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Abstract: - A new smooth sliding mode control design methodology based on Lagrange mean value theorem is 
proposed for stabilization of single input delayed systems. The Lagrange mean value theorem as a basic theorem of 
calculus is used for the design of linear sliding mode time-delay controller for the first time. This controller satisfies the 
sliding condition using a Zhou and Fisher type continuous control law eliminating the chattering effect. The 
constructive delay-dependent asymptotically stable sliding conditions are obtained by using the augmented Lyapunov-
Krasovskii functionals and formulated in terms of simple (4x4)-matrix inequality with scalar elements. Developed 
design approach can be extended to robust stabilization of sliding system with unknown but bounded input delay. The 
maximum upper bounds of delay size can be found by using simple optimization algorithms. Helicopter hover control 
is considered as a design example for illustrating the usefulness of smooth sliding mode approach. Unstable helicopter 
dynamics are successfully stabilized by using linear sliding mode time-delay controller. For example, settling time is 
about 20 sec. Therefore, simulation results confirmed the effectiveness of proposed design methodology. Apparently, 
the proposed method has a great potential in design of time-delayed controllers. 
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1   Introduction 
Time-delay effect is frequently encountered in oil-
chemical systems, metallurgy and machine-tool process 
control, nuclear reactors, bio-technical systems missile-
guidance and aircraft control systems, aerospace remote 
control and communication control systems, etc. The 
presence of delay effect complicates the analysis and 
design of control systems. Moreover, time delay effects 
in state vector, especially in control input degrades the 
control performances and make the closed–loop 
stabilization problem challenging. A common design 
method of input-delayed systems is well known Smith 
predictor control to cancel the effect of time-delay. 
Smith predictor is a popular and very effective long 
delay compensator for stable processes. The main 
advantage of the Smith predictor control method is that, 
the time-delay is eliminated from the characteristic 
equation of the closed-loop system. Classical Smith 
predictor was suggested by Smith [1], [2]. Modified 
Smith predictor scheme’s have been advanced by 
Marshall [3], Aleviskas and Seborg [4], Watanabe and 
Ito [5], [6], Al-Sunni and Al-Neymer [7], Majhi and 
Atherton [8]. 
The other important control design method of input-
delayed systems is the reduction method that was 
suggested by Kwon and Pearson  [9]. 

Recently several new variable structure control design 
methods for stabilization of various classes of systems 
without time-delay are developed, for example by Wang, 
Lee and Juang [10], Lee and Xu [11], Cao and Xu [12], 
[13], Choi [14], Edwards, Spurgeon and Hebden [15], 
Sabanovic, Fridman and Spurgeon [16], Jafarov [17]-
[19], Yeh, Chien and Fu [20], Singh, Steinberg and Page 
[21], Koshkouei and Zinober [22]. But, there is no a 
large number of papers concerning the problem of 
stabilization of time-delay systems by variable structure 
control, for example see Shyu and Yan [23], Yan [24], 
Luo, De La Sen and Rodellar [25], Gouaisbaut, 
Dambrine and Richard [26], Richard [27], Perruquetti 
and Barbot [28], Jafarov [29], [30], Li and De Carlo 
[31], Gouaisbaut, Blango and Richard [32], Koshkouei 
and Zinober [33] etc. In analysis and design of time-
delay systems by sliding mode control the Lyapunov-
Krasovskii functional method is commonly used. Recent 
advances in time-delay systems are presented by Richard 
[27], Fridman and Shaked [34], Jafarov [35], Niculescu 
and Gu [36], Niculescu [37], Mahmoud [38], Gu, 
Kharitonov and Chen [39], Boukas and Liu [40]. Some 
sufficient delay-dependent stability conditions for linear 
delay perturbed systems are derived using exact 
Lyapunov-Krasovskii functionals by Kharitonov and 
Niculescu [41]. Several new LMI delay-dependent 
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robust stability results for linear time-delay systems with 
unknown time-invariant delays by using Padé 
approximation are presented by Zhang, Knospe and 
Tsiotras [42]. Both delay-independent and delay-
dependent robust stability LMI’s from conditions for 
linear time-delay systems with unknown delays by using 
appropriately selected Lyapunov-Krasovskii functionals 
are systematically investigated by Zhang, Knospe and 
Tsiotras in another paper [43]. Stability of the internet 
network rate control with diverse delays based on 
Nyquist criterion is considered by Tian and Yang [44]. 
Improved delay-dependent stability conditions for time-
delay systems in terms of strict LMI’s avoiding cross 
terms are developed by Xu and Lam [45]. A new state 
transformation is introduced to exhibit the delay-
dependent stability condition for time-delay systems by 
Mahmoud and Ismail [46]. 
Variable structure control is often used to handle the 
worst-case control environment: parametric 
perturbations, external disturbances with knowledge of 
only the upper bounds etc. Sometimes we may come up 
with more appropriate control approaches such as 
incorporating VSC with linear control, time-delay 
control etc. It is well known that classical sliding mode 
control uses a discontinuous control action to drive the 
state to the origin along the reaching and sliding paths 
and is insensitive to parametric uncertainties and 
external disturbances. However, the control chattering 
due to the discontinuity in control law sometimes is 
undesirable. The continuous sliding mode control 
approach satisfies the sliding conditions using a 
continuous control law without requiring discontinuous 
switching in the controller. Therefore, it retains the 
advantages of sliding control but without the chattering 
phenomena. Such approach is used by Zhou and Fisher 
[47], Shtessel and Buffingtonn [48] etc. Continuous 
sliding mode control concept is discussed in details and 
its comparison analysis with the conventional 
discontinuous sliding mode control by Zhou and Fisher 
[47]. 
Note that VSC cannot be directly applied to the control 
of input-delayed system. Feng, Mian and Weibing [49], 
Hu, Basker and Crisalle [50] have been successfully 
used the reduction method combined with variable 
structure control for stabilization of certain and uncertain 
multivariable input-delayed systems with known delays. 
In this paper, a new sliding mode control design 
methodology for the single input delayed systems with 
known or unknown but bounded delays is developed. 
This design method is based on the Lagrange mean value 
theorem, which is used for the first time for the 
stabilization of input-delayed systems. Proposed linear 
sliding mode time-delay controller also satisfies the 
sliding condition, but in contrast to classical variable 
structure control, uses Zhou and Fisher type of 

continuous control law without requiring discontinuous 
switching in the controller. Therefore, undesired control 
chattering in this case is avoided. 
The constructive delay-dependent asymptotical stability 
and robustly stable sliding conditions are obtained by 
using the Lyapunov-Krasovskii functional method and 
formulated in terms of some matrix inequalities. Hence, 
it is possible also to compute the maximum upper bound 

of the allowable time-delay h  using efficient convex 
optimization algorithms. Helicopter hover control is 
considered as a design example for illustrating the 
performances of smooth sliding mode approach. 
Unstable helicopter dynamics is successfully stabilized 
by using linear sliding mode time-delay controller. For 
example, settling time is about 20 sec. Therefore, 
simulation results confirmed the effectiveness of the 
proposed design methodology. 
 

 

2   A New Design Method 
Let us consider the following single input-delayed 
system 

( ) ( ) ( )x t Ax t bu t h                                                (1) 
where ( )x t  is the measurable n-state vector, u(t) is the 
scalar control input, A  is a constant real ( n n )-matrix, 
b is the constant n-vector, 0h   is a time-delay 

0h const   or unknown but bounded delay 0 h h   
and initial condition ( ) ( )u t t  for 0h t   , where ( )t  
is a known scalar function.  
This design method is based on the Lagrange mean value 
theorem. 
Remember that Lagrange mean value theorem [53], [54] 
is stated as follows 

( ) ( ) ( ),    f b f a
f a b

b a
 


  


                                 (2) 

where ( )f x  is a continuous at every point of the closed 
interval [a, b] and differentiable at every point of its 
interior (a, b) or in terms of delayed control input 

( ) ( ) ( )u t h u t hu                                                         (3) 
where   is a point in t h t   . 
After introducing the   parameter, the constructive 
delay-dependent asymptotical stability and robustly 
stable sliding conditions can be derived by using the 
augmented Lyapunov-Krasovskii functionals. 
Now, after preparing the necessary background we can 
present a new continuous sliding mode control design 
methodology for input-delayed systems with known or 
unknown but bounded delays. 
Select a Zhou and Fisher type of continuous sliding 
mode controller as  

( ) ( )u t ks t                                                                     (4) 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2022.17.31 Elbrous M. Jafarov

E-ISSN: 2224-2856 270 Volume 17, 2022



where k is a constant gain scalar to be designed. Assume 
that linear sliding mode is defined in n-dimensional state 
space by the following linear function: 
 ( ) ( )Ts t c x t                                                                   (5) 
where c is a design n-vector to be selected. This linear 
control law must satisfy the sliding condition. 
Using the Lagrange mean value theorem (3) let us 
represent input-delayed system (1) as follows 

( ) ( ) [ ( ) ( )]x t Ax t b u t hu      
       ( ) ( ) ( )Ax t bks t bhu      
       ( ) ( ) ( )Ax t bks t kbhs           
       ( ) ( ) ( )TAx t bks t kbhc x                                     (6)                      
       ( ) ( ) [ ( ) ( )]TAx t bks t kbhc Ax bks h       
       2( ) ( ) ( ) ( )]T TAx t bks t kbhc Ax k hbc bs h       
From (6) it is obvious that full delay term h already 
appears in transformed system. Now, our goal is to 
organize an asymptotically stable linear sliding mode on 
defined hyper plane ( ) 0s t   (5). Stable sliding mode 
conditions are formulated in the following theorem. But, 
we need to make the following assumption. 
Assumption 1: Time-delay parameter   is a time-
dependent function and norm-bounded such that  
  0 1 ( ) 1t                  (7) 
where   is a scalar. 
Note that time-delay Assumption 1 is conventional and 
is commonly used by many authors, for example, by 
Ikeda and Ashida [55], Su and Chu [56], Su, Ji and Chu 
[57], Wu, He, She and Liu [58], Kim [59] etc.  
Theorem 1: Suppose that Assumption 1 holds. Then the 
transformed time-delay system (6) driven by continuous 
sliding mode controller (4), (5), is delay-dependent 
asymptotically stable relative to the manifold ( ) 0s t   
(5), if there are design parameters ,  c, , , k     and   
such that the following sliding conditions are satisfied:  

2 2

2 2

1 1  b         ( )    0
2 2

1              (1 )            0               0 
2
1 ( )                     0              - (1- )      0
2

         0                       

T T T

T

T

kc khc b k h c b

khc b
H

k h c b

   

   

 

   

 




          0                  0            -

 
 
 
 
 
 
 
 
 
 

   

0H                (8)  
or 

  
T

k
c b

   
             (9) 

  1 
 




           (10) 

  
TT cAc            (11) 

where    is any left or right eigenvalue of matrix A;  , 
  and   are some positive adjustable scalars. 

Note that, design of the manifold ( ) 0s t   (5) does not 
imply assigning the eigenvalue   of the matrix; it 
appears only in proof of the theorem and may take an 
arbitrary value as pointed by Ackermann and Utkin [52]. 
Proof: Choose an augmented Lyapunov-Krasovskii 
functionals as  

2 21( ( ), ( ), ( ), ( )) ( ) ( )
2

h

V s t s s h s t h s t s d





    


      

                       2 2  ( ) ( )
t t

t h

s d s d


     


           (12)                                                              

where  ,   and   are some positive adjustable scalars. 
The time derivative of (12) along the state trajectory of 
(6) can be calculated as follows: 

2 2 2

2 2 2

( ) ( ) ( ) ( ( ) ( )) ( )

   ( ) ( ) ( ) ( )

V s t s t t s s h s t

t s s t s t h

    

    

    

   
   

2 2 2 2

2 2 2

   ( )[ ( ) ( ) ( )
   ( ) ( )] ( ) ( ) ( )

   ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T T

T

s t c Ax t kc bs t khc bc Ax

k h c b s h s t s t h

t s t s h t s



   

       

  

     

   

       (13) 

 
Since 

2 2( ) ( ) ( )t s s                     (14) 
2 2( ) ( ) (1 ) ( )t s h s h                  (15) 

and (11) hold, then (13) reduces to 
2 2

2 2 2

2 2 2

2 2

2

2 2 2

( ) ( ) ( ) ( )
   ( ) ( ) ( ) ( ) ( )
   ( ) ( ) (1 ) ( )
   (1 ) ( ) ( )
   ( ) ( ) ( ) ( )
   ( ) ( ) ( ) ( (1 ) ) (

T T

T

T T

T

V s t kc bs t khc b s s t

k h c b s h s t s t

s h s s h

s s t h

kc b s t khc b s s t

k h c b s t s h s

  

  

      

   

    

   

  

   

     

   

    

    

2 2

)
   (1 ) ( ) ( )s h s t h



       

         

2 2

2 2

( ) 1 1  b         ( )    0
2 2

( ) 1              (1 )            0               0 
2
1( ) ( )                     0              - (1-
2

( )

T

T T T

T

T

s t
kc khc b k h c b

s
khc b

s h
k h c b

s t h

   


   




 
     
 
 

  
  
 

 
 
  

)      0

         0                                 0                  0            -





 
 
 
 
 
 
 
 
 
 

  

   2
min

  ( )

  ( )
( ) ( ) ( ) ( ) 0

( )

( )

T

s t

s

y t Hy t H y t

s h

s t h







 
 
 
 
 

    
 
 
 
  

       (16) 

where  ( )   ( )      ( )      ( )     ( ) T
y t s t s s h s t h     

Note that matrix H  has its own quadratic structure 
1

TH MH M  
where  
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

































-           0                    0                           0              
0      )-(1-              0                           0              
 0            0         )1(                  0              

0            0                    0                 

1

bkc

H

T

 



























1                       0                              0                   0  
0                       1                              0                   0  
 0                      0                               1                   0  

0           
)1(

 )(0.5         
)1(

5.0         1  
22



 bchkbckh

M

TT

 
Since M is a nonsingular and 1 0H   because its leading 
principle elements are always negative then 0H  . 
Therefore, condition (16) means that manifold ( ) 0s t   is 
reached in finite time and the reaching time can be 
evaluated approximately as follows: 

  
min

(0)
( )s

y
t

H
           (17) 

Thus, the time-delay system (6) with known delay is 
delay-dependent asymptotically stable relative to the 
manifold ( ) 0s t   (5). 
If we consider a case where the delay term is unknown 
but bounded 0 h h   then we can solve the following 
convex optimization problem: 
           OP: maximize h   
                  Subject to conditions (8)         (18) 
       with 0  , 0  , 0   
This ends the proof of Theorem 2. 
Let us consider a simple analytical example to illustrate 
our design approach 
Example 1: Consider the first order input-delayed 
system 
  ( ) ( ) ( )x t ax t bu t h                                        (19) 
where a and b are some constant scalars. 
Define a continuous sliding mode controller as follows. 
  ( ) ( )u t ks t                                                  (20) 
  ( ) ( )s t cx t                                                       (21) 
where k and c are the  design scalars. 
Substituting  (3) with (20) and (21) into (19) we have 

( ) ( ) ( )x t ax t bu t h     
       ( ) ( ) ( )ax t bu t bhu      

       )()()( sbhktbkstax           (22)    
       )()()( xbhkctbkstax     
       )()()()( 22 hcshkbabhkcxtbkstax    
       )()()()( 22 hcshkbabhkstbkstax    
Then the time-derivative of (12) along (22) is given by  

2 2

2 2 2 2

( ) ( ) ( ) ( ) ( )

    + ( ) ( ) ( ) ( ) ( )

V s t s t t s s h

s t t s s t s t h

   

     

     

   
 

   2 2 2 2 2

( )[ ( ) ( ) ( )
( )] ( ) ( ) ( ) ( )

s t acx t bkcs t abchks

b c hk s h t s t s h



      

   

    
 

   2 2 2 2( ) ( ) ( ) ( ) ( )s t t s s t s t h                 

   
 

 

2

2 2 2 2

2 2

( ) ( ) ( )

( ) ( ) (1 ) ( )

(1 ) ( ) ( )

a bck s t abchks t s

b c hk s t s h s

s h s t h

  

    

   

     

    

    

       (23) 

2 2 2

2 2 2

( ) 1 1      -           0
2 2

( ) 1  -              (1 )          0               0 
2
1( )                    0            - (1- )   
2

( )

T
s t

bck a abchk b c hk

s
abchk

s h
b c hk

s t h

 


  


 

 
      
 
 

  
  
 

 
 
  

      0

         0                            0                0              -

 
 
 
 
 
 
 
 
 
 

 

   2
min

  ( )

  ( )
( ) ( ) ( ) ( ) 0

( )

( )

T

s t

s

y t H y t H y t

s h

s t h







 
 
 
 
 

    
 
 
 
  

         (24) 

or the following Sylvester’s conditions hold: 
1| | 0H bck a         or bck a       

with 0              (25) 
  2

2

| | (1 )
1            ( ) 0
4

H bck a

abchk

          

 
            (26) 

3| | 0H   and 4| | 0H   respectively. 
Then, time-delay system (22) with known h is delay-
dependent asymptotically stable relative to the ( ) 0s t  . 
If we consider a case where h is unknown but bounded 
0 h h   then the maximum upper bound can be 
calculated as follows. 
From min 2| |  0H   (26) we compute  

 
2

21(1 ) ( ) 0
2

H
abc abch k

k
  


     


       (27) 

Hence,  
2

2 (1 )
( )

bc
h

k abc

    
          (28) 

with (1 ) 0     , 0bc  . 
Thus, time-delay system (22) with unknown but 
bounded delay term is robustly asymptotically stable 
relative to the ( ) 0s t  with upper bound h  (28). 
 
 
3 Design example: Helicopter hover 

control 
The linearized longitudinal motion of helicopter near 
hover (Fig.1) can be modeled by the normalized linear 
third order system [60] with introduced pilot time-delay 
h [61] as follows: 
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0.4 0 0.01 6.3
1 0 0 0 ( )
1.4 9.8 0.02 9.8

q q

t h

u u

  

        
       

  
       
               

       (29) 

where  
q  is the pitch rate, 
  is the pitch angle of fuselage, 
u  is the horizontal velocity (standard aircraft notation), 
  is the rotor tilt angle (control variable), 
h  is the pilot’s effective time- delay, for example, 

0.43h  s. 
Continuous sliding mode controller is formed as (4): 

( ) ( )u t ks t             (30) 
where k  is a scalar to be designed by (8), (9) and sliding 
function is defined as (5): 

1 2 3( )s t c q c c u               (31) 
where 1 2 3, ,c c c  are design parameters to be determined. 
Design procedure can be fulfilled with MATLAB 
programming (which is given in Appendix 1) by the 
following steps: 

  -0.6565          
( )    0.1183 + 0.3678i

   0.1183 - 0.3678i
eig A

 
 


 
  

 

A is unstable with one pear conjugate complex-roots. 
Calculate matrix (8) 

 -0.0313    0.0177   -0.0034       0
   0.0177    -0.1640         0          0
 -0.0034         0       -0.1820       0
       0              0              0     -0.3000

H

 
 
 
 
 
 

 

-0.3000
-0.1821

( )
-0.1663
-0.0289

eig H

 
 
 
 
 
 

  

H is a negative definite matrix. 
c1 = -0.0389 
c2 =  0.0592 
c3 = -0.9975 
k =  0.0125 
h =  0.4300 
eta =  0.0900 
alpha =  0.2000 
beta =0.0200 
gamma = 0.3000 
hmax = 1.714 
cTb = -10.0204 
Thus all design parameters are calculated. Maximum 
upper bound of time delay, hmax = 1.714, is found from 
condition (8). A block diagram of continuous sliding 
mode controller for helicopter input-delayed system (1), 
(4), (5) or (29), (30), (31) is shown in Fig. 2. This system 
is simulated by using MATLAB-Simulink. Continuous 

sliding mode controller is performed by linear Simulink 
blocks ( )s t  and ( )u t . Note that, these are not variable 
structure blocks, but linear blocks satisfying the sliding 
condition (16). Helicopter control performances are 
shown in Fig. 3, from which can be seen that unstable 
helicopter dynamics is successfully stabilized by using 
linear sliding mode controller. For example, settling time 
is about 20 sec. Reaching time is also 20 sec. Therefore, 
simulation results confirmed the usefulness of the 
developed design methodology. 
 
 
4   Conclusion 
A new continuous sliding mode control design 
methodology based on Lagrange mean value theorem is 
proposed for stabilization of single input delayed 
systems. The Lagrange mean value theorem as a basic 
theorem of calculus is used for the design of linear 
sliding mode time-delay controller for the first time. This 
controller satisfies the sliding condition using a Zhou 
and Fisher type continuous control law eliminating the 
chattering effect. The constructive delay-dependent 
asymptotically stable sliding conditions are obtained by 
using the augmented Lyapunov-Krasovskii functionals 
and formulated in terms of simple ( 44 )-matrix 
inequality with scalar elements. Developed design 
approach are extended to robust stabilization of sliding 
system with unknown but bounded input delay. The 
maximum upper bounds of delay size are found by using 
simple optimization algorithms. Helicopter hover control 
is considered as design example for illustrating the 
performances of smooth sliding mode approach. 
Unstable helicopter dynamics are successfully stabilized 
by using linear sliding mode time-delay controller. For 
example, settling time is about 20 sec. Therefore, 
simulation results confirmed the effectiveness of the 
proposed design methodology. Apparently, the proposed 
method has a great potential in design of time-delayed 
controllers. 
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Appendix: 
clear; clc; 
A = [-0.4 0 -0.01; 1 0 0; 
     -1.4 9.8 -0.02]; 
[V,D] = eig(A); 
D     = diag(D) 
% selection according to case a): 
lamda_L = D(1) 
c1    = V(1,1) 
c2    = V(2,1) 
c3    = V(3,1) 
h     = 0.43 
eta   = 0.09 
alpha = 0.2 
beta  = 0.2 

gamma = 0.3 
c_T   = [c1 c2 c3]; 
b     = [6.3; 0; 9.8]; 
k     = 0.8*(lamda_L+beta+gamma)/(c_T*b) 
h_max = 1.714 % delay 
cTb   = c_T*b 
h11 = lamda_L-k*c_T*b+beta+gamma 
h22 = alpha*eta-(1-eta)*beta 
h33 =-alpha*(1-eta) 
h44 = -gamma 
H1 = [ lamda_L-k*c_T*b+beta+gamma; 
       0.5*k*h*c_T*b*lamda_L; 
      -0.5*k^2*h*(c_T*b)^2; 0]; 
H2 = [0.5*k*h*c_T*b*lamda_L; 
      alpha*eta-(1-eta)*beta; 0; 0]; 
H3 = [-0.5*k^2*h*(c_T*b)^2; 0; 
      -alpha*(1-eta); 0]; 
H4 = [0; 0; 0; -gamma]; 
H  = [H1 H2 H3 H4]; 

 

 
Fig.1 Helicopter. 
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Fig.2 Block diagram of linear sliding mode controller for input-delayed system 

 
 a) State time responses      b) Linear sliding mode control function 

 
c) Sliding function 

Fig.3 Smooth sliding mode control 
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