlled and their penetration 
to the power system increases significantly. 
Distribution network is the part of the power system 
that will provide charging power to the PEVs or 
absorb the power injected by them (V2G operation) 

and therefore the first that will face overloading 
problems, voltage instability, protection 
coordination etc [1]. Hence, it is deemed important 
to adopt smart charging and power and energy 
management techniques to alleviate these problems 
or even change them to opportunity for power 
system operation improvement and in this way, 
enable their further integration to the electric power 
system. For instance, their use as a large smart 
distributed energy storage devices will help the 
integration of more RES [2],[3]. 

Regarding the PEV and distribution network 
cooperation, a lot of research has been done in PEV 
optimal charging control that will reduce the 
distribution load demand peaks, reduce voltage 
instability, reduce distribution network active and 
reactive power losses and alleviate network 
congestion [4], [5]. Moreover, PEVs will be able to 
offer ancillary services to the network. Depending 
on charging conditions and equipment PEVs may be 
able to inject power to the grid (V2G), provide 
frequency support and reactive power regulation 
providing that they employ suitable charging 
converters [6], [7]. In [8], power and energy 
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management techniques like peak load shaving and 
valley filling are applied to PEVs via suitable smart 
charging. In [9], the financial impact for of EV 
charging is assessed at distribution network level. A 
charging cost minimization strategy is compared 
with one aiming to peak load shaving at distribution 
network level. In [10], it is shown that EV charging 
system using solar PVs can reduce the charging cost 
in the range of 50–100%.  In [11], a method that 
minimizes PEVs’ charging cost and at the same time 
ensures the normal operation of the distribution grid 
is proposed. In [12], a method that optimally 
maintains the frequency fluctuations between the 
acceptable limits under a large penetration of PEVs 
is proposed. In this work, frequency support is 
optimally provided taking into consideration the 
flexibility of the PEVs. In [13], another charging 
method that minimizes the total charging cost of the 
PEVs at parking lot level is proposed. In [14], the 
goal is to minimize the charging cost in real time 
considering all constraints at EV and distribution 
network levels and with the minimum dependence 
on the forecasting of some critical inputs of the 
charging optimization algorithm. In [15], a particle 
swarm based optimization method is exploited to 
optimally charge or discharge PEVs. Parameters like 
electric network power losses, daily load 
smoothness and EV owners’ charging preferences 
were taken under consideration. 

In [16] research on charging price estimation 
during valley filling taking into account the RES 
power generation has been done. In [17], a power 
management algorithm is applied to a system 
comprising RES, Energy Storage Systems, and EVs. 
It aims to provide virtual inertia supporting the 
frequency of the system. In [18], a stochastic linear 
programming model for EV charging is proposed for 
various operation scenarios. In [19], a method that 
solves a multiple vehicle routing problem with time 
constraints is proposed and compared with various 
algorithms. In [20], a simulation method of an 
electricity market that depends on prosumers and 
electric vehicles and reduces the electricity cost is 
proposed. 

In this article, a method for the efficient multi-
objective optimal charging of PEVs is proposed. 
The main targets of the method are to minimize the 
charging cost of the PEV and at the same time 
reduce the variations of the net load (the load 
remaining after subtracting RES power generation) 
of the power system. The proposed method was 
applied to the power system of Crete and evaluated 
for different operation scenarios. The efficiency of 
the method is proved by simulation results and their 
statistical analysis. 

The method proposed in this article comprises a 
number of features listed in the following that can be 
jointly included in other research works very rarely. 

1. A realistic model of EV activity, based on 
real world data, is developed to simulate the 
daily schedule of the EV. The developed model 
considers several parameters associated with the 
EV type, driver behavior and the characteristics 
of the area the EV is travelling. In this way, the 
charging time periods and the energy needs of 
the EV are estimated. 
2. A simple and easy to apply charging 
optimization method at EV level is proposed. It 
is based on the estimation of a virtual electricity 
price which is defined in a way to incorporate the 
real electricity price and the net load of the 
power system. In this way a multi-target optimal 
charging problem is solved taking into account 
all associated technical and operational 
constraints of the EV charging system and 
battery. 
3. The proposed method can be easily applied 
as it does not employ time consuming 
computations and does not require sophisticated 
hardware. The inputs required by the proposed 
method are only the forecasts of electricity price, 
RES production and power system load. The 
above inputs are available by power system 
operator.  
4. The proposed multi-target optimal charging 
method is integrated with the detailed modeling 
of EV activity to provide an accurate assessment 
of the impacts of their charging to the power 
system load. 

The article is structured as it follows. The 
formulation of EV activity model, the inputs and all 
data used by the model are described in Section 2. 
Moreover, the formulation of PEV optimal charging 
problem is provided in paragraph 2.3. In Section 3 
the method is applied to the power system of Crete 
and detailed simulation results obtained for several 
operation scenarios are presented. The results are 
discussed, and the efficiency of the proposed 
method is highlighted. Finally, the major 
conclusions drawn by this study are provided in the 
concluding section of the paper. 
 
2 Formulation of the Method 
The purpose of this work is to jointly minimize the 
charging cost of EVs plugged into the grid and the 
variation of the net load of the power system to 
alleviate any possible repercussion from RES 
integration. The input data and the implementation 
of the proposed method were based on the 
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exploitation of real-world data as well as realistic 
probability density function where it was necessary 
to simulate the stochastic behavior of system 
components. 

It is noted that it is essential to create realistic 
daily driving schedules of the EVs as they affect 
both charging load throughout the day and 
consequently the total electrical power system load. 

 
 

2.1 General Inputs of the Model 
  

2.1.1 Input Daily Time Series 

The daily forecasts of photovoltaic power 
production, wind power production and electricity 
price are inputs of the developed model. For 
application purposes, real time series of the above 
quantities recorded in Crete power system were 
used. 
 
2.1.2 EV Types 

The selection of the EV types was based mainly on 
their purchase cost. Four different EV models with 
generally affordable cost were chosen as low and 
medium cost EVs are expected to dominate the 
market. Their characteristics e.g. battery capacity, 
maximum/minimum rate of charging in the Results 
Section. 
 
2.2 EV Activity Model 
The basic data which are necessary to produce the 
daily schedule of an EV are stored in a data structure 
with several fields of the general form: EV.field. The 
EV structure consists of vectors and variables stored 
in its fields and are presented next. 
 
2.2.1 Variables 

Single value parameters of the simulated system are 
stored in the respective fields of the EV structure 
which are called next as variables. The most 
significant of them are described next in this 
paragraph.   

𝐸𝑉. 𝑆𝑜𝐶0 denotes the initial state of charge (SoC) 
of the EV at the begging of the simulation. It takes 
values from a normal distribution, with μ=90 and 
σ=3.5. 

𝐸𝑉. 𝑆𝑜𝐶𝑚𝑎𝑥 and 𝐸𝑉. 𝑆𝑜𝐶𝑚𝑖𝑛 refer to the 
maximum and minimum SoC of the EV battery, 
respectively, and depend on the type of battery. 

 𝐸𝑉. 𝑃𝑚𝑎𝑥 and 𝐸𝑉. 𝑃𝑚𝑖𝑛 are the maximum and 
the minimum charge power of the EV battery.  

The specific energy consumption variable, 
EV.Spec_Cons, comprises the typical energy 
consumption per 100km of travel of an EV type.  

 

2.2.2 Vectors 

Multiple value quantities are stored in the respective 
fields of the EV structure, which are called next as 
vectors. The most significant of them are described 
next in this paragraph.   

 (EV. 𝑇𝑟_𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) defines the type of the 
type of EV travel destination travel. Three 
destination types are considered: “home”, “shop- 

social” and “work”. The EV starts its daily schedule 
from home and the algorithm randomly selects the 
next destination according to a predefined 
probability distribution in day time. Travel 
destination highly depends on the starting time of 
the travel. 
 𝐸𝑉. 𝑇𝐷𝑒𝑝 vector comprises the starting time of 
the next trip of the EV (EV departures). The first 
element of the vector is defined randomly using the 
normal distribution, with μ=7.5 and σ=1.5. This 
ensures that most people start their daily schedule 
from home around 7:30 am. The most common 
starting time for social activities and shops is at 
11:00 am to 18:00 pm and for home is at 3:00 pm.   

Let us assume that j denotes the number of the jth 
EV departure then the jth element of 𝐸𝑉. 𝑇𝐷𝑒𝑝 vector 
is estimated by the following equation: 

 
𝐸𝑉. 𝑇𝐷𝑒𝑝(𝑗) = 

𝐸𝑉. 𝐴𝑟𝑟 (𝑗) + 𝐸𝑉. 𝛥𝛵𝑡𝑟(𝑗) + 𝐸𝑉. 𝛥𝛵𝑐ℎ(𝑗)    (1) 
 

 𝐸𝑉. 𝛥𝛵𝑡𝑟 vector comprises the durations of the 
EV trips in a day. It is obtained by using a normal 
distribution with characteristics depending on the 
size of the city the travels take place.   

𝐸𝑉. 𝐴𝑟𝑟 vector comprises the arrival times of 
the EV in a day. According to the calculation of 
𝐸𝑉. 𝑇𝐷𝑒𝑝(𝑗) the jth element of 𝐸𝑉. 𝐴𝑟𝑟 is calculated 
according to the following equation.  

  
𝐸𝑉. 𝑇𝐴𝑟𝑟(𝑗) = 𝐸𝑉. 𝑇𝐷𝑒𝑝(𝑗) + 𝐸𝑉. 𝛥𝛵𝑡𝑟(𝑗)    (2) 

 
 𝐸𝑉. 𝑉𝑒𝑙 vector comprises the travelling speeds 
of the EV during its trips. It is randomly obtained 
using the normal distribution, with μ=35 and σ=7. 
The selection of the distribution was based on the 
assumption that the travelling speed inside a city 
usually ranges between 15 and 55 km/h with an 
average value of 35 km/h. 
 𝐸𝑉. 𝛥𝑆𝑡𝑟 vector comprises the distances covered 
by the EV during its trips in a day. Knowing the EV 
travelling speed and the duration of the jth travel of 
the EV then the jth element of 𝐸𝑉. 𝛥𝑆𝑡𝑟 is estimated 
as in the following: 

 
𝐸𝑉. 𝛥𝑆𝑡𝑟(𝑗) = 𝐸𝑉. 𝑉𝑒𝑙(𝑗) ×  𝐸𝑉. 𝛥𝛵𝑡𝑟(𝑗)    (3) 
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 The time 𝐸𝑉. 𝛥𝛵𝑐ℎ vector comprises the 
durations of the idle periods the EV (charging or 
parking). Its elements are selected randomly by 
using suitable probability density distributions 
depending on the activity of the driver while the EV 
is parked e.g. “home”, “shop - social” or “work”. 
 𝐸𝑉. 𝐶𝑜𝑛𝑠 vector comprises the energy 
consumption during the trips of the EV in a day. 
Knowing the travelled distance 𝐸𝑉. 𝛥𝑆𝑡𝑟 and the 
specific consumption of the EV 𝐸𝑉. 𝑆𝑝𝑒𝑐_𝐶𝑜𝑛𝑠  
then the jth element of the vector is calculated as in 
the following.  

 
𝐸𝑉. 𝐶𝑜𝑛𝑠(𝑗) = 𝐸𝑉. 𝛥𝑆𝑡𝑟(𝑗) × 𝐸𝑉. 𝑆𝑝𝑒𝑐_𝐶𝑜𝑛𝑠 (4) 

 
 The specific energy consumption of the EVs used in 
this work is provided in the Results section. 
 𝐸𝑉. 𝐸𝑎𝑟𝑟 vector comprises the energy stored in 
the battery of the EV when it arrives at its 
destination. Knowing the stored energy at the 
beginning of the jth  travel and the energy consumed 
during it 𝐸𝑉. 𝐶𝑜𝑛𝑠 then the jth element of 𝐸𝑉. 𝐸𝑎𝑟𝑟 
is calculated as in the following. 

 
𝐸𝑉. 𝐸𝑎𝑟𝑟(𝑗) = 𝐸𝑉. 𝐸𝑑𝑒𝑝(𝑗) −  𝐸𝑉. 𝐶𝑜𝑛𝑠(𝑗)        (5) 

 
𝐸𝑉. 𝐸𝑑𝑒𝑝 vector comprises the energy stored in the 
battery at the beginning of a trip. 

In this work, 𝐸𝑉. 𝐸𝑎𝑟𝑟 is also used by the EV 
driver to decide if the EV batteries will be charged 
or not. Specifically, it was assumed that the 
possibility of charging increases linearly with the 
decrease of battery SoC. An indicative SoC – 
probability of charging characteristic used in this 
work, is shown in the Results section. 

  
2.3 PEV optimal charging   
First, a virtual electricity price is estimated in order 
to be used for the optimal charging scheduling of the 
PEVs. The idea behind the formulation of virtual 
electricity price is to combine the information from 
the forecast of the real electricity price and the 
forecast of the net electric power system load in a 
single variable. 

Let us assume that the optimization horizon is 
defined by the arrival and the departure of the EV 
from the parking lot [T0,i Tf,i] and the electricity 
price forecast in of the ith PEV  is normalized as in 
the following,  

 

𝐸𝑃̂(𝑡) =
𝐸𝑃̂(𝑡) − 𝐸𝑃̂𝑚𝑖𝑛

𝐸𝑃̂𝑚𝑎𝑥 − 𝐸𝑃̂𝑚𝑖𝑛

                       (6) 

With, 

𝐸𝑃̂𝑚𝑎𝑥 = max (𝐸𝑃̂(𝑡)) , 𝐸𝑃̂𝑚𝑖𝑛 = min (𝐸𝑃̂(𝑡))   
∀ 𝑡 ∈ [T0,i Tf,i]  (7) 

Where, 𝐸𝑃̂(𝑡)  (in p.u.) is the normalized forecasted 
electricity price, 𝐸𝑃̂(𝑡) (in €/MWh) is the forecasted 
electricity price, 𝐸𝑃̂𝑚𝑖𝑛 (in €/MWh) is the minimum 
electricity price and 𝐸𝑃̂𝑚𝑎𝑥(in €/MWh) is the 
maximum electricity price in the optimization period 
[T0,i Tf,i].   

Let us assume that RES power generation 
forecast in the optimization horizon [T0,i Tf,i]  of the 
ith PEV is 𝑃̂𝑅𝐸𝑆(𝑡) and the respective forecast of 
power system load is 𝑃̂. Then the forecast of the net 
load of the electric power system is,   

𝑃̂𝑛𝑒𝑡 = 𝑃̂ − 𝑃̂𝑅𝐸𝑆(𝑡)                    (8) 
Then the forecasted net load of the power system 

is normalized as in the following, 
 

𝑃̂𝑛𝑒𝑡(𝑡) =
𝑃̂𝑛𝑒𝑡(𝑡) − 𝑃̂𝑛𝑒𝑡,𝑚𝑖𝑛

𝑃̂𝑛𝑒𝑡,𝑚𝑎𝑥 − 𝑃̂𝑛𝑒𝑡,𝑚𝑖𝑛

              (9) 

with, 
𝑃̂𝑛𝑒𝑡,𝑚𝑎𝑥 = max (𝑃̂𝑛𝑒𝑡(𝑡)) , 𝑃̂𝑛𝑒𝑡,𝑚𝑖𝑛 = min (𝑃̂𝑛𝑒𝑡(𝑡))  
 

∀ 𝑡 ∈ [T0,i Tf,i]   (10) 
 
Where, 𝑃̂𝑅𝐸𝑆(𝑡) is the forecasted RES power 
generation, 𝑃̂𝑛𝑒𝑡(𝑡) (in p.u.) is the normalized 
forecasted net load of the power system, 
𝑃̂𝑛𝑒𝑡,min (max)  is the minimum(maximum) value of 
the forecasted net power system load in the 
optimization period.  

Forecasted electricity price and RES power 
generation were normalized as described above in 
order to be integrated in a single variable called next 
as virtual electricity price. 

Then the virtual electricity price (in p.u.) can be 
defined as, 
 

𝐸𝑃′(𝑡) = 𝑎 ∙ 𝐸𝑃̂(𝑡) + (1 − 𝑎) ∙ 𝑃̂𝑛𝑒𝑡(𝑡)        (11) 
 
Where,  𝑎 is a parameter varying between [0-1] 
defining the weight of the electricity price in the 
calculation of virtual electricity price. The remaining 
part of the virtual electricity price corresponds to the 
net load of the electric power system. α can be set by 
the operator of the system. 

The optimal PEV charging problem solved in 
this work is defined in (12)-(17) where the “virtual 

charging cost” of the EVs is minimized. In this way, 
the charging power is appropriately estimated to 
jointly minimize the real charging cost and the 
variations of the net load of the electric power 
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system taking into account the technical constraints 
of the EV battery and its charging system.  
 

𝑚𝑖𝑛
𝑃𝑖

∗
   ∑ 𝑃𝑖

∗(𝑡) ∙ 𝐸𝑃′(𝑡) ∙ 𝛥𝑡

𝑡=𝑇0,𝑖:𝛥𝑡:𝑇𝑓,𝑖

            (12) 

Subject to,  

𝑃𝑖
∗(𝑡) ≤ 𝑃𝑖,𝑚𝑎𝑥  (𝑡)    ∀ 𝑡 ∈  [ 𝑇0,𝑖 , 𝑇𝑓,𝑖 ]                (13) 

𝑃𝑖
∗(𝑡) ≥ 𝑃𝑖,𝑚𝑖𝑛(𝑡)     ∀ 𝑡 ∈  [ 𝑇0,𝑖 , 𝑇𝑓,𝑖]                (14)                                  

𝐸𝑖 (𝑇𝐴𝑟𝑟,𝑖) + ∑ 𝑃𝑖
∗(𝑡) ∙ 𝛥𝑡 

𝑇0,𝑖:𝛥𝑡:𝑡

≥ 𝐸𝑖,𝑚𝑖𝑛  

   ∀   𝑡 ∈  [  𝑇0,𝑖 , 𝑇𝑓,𝑖]    (15) 

𝐸𝑖 (𝑇0,𝑖) + ∑ 𝑃𝑖
∗(𝑡) ∙ 𝛥𝑡

𝑇0,𝑖:𝛥𝑡:𝑡

≤ 𝐸𝑖,𝑚𝑎𝑥 

      ∀   𝑡 ∈  [  𝑇0,𝑖 , 𝑇𝑓,𝑖]    (16) 

𝐸𝑖 (𝑇0,𝑖) + ∑ 𝑃𝑖
∗(𝑡) ∙ 𝛥𝑡

𝑇0,𝑖:𝛥𝑡:𝑇𝑓,𝑖

=  𝐸𝑖 (𝑇𝑓,𝑖)       (17) 

Where, i denotes the ith EV, 𝑃𝑖
∗(𝑡) is the optimal 

active power the EV exchanges with the electricity 
grid (load convention),  𝛥𝑡 is the used time interval 
(12 min in this study), and 𝐸𝑖  is the energy stored 
in the battery of the ith EV.  

It should be noted that there are no particular 
numerical stability problems to be addressed in this 
method. Instability could occur if the proposed 
optimal PEV charging method in not able to find a 
solution. However, this will not happen due to the 
scale of the problem as it is of small scale, but only 
when the required charging energy cannot be met by 
the available charging power and charging duration. 
This is solved by a preliminary check of the above 
and if the charging targets cannot be met then they 
are suitably re-calculated and dumb charging is 
applied as it is shown in Fig. 1.  

 
2.4 Tour Generation Algorithm  
The daily schedule and the optimal charging process 
of each EV are synopsized next and shown in Fig. 1. 
 All EVs depart from ‘home’ at time obtained from 

the respective probability density distribution. 
 The next destination as well the duration of the trip 

are generated using respective probability density 
distributions. 

 The arrival time of the EV is obtained using the 
duration of the trip.  

 When the EV arrives to the parking the charging 
decision is made according to the SoC of its 
battery.  

 The duration of PEV charging is obtained by using 
suitable probability density distributions according 
to the type of the activity of the EV driver is 
having during the charging period. 

 The proposed optimal charging method to the PEV 
or dumb charging is applied if this is decided by 
the driver or the parking duration and the available 
maximum charging power are not enough to 
achieve the desired SoC target. 

 

  
Fig. 1 Algorithm of the EV daily schedule 

estimation and charging optimization.  
 
 

 

3 Results 
The proposed method was used to estimate the 
impact of PEV charging to the load of the electric 
power system of Crete.    

According to the National Energy and Climate 
Plan target the EV penetration rate should reach 
30% of vehicle’s number in 2030. In the following, 
we chose to apply an aggressive scenario where the 
number of EVs is considered to correspond to the 
40% of the number of total vehicles in Crete by 
2030. In addition, the total fleet of vehicles in Crete 

START

 Selection of Travel Type Destination

 Set Travel Duration

 Estimate Arrival Time

 Estimate Energy Consumption

 Estimate Stored Energy at the destination

T<24

YES

NO

 Departure location= Home  
 Set departure time using the 

respective distribution 

END

Charging?

 Set Parking Duration

 Set SoC target

 Estimate Virtual Electricity Price

 Constrained Optimization of  PEV Charging 

YES

SoCdep=SoCarr
NO

t=t+ΔΤparking

Is parking duration and available 
charging power enough?

YES

 Set new maximum SoC 

target that could be 
achieved with the 
available maximum 
charging power 

 Apply  Dumb  charging  

NO
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is estimated to amount approximately to 500,000 in 
2030 [21]. The above lead to of the assumption that 
the number of EVs in Crete in 2030 will 
approximate 200,000. This total number of EVs was 
dispatched to the four bigger Cretan cities, namely, 
Heraklion, Chania, Rethimno and Agios Nikolaos 
according to their populations. Hence, the EV 
activity and charging load were calculated for each 
city separately according to their local 
characteristics and sizes.  

In Fig. 2, the probability distributions used for 
the reproduction of the initial SoC, the first 
departure time and the travelling speed of the EVs 
are shown. In Fig. 3, the distribution of the 
probability of specific EV travel destination types 
with regard to the daytime are shown. 

Normal distribution has been used to simulate the 
travel duration in the major cities of Crete. More 
specifically, normal distributions with μ=15, 20, 13, 
9 and σ=3.5, 5, 2.7, 2.2 were used to reproduce 
travel duration in Chania, Heraklion, Rethimnon and 
Agios Nikolaos, respectively. The respective 
distributions are shown in Fig. 4. 

 

Fig. 2 Probability distributions of the initial 
departure time, travelling speed and initial SoC. 

Fig. 3 Probability of the EV travel destination types 
over the day. 

  Fig. 4 EV travel duration probability distributions. 
 

Fig. 5 Parking duration probability distributions for 
different EV’s driver activities while parking.  

 Fig. 6 Probability of charging according to the state 
of charge of PEV’s battery. 

The probability distributions used to estimate 
parking duration while staying home, being at work, 
shopping or having social activities are shown in 
Fig. 5. Finally, the probability of the EV to  charge 
its battery with regard to its SoC before plugging 
into the charger is shown in Fig. 6.  

Next, three application scenarios of the proposed 
method are presented.  

In Scenario 1 (SC1), the optimal charging of the 
PEVs is done using a virtual electricity price formed 
only by the normalized net electric load of Crete.  
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In Scenario 2 (SC2), the optimal charging of the 
PEVs is done using a virtual electricity price formed 
only by the normalized electricity price.  

In Scenario 3 (SC3), the optimal charging of the 
PEVs is done using a virtual electricity price formed 
by the normalized net electric load of Crete and the 
normalized electricity price with a weight of 50%.  

It was also considered that the 75% of the PEVs 
will apply the proposed smart charging method. The 
remaining 25% will apply dumb charging, absorbing 
a constant amount of power during the charging 
period.  

Moreover, the scenario SC3 was divided in three 
sub-scenarios to examine different acceptance rates 
of V2G and V1G (optimal charging without 
injecting power to the network). More specifically, it 
was considered in sub-scenarios SC3.a, SC3.b and 
SC3.c that 70%, 60% and 40% of the PEVs 
applying smart charging will use V2G, respectively. 
The remaining will use V1G. All the examined 
scenarios are tabulated in Table 1. 

In Fig. 7, the time series used for the electric load 
of the power system of Crete, the wind power 
production, the PV power production and their sum, 
are shown. In Fig. 8, the used electricity price time 
series is shown. 

 
Table 1      Examined operation scenarios. 

Method Application Scenarios 

 SC1 SC2 SC3 

   SC3(a) 

Low 

V2G 

SC3(b) 

Medium 

V2G 

SC3© 

High 

V2G 

a 0 1 0.5 0.5 0.5 

Smart 

Charging 

(% of PEV 

population)   

75 75 75 75 75 

Dumb 

Charging 

(% of PEV 

population)  

25 25 25 25 25 

V2G 

(% of PEV 

population) 

45 45 30 45 52.5 

V1G 

(% of PEV 

population) 

30 30 45 30 22.5 

 

Table 2   PEVs’ Parameters 
EV Model 1 2 3 4 

Pmax (kW) 4.6 3.7 11 7.2 

Emax (kWh) 17.6 16 35 36.8 
Specific Cons.  

(kWh/100km)  

 
25. 5 

 

 
25.8 

 

 
25 

 

 
26 

 

Fig. 7 Crete load, Wind and PV power production 
time series. 

Fig. 8 Electricity price. 

 
Fig. 9 Total power that PEVs exchange with the 
network.  

 
 
Fig. 10 Crete net load and net load with PEVs’ total 
power for SC1, SC2 and SC3.  
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In Fig. 9, the total power of the PEVs is depicted 

for scenarios SC1-SC3. In SC1, PEVs inject power 
to the grid when the net load of the system features 
peaks i.e. 14:30 am and 22:00 am) while they absorb 
power when the net load of the system features low 
value i.e. 05:00 am - 07:00 am and 17:00 pm. In 
SC2, PEVs absorb more power, when the electricity 
price is low (05:00 am and 15:00 pm) and inject 
power to the grid when the electricity price is high. 
In SC3, PEVs absorb more power when the 
electricity price and at the same time the net load 
demand are low (05:00 am and 15:00 pm) and inject 
power to the grid when the electricity price and the 
net load demand are high (10:00 am - 13:00 pm and 
18:00 pm –  21:00 pm).  

In Fig. 10 the net load of Crete with the load of 
the EVs added is depicted for SC1-SC3. In 
particular, SC1 helps the network to feature smaller 
net load variations with peak load shaving and 
valley filling applied at the appropriate time periods. 
Hence, the major objective to balance the load curve 
is achieved. In SC2, only the electricity price is 
taken into consideration and not the net load of the 
power system while both factors are jointly taken 
into consideration in SC3. 

 
Fig. 11 PEVs’ total power for different V2G 
acceptance rates.  

 

Fig. 12 Net load with PEVs’ total power for 
different V2G acceptance rates. 

 
Fig. 13 Charging power of two indicative PEVs. 

 

 
Fig. 14 Stored energy of two indicative PEVs. 

 
In Fig. 11 and Fig. 12 the total electric power of 

the PEVs is depicted for different V2G acceptance 
rate scenarios (SC3.a-SC3.c). It is observed that the 
bigger the V2G penetration is, the better balance of 
the load is achieved and the lower the charging cost.  

In Fig. 13, the optimal charging power 
trajectories of two indicative PEVs are shown. 
PEV1 uses V1G while PEV2 uses V2G. Obviously, 
the two PEVs adjust optimally their charging power 
according to the formed virtual electricity price. The 
two trajectories were taken under the SC3 operation 
scenario. The respective trajectories of the stored 
electric energy of the two PEVs are shown in Fig. 
14.     

The daily operation cost of the electric power 
system of Crete and the charging cost of the PEVs 
for SC1-SC3 are tabulated in Table 3. The obtained 
costs confirm the above remarks.  

Furthermore, the standard deviation of the sum of 
net load of Crete power system with the total PEV 
load is given in Table 4. It is noted that the standard 
deviation of the net load of Crete power system is 
44.24MW. The obtained results confirm that the 
proposed method decreases the deviation of the net 
load of the power system with the biggest reduction 
obtained in SC1 where only the net load is used for 
the definition of the virtual electricity price (α=1). 
Moreover, the bigger the V2G the lower the 
obtained standard deviation of the sum of the net 
load of the power system and the PEV load.   
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Finally, t-test was applied to the results obtained 
for total PEV load and virtual electricity price. The 
total load of the PEVs will behave in an opposite 
way to the virtual electricity price i.e. when virtual 
electricity price is increasing then PEV load is 
decreasing and vice versa. Hence, the transformation 
and normalization of the equations (18) (19) was 
applied to the two variables to ensure the above 
remark and zero mean value. The t-test was 
successful for all examined operation scenarios. 

 

𝐸𝑃𝑡
′(𝑡) =

𝑚𝑒𝑎𝑛 (𝐸𝑃′ (𝑡)) − 𝐸𝑃′ (𝑡)

𝐸𝑃𝑚𝑎𝑥
′

       (18) 

 

𝑃𝑃𝐸𝑉,𝑡(𝑡) =
𝑃𝑃𝐸𝑉(𝑡) − 𝑚𝑒𝑎𝑛 (𝑃𝑃𝐸𝑉(𝑡))

𝑃𝑃𝐸𝑉,𝑚𝑎𝑥

       (19) 

 
Where, 𝐸𝑃𝑡

′ and 𝑃𝑃𝐸𝑉,𝑡 denote the transformed 
virtual electricity price and total PEV load used to 
apply the t-test, respectively. 
 

Table 3  Operation Cost 
PEV Charging Cost 

(x106 €) 
Power System Operation 

Cost (x106 €) 
SC1 SC2 SC3 SC1 SC2 SC3 

0.01455 0.00918 0.01159 0.9737 0.9684 0.9708 
 

 
Table 4   Standard deviation of the net load and 

PEV load of Crete electric power system  
 SC1 SC2 SC3(a) SC3(b) SC3(c) 

σ(MW) 36.42   41.55 40.21 38.43 37.13 

 
 
4 Conclusion 
A method that simulates accurately the daily activity 
schedule of EVs and optimizes their charging 
according to it and taking into consideration 
multiple objectives is proposed in this article. The 
method can be easily applied while it provides to the 
user a powerful tool to analyze in detail the effects 
of PEVs’ charging on the power system taking into 
account a multitude of parameters. The proposed 
method was applied to the power system off Crete 
under several different application scenarios. The 
obtained simulation results prove that a significant 
reduction in PEVs’ charging cost in conjunction 
with the reduction of power system load variability 
is possible.  Specifically, the method can help the 
power system to feature smaller load variations 
applying peak shaving and valley filling while the 

charging cost of the PEVs is reduced at the same 
time.  

A future expansion of this work could be the 
application of the proposed method at PEV 
aggregator level and the modelling of the electric 
power generation and transmission systems. 
Moreover, some peripheral applications of artificial 
intelligence could be exploited. More specifically, 
the forecast of the next day PEV activity level, 
electricity price, RES production and charging 
decision based on the state of charge of PEV battery, 
driver’s anxiety, electricity price level, V2G 
application etc. could be exploited, provided that the 
required training data are available. 
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