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Abstract: - A commensal symbiosis model with Holling II functional response and feedback controls is proposed
and studied in this paper. The system admits four equilibria, and three boundary equilibria are unstable, only
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1 Introduction
The aim of this paper is to investigate the global sta-
bility property of the following commensal symbio-
sis model with Holling type functional response and
feedback controls :

ẋ = x
(
b1 − a11x+

a12y

a13 + a14y
− α1u1

)
,

ẏ = y(b2 − a22y − α2u2),

u̇1 = −η1u1 + a1x,

u̇2 = −η2u2 + a2y,

(1)

where x(t) and y(t) denote the density of the first
and second species at time t. u1 and u2 are feedback
control variables. All parameters used in this model
are positive.

During the lase decade, many scholars inves-
tigated the dynamic behaviors of the mutualism
model or commensalism model ([1]-[30]). Also,
due to it is importance, many scholars ([31]-[41])
investigated the dynamic behaviors of the ecosystem
with feedback controls. however, it is very strange
that to this day, only one paper[20] considered the
influence of feedback controls to the commensalism
models. In [20], Han and Chen proposed and studied
the following Lotka-volterra commensal symbiosis
model with feedback controls:

ẋ = x(b1 − a11x+ a12y − α1u1),

ẏ = y(b2 − a22y − α2u2),

u̇1 = −η1u1 + a1x,

u̇2 = −η2u2 + a2y.

(2)

By constructing a suitable Lyapunov function, the au-
thors showed that the positive equilibrium of the sys-

tem is globally stable.
On the other hand, there were also several schol-

ars ([7], [16], [17],[22], [23],[26]) argued that the the
relationship of two commensalism model should be
described by the suitable functional response, for ex-
ample, Li, Lin and Chen[17] studied the positive peri-
odic solution of a discrete commensalism model with
Holling II functional response. The system takes the
form

x1(k + 1) = x1(k) exp
{
a1(k)− b1(k)x1(k)

+
c1(k)x2(k)

e1(k) + f1(k)x2(k)

}
,

x2(k + 1) = x2(k) exp {a2(k)− b2(k)x2(k)},
(3)

Wu [7] argued that between two species nonlinear
type of relationship between two species is more fea-
sible, and she established the following two species
commensal symbiosis model

dx

dt
= x

(
a1 − b1x+

c1y
p

1 + yp

)
,

dy

dt
= y(a2 − b2y),

(4)

where ai, bi, i = 1, 2 p and c1 are all positive con-
stants, p ≥ 1. The results of [7] is then generalized
by Lei [23] and Wu, Li and Lin[16] to the commen-
salism model with Allee effect.

Stimulated by the above works, we propose the
system (1). As far as system (1) is concerned, since
it seems that the system is similar to system (2),
only with the cooperation term a12xy in system (2)
changed to the term with Holling type functional
response a12xy

a13 + a14y
in system (1). One may expect
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the analysis method used in Han and Chen[20] could
be applied to system (1), however, this is impossible.
In their paper, Han and Chen could deal with the
stability property of the system (1) by constructing
suitable Lyapunov function, by using this method,
one could always obtain some interesting result about
the linear system. When it come to the nonlinear
case, it is very difficult to deal with the nonlinear
term to ensure the negative definite of the Lyapunov
function; We mention here that in [7], Wu investigat-
ed the global stability of the equilibrium of system
(4) by using the Dulac criterion, which could only be
applied to the two dimensional system, and could not
be applied to the higher dimensional system.

The aim of this paper, is to investigated the stabil-
ity property of the system (1). To deal with this, we
need to develop some new analysis technique, more
precisely, we will combine the analysis technique of
Han and Chen [20], Wu[7] and Yue [42], to overcome
the difficulty of nonlinearity.

The paper is arranged as follows. We will investi-
gate the existence and locally stability property of the
equilibria of system (1) in section 2. In section 3, we
first establish a global stability result of single species
feedback control system via the Lyapunov function,
after that, by developing the analysis technique of
Yue[32], more precisely, by using the differential
inequality theory and the comparison theorem, we
investigate the global attractivity property of the
positive equilibrium of system (1). In section 4,
we present some numerical simulations to show the
feasibility of the main result. We end this paper by a
briefly discussion.

2 Existence and local stability of
Equilibria

This section we will focus our attention to investigate
the existence and local stability property of the system
(1).

The equilibria of system (1) is determined by the
following system

x
(
b1 − a11x+

a12y

a13 + a14y
− α1u1

)
= 0,

y(b2 − a22y − α2u2) = 0,

−η1u1 + a1x = 0,

−η2u2 + a2y = 0.
(5)

The system always admits three boundary equilibria:

A1(0, 0, 0, 0),

A2

( β1b1
a1α1 + a11η1

, 0,
a1b1

a1α1 + a11η1
, 0
)
,

A3

(
0,

b2η2
a2α2 + a22η2

, 0,
a2b2

a2α2 + a22η2

)
.

Also, system (1) admits a unique positive equilibrium
A4

(
x∗, y∗, u∗1, u

∗
2

)
, where

x∗ =

b1 +
a12y

∗

a13 + a14y∗

a11 +
α1a1
η1

,

y∗ =
b2

a22 +
α2a2
η2

,

u∗1 =
a1x

∗

η1
,

u∗2 =
a2y

∗

η2
.

(6)

Obviously, x∗, y∗, u∗1 and u∗2 satisfy the equations

b1 − a11x
∗ +

a12y
∗

a13 + a14y∗
− α1u

∗
1 = 0,

b2 − a22y
∗ − α2u

∗
2 = 0,

−η1u
∗
1 + a1x

∗ = 0,

−η2u
∗
2 + a2y

∗ = 0.

(7)

We shall now investigate the local stability prop-
erty of the above equilibria.

The variational matrix of system (1) is

J(x, y, u1, u2)

=


A11 A12 −α1x 0

0 A22 0 −yα2

a1 0 −η1 0

0 a2 0 −η2

 ,
(8)

where

A11 = b1 − 2a11x+
a12y

a14y + a13
− α1u1,

A12 = x

(
a12

a14y + a13
− a12ya14

(a14y + a13)
2

)
,

A22 = −2a22y − α2u2 + b2.

Theorem 2.1 A1(0, 0, 0, 0) is unstable.
Proof. From (8) we could see that the Jacobian
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matrix of the system about the equilibrium point
A1(0, 0, 0, 0) is given by

b1 0 0 0

0 b2 0 0

a1 0 −η1 0

0 a2 0 −eta2

 . (9)

The characteristic equation of above matrix is

(λ− b1)(λ− b2)(λ+ η1)(λ+ η2) = 0. (10)

Hence, it has two positive characteristic root
λ1 = b1, λ2 = b2, consequently, A1(0, 0, 0, 0) is
unstable. This ends the proof of Theorem 2.1.

Theorem2.2A2

( β1b1
a1α1 + a11η1

, 0,
a1b1

a1α1 + a11η1
, 0
)

is unstable.
Proof. From (8) we could see that the Jacobian
matrix of the system about the equilibrium point
A2

( β1b1
a1α1 + a11η1

, 0,
a1b1

a1α1 + a11η1
, 0
)
is given by


B11 B12 B13 0

0 b2 0 0

a1 0 −η1 0

0 a2 0 −eta2

 . (11)

where

B11 = b1 −
2a11η1b1

a1α1 + a11η1
− α1a1b1

a1α1 + a11η1
,

B12 =
η1b1a12

(a1α1 + a11η1)a13
,

B13 = − η1b1α1

a1α1 + a11η1
.

The characteristic equation of above matrix is

(λ− b2)(λ+ η2)
(
C1λ

2 + C2λ+ C3

)
= 0, (12)

where

C1 = a1α1 + a11η1,

C2 = a1α1η1 + a11η1b1 + a11η
2
1,

C3 = a1η1b1α1 + a11b1η
2
1.

Hence, it has a positive characteristic root λ1 = b2,
consequently, A2 is unstable. This ends the proof of
Theorem 2.2.

Theorem2.3A3

(
0,

b2η2
a2α2 + a22η2

, 0,
a2b2

a2α2 + a22η2

)

is unstable.
Proof. From (8) we could see that the Jacobian
matrix of the system about the equilibrium point
A3

(
0,

b2η2
a2α2 + a22η2

, 0,
a2b2

a2α2 + a22η2

)
is given by


D11 0 0 0

0 D22 0 D24

a1 0 −η1 0

0 a2 0 −eta2

 , (13)

where

D11 = b1 +
a12b2η2

(a2α2 + a22η2)∆1
,

D22 = − 2a22b2η2
a2α2 + a22η2

− α2a2b2
a2α2 + a22η2

+ b2,

D24 = − b2η2α2

a2α2 + a22η2
,

∆1 =
a14b2η2

a2α2 + a22η2
+ a13.

The characteristic equation of above matrix is

(λ−D11)(λ+ η1)
(
E1λ

2 +E2λ+E3

)
= 0, (14)

where

E1 = a2α2 + a22η2,

E2 = a2α2η2 + a22η2b2 + a22η
2
2,

E3 = a2η2b2α2 + a22b2η
2
2.

Hence, it has a positive characteristic root λ1 = D11,
consequently, A3 is unstable. This ends the proof of
Theorem 2.3.

Theorem 2.4 A4

(
x∗, y∗, u∗1, u

∗
2

)
is locally asymptot-

ically stable.
Proof. From (8) we could see that the Jacobian
matrix of the system about the equilibrium point
A4

(
x∗, y∗, u∗1, u

∗
2

)
is given by

−a11x
∗ m −α1x

∗ 0

0 −a22y
∗ 0 −α2y

∗

a1 0 −η1 0

0 a2 0 −eta2

 ,

(15)
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where

m = x∗
(

a12
a14y∗ + a13

− a12y
∗a14

(a14y∗ + a13)
2

)
.

The characteristic equation of above matrix is

(λ2 + F1λ+ F2)
(
λ2 +G1λ+G2

)
= 0, (16)

where

F1 = a22y
∗ + η2,

F2 = a2α2y
∗ + a22η2y

∗,

G1 = a11x
∗ + η1,

G2 = a1α1x
∗ + a11η1x

∗.

From F1, F2, G1, G2 are all positive constants, one
could easily see that four roots of equation (16)
is negative. Consequently, A4

(
x∗, y∗, u∗1, u

∗
2

)
is

locally asymptotically stable. This ends the proof of
Theorem 2.4.

3 Global attractivity
We had showed in the previous section system (1) ad-
mits four equilibria, however, only the positive equi-
librium A4

(
x∗, y∗, u∗1, u

∗
2

)
is locally asymptotically

stable, while the other three equilibria are all unsta-
ble. Now, one interesting issue proposed: Is it possi-
ble for us to find out the suitable conditions to ensure
the positive equilibrium A4

(
x∗, y∗, u∗1, u

∗
2

)
be glob-

ally asymptotically stable?
We will give the affirm answer to this issue, more

precisely, we will prove the following result.

Theorem 3.1 A4

(
x∗, y∗, u∗1, u

∗
2

)
is globally attrac-

tive.
To prove this result, we need the following Lem-

ma. The result of the Lemma seems simple, however,
sine our proof of Theorem 3.1 deeply depend on the
Lemma, for the sake of completeness, we also give a
detail proof of the Lemma.

Let us consider the following single species
feedback control ecosystem.

dx

dt
= x(a− bx− cu),

du

dt
= −eu+ fx,

(17)

where a, b, c, d, e are all positive constants. The
system (17) admits a unique positive equilibrium

A(x∗, u∗), where

x∗ =
a

b+
cf

e

, u∗ =
f

e
x∗.

Concerned with the stability property of this equilib-
rium, we have the following result.
Lemma 3.1 A(x∗, u∗) is globally stable.
Proof. Obviously, A(x∗, u∗) satisfies the equation

a− bx∗ − cu∗ = 0,

−eu∗ + fx∗ = 0,
(18)

Now let's construct a Lyapunov function

V =
(
x− x∗ − x∗ ln x

x∗

)
+

c

2f
(u− u∗)2, (19)

Calculating the derivative along the solution of
system (17), we have

dV

dt

= (x− x∗)(a− bx− cu)

+
c

f
(u− u∗)(−eu+ fx)

= (x− x∗)(bx∗ + cu∗ − bx− cu)

+
c

f
(u− u∗)(−eu+ fx+ eu∗ − fx∗)

= (x− x∗)
(
b(x∗ − x) + c(u∗ − u)

)
+
c

f
(u− u∗)

(
− e(u− u∗) + f(x− x∗)

)
= −b(x− x∗)2 − ce

f
(u− u∗)2.

(20)
Thus dV

dt
< 0 strictly for all x > 0, u > 0 except

the positive equilibrium P (x∗, u∗), where dV

dt
= 0.

Thus, V (t) satisfies Lyapunov's asymptotic stability
theorem, and the positive equilibrium P (x∗, u∗) of
system (17) is globally stable. This ends the proof of
Lemma 3.1.

Proof of Theorem 3.1. Noting that in (1), the second
and forth equations are independent of the variable x
and u1, hence, we could consider the following sub-
system previously.

ẏ = y(b2 − a22y − α2u2),

u̇2 = −η2u2 + a2y,
(21)
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Form Lemma 3.1, the unique positive equilibrium
(y∗, u∗) of system (20) is globally stable, where

y∗ =
b2

a22 +
α2a2
η2

,

u∗2 =
a2y

∗

η2
.

(22)

Hence,
lim

t→+∞
y(t) = y∗,

lim
t→+∞

u2(t) = u∗2.
(23)

For ε > 0 enough small, (23) implies that there exists
a enough T such that

y∗ − ε < y(t) < y∗ + ε. (24)

For t > T , from the first and third equations in (1)
and (23), we have

ẋ = x
(
b1 − a11x+

a12y

a13 + a14y
− α1u1

)
≤ x

(
b1 − a11x+

a12(y
∗ + ε)

a13 + a14(y∗ + ε)

−α1u1
)
,

u̇1 = −η1u1 + a1x,

(25)
Now let us consider the system

ẇ1 = w1

(
b1 − a11w1 +

a12(y
∗ + ε)

a13 + a14(y∗ + ε)

−α1v1
)
,

v̇1 = −η1v1 + a1w1.
(26)

Form Lemma 3.1, the unique positive equilibri-
um (w∗

1(ε), v
∗
1(ε)) of system (26) is globally stable,

where

w∗
1(ε) =

b1 +
a12(y

∗ + ε)

a13 + a14(y∗ + ε)

a11 +
α1a1
η1

,

v∗1(ε) =
a1w

∗
1

η1
.

(27)

From (25)-(27), we have

lim sup
t→+∞

x(t) ≤ lim
t→+∞

w1(t) = w∗
1(ε),

lim sup
t→+∞

u1(t) ≤ lim
t→+∞

v1(t) = v∗1(ε).
(28)

For t > T , from the first and third equations in (1)
and (24), we also have

ẋ = x
(
b1 − a11x+

a12y

a13 + a14y
− α1u1

)
≥ x

(
b1 − a11x+

a12(y
∗ − ε)

a13 + a14(y∗ − ε)

−α1u1
)
,

u̇1 = −η1u1 + a1x,

(29)
Now let us consider the system

ẇ2 = w2

(
b1 − a11w2 +

a12(y
∗ − ε)

a13 + a14(y∗ − ε)

−α1v2
)
,

v̇2 = −η1v2 + a1w2.
(30)

Form Lemma 3.1, the unique positive equilibri-
um (w∗

2(ε), v
∗
2(ε)) of system (29) is globally stable,

where

w∗
2(ε) =

b1 +
a12(y

∗ − ε)

a13 + a14(y∗ − ε)

a11 +
α1a1
η1

,

v∗2(ε) =
a1w

∗
2

η1
.

(31)

From (29)-(31), we have

lim inf
t→+∞

x(t) ≥ lim
t→+∞

w2(t) = w∗
2(ε),

lim inf
t→+∞

u1(t) ≥ lim
t→+∞

v2(t) = v∗2(ε).
(32)

From (28) and (32) we have

w∗
2(ε) = lim

t→+∞
w2(t) ≤ lim inf

t→+∞
x(t)

≤ lim sup
t→+∞

x(t) ≤ lim
t→+∞

w1(t) = w∗
1(ε),

v∗2(ε) = lim
t→+∞

v2(t) ≤ lim inf
t→+∞

u1(t)

≤ lim sup
t→+∞

u1(t) ≤ lim
t→+∞

v1(t) = v∗1(ε).

(33)
Noting that

wi(ε) → x∗, vi(ε) → u∗1 as ε → 0, i = 1, 2.
(34)

Since ε is enough small positive constant, setting ε →
0 in (33) leads to

lim
t→+∞

x(t) = x∗ lim
t→+∞

u1(t) = u∗1. (35)
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(23) and (35) show thatA4

(
x∗, y∗, u∗1, u

∗
2

)
is globally

attractive. This ends the proof of Theorem 3.1.

4 Numeric simulations
In this section, we provide an example to illustrate the
theoretical result by numerical simulations.
Example 4.1.

ẋ = x
(
1− x+

3y

2 + 2y
− 3u1

)
,

ẏ = y(3− 2y − 2u2),

u̇1 = −2u1 + 3x,

u̇2 = −u2 + 2y.

(36)

Here, corresponding to system (1), we choose b1 =
1, a11 = 1, a12 = 3, a13 = a14 = 2, α1 = 3, b2 =
3, a22 = 2, α2 = 2, η1 = 2, a1 = 3, η2 = 1, a2 =
2. By simple computation, one could easily see that
the system (36) admits a unique positive equilibrium
A4(0.27, 0.5, 0.41, 1), from Theorem 3.1, A4 is glob-
ally attractive. Numeric simulations (Fig.1 and 2) also
support this assertion.

Figure 1: Phase portraits of the first componen-
t x and third component u1 in system (36) with
the initial condition (x(0), y(0), u1(0), u2(0)) =
(0.5, 2, 0.5, 0.5), (1, 2, 1, 1), (1.5, 2, 1.5, 1.5) and
(2, 2, 2, 2), respectively.

5 Conclusion

In [20], Han and Chen proposed a Lotka-Volterra
commensalism system with feedback controls (i.e.,
system (2), by constructing some suitable Lyapunov
function, they showed that system admits a unique

Figure 2: Phase portraits of the second and
third component y and forth componen-
t u2 in system (36) with the initial condition
(x(0), y(0), u1(0), u2(0)) = (0.5, 2, 0.5, 0.5),
(1, 2, 1, 1), (1.5, 2, 1.5, 1.5) and (2, 2, 2, 2),
respectively.

positive equilibrium which is globally stable. Stim-
ulated by the works of Han and Chen[20], Wu, Li and
Zhou[7] and Li, Lin and Chen[17], we propose a com-
mensalism systemwith Holling II functional response
and feedback controls.

With the introduction of the nonlinear functional
response, the method used in [20] could not be ap-
plied to our case. However, we find that in system
(1), the second and forth equations are independent
of variable x and u1, this stimulate us to investigate
the dynamic behaviors of subsystem (1) firstly. By
applying the differential inequality theory and com-
parison theorem of differential equation, we finally
show that the unique positive equilibrium of system
(1) is globally attractive.

It is well known that the system with Allee effec-
t may have very complex dynamic behaviors, to this
day, still no scholar propose the commensalismmodel
with both Allee effect and feedback controls, whether
the idea of this paper could be applied to that case is
still unknown, we will try to do some work on this
direction.
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