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1 Introduction 
The problem of pole assignment by proportional- 

plus-derivative output feedback or equivalently by 

incomplete proportional-plus-derivative state 

feedback for multivariable linear time-invariant 
systems was introduced in [1].  In particular in [1] a 

method was given for placing up to max(2m, 2p), 

poles of closed-loop system, where m and p are the 
numbers of inputs and outputs respectively of 

closed-loop system. A method for assigning up to 

max(2m+p-1, 2p+m-1) poles of closed-loop system  
by proportional-plus-derivative output feedback(or 

equivalently by incomplete proportional-plus 

derivative state feedback) is presented in [2]. In [3] 

was introduced a new class of multivariable output 
feedback controllers consisting of proportional plus 

multiple derivative terms. It is shown that all poles 

of closed-loop system, can be placed at desired 
positions, provided a sufficient number of derivative 

terms. The pole placement equations for the 

proportional-plus-derivative output feedback 

compensator are derived in [4]. In [5] is proven that 
controllability is sufficient condition for the solution 

of pole assignment problem by full proportional- 

plus-derivative feedback for single input single 
output linear time-invariant systems. 

In this paper, are established explicit necessary and  

sufficient conditions for the solution of pole 
assignment problem by proportional-plus- derivative 

state feedback for multivariable linear time-

invariant systems. Furthermore a procedure is given 

for the computation of proportional-plus- derivative 

state feedback which assigns the poles of closed-

loop system to any desired positions.  
 
Problem Formulation 
Consider a multivariable linear time-invariant 

system described by the following state-space 

equations 

   𝐱̇(t)=Mx(t) + Nu(t)                      (1) 

where M and N are real matrices of size n x n ,  

 n x m, respectively, x(t) is the state vector of 

dimensions n x 1 and u(t) is the vector of inputs of 

dimensions mx1. Without any loss of generality we 

assume that  

                        rank[N]=m                                   (2) 

Let T be a non-singular matrix of size n x n such 

that 

                             TN = [
0

𝐈m
]                                 (3) 

where 𝐈m is the identity matrix of size m x m. Using 

the following similarity transformation  

                         x(t) = 𝐓−1z(t)                                (4) 

and the relationship (3), the state–space equations of 
system (1) can be rewritten as follows                 

                      𝐳̇(t) = Az(t) + Bu(t)                           (5) 
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The real matrices A and B of appropriate 

dimensions are given by 

                       A=TM𝐓−1  , B = [
0

𝐈m
]                   (6) 

Consider the control law 

                       u(t) = –Fz(t) + D𝐳̇(t)  + v(t)         (7) 

 where F and D are real matrices of size ,  m x n and 

m x n respectively and v(t) is the reference input 

vector of size mx1. By applying the proportional- 
plus-derivative state feedback (7) to the system (5) 

the state-space equations of closed–loop system are 

       [I- 𝐁𝐃]𝐳̇(t) = (A-BF) z(t) + Bv(t)                  (8) 

Let R be the field of real numbers. Also let R[s] be 

the ring of polynomials with coefficients in R. Let 

c(s) be a given arbitrary monic polynomial over 

R[s] of degree n. Further let μ is finite nonzero real 

number. The pole assignment problem considered in 
this paper can be stated as follows: Does there exist 

a proportional-plus-derivative state feedback (7) 

such that  

        det [ (𝐈 − 𝐁𝐃)s − 𝐀 + 𝐁𝐅 ] = 𝜇c(s)            (9) 

if so,  give conditions for existence and a procedure 

for the computation of matrices F and D. 

 

3 Basic concepts and preliminary 

results 
Let us first introduce some notations that are used 
throughout the paper. Let D(s) be a non-singular 

polynomial matrix over R[s]   of dimensions m x m, 

write degci for the degree of column i of  D(s). If 

degciD(s)≥ degcjD(s), i< j              (10) 

the polynomial matrix D(s) is said to be column 
degree ordered. Denote Dh the highest column 

degree coefficient matrix of polynomial matrix D(s). 

The polynomial matrix D(s) is said to be column 
reduced if the real matrix Dh is non-singular. The 

matrix D(s) is said to be column monic if its highest 

column degree coefficient matrix is the identity 

matrix. A polynomial matrix U(s) over R[s] of 

dimensions k x k is said to be unimodular if and 

only if  

                            det[U(s)] = λ                          (11) 

where λ is finite nonzero real number; therefore 

every unimodular polynomial matrix has 

polynomial inverse. Let D(s) be a non-singular 

polynomial matrix over R[s], then there exist 

unimodular matrices U(s) and V(s) over R[s] such 

that  

     D(s)=U(s) diag [a1(s), a2(s), ….am(s)]V(s)     (12) 

where the polynomials ai(s) for i=1,2, .., m are 

termed invariant polynomials of D(s) and have the 
following property 

            ai(s) divides ai+1(s), for i=1,2,….m-1       

(13) 

Furthermore we have that 

  ai(s) =
di(𝑠)

di−1(𝑠)
, for 𝑖 = 1,2,…….m         

(14) 

where do(s) =1 by definition and di(s) is the monic 

greatest common divisor of all minors of order i in 
D(s), for i=1,2,….., m.  Let A(s), be a polynomial 

matrix over R[s] if there are polynomial matrices 

P(s) and Q(s) such that  

                        A(s) = P(s) Q(s)                           (15) 

Then, the polynomial matrix P(s) over R[s] is 

termed left divisor of A(s). Let A(s) and B(s), be 

polynomial matrices over R[s] if 

                        A(s) = D(s) M(s)                          (16) 

                        B(s) = D(s) N(s)                           (17) 

for polynomial matrices M(s), N(s) and D(s) over 

R[s], then D(s) is termed common left divisor of 

polynomial matrices A(s) and B(s).  

A greatest common left divisor of two polynomial 

matrices A(s) and B(s) is a common left divisor 

which is a right multiple of every common left 

divisor. Let V(s) be a greatest common left divisor 

of two polynomial matrices A(s) and B(s), then 
there is a unimodular matrix U(s) over R[s], such 

that 

       [A(s), B(s)] = [V(s, 0] U(s)                          (18) 

The system (5) is controllable if and only if  

                  rank [Is – A, B] = n                        (19)      

for all complex numbers s. 

The material on polynomial matrices and their 

properties presented in this section was obtained 

primarily from references [6], [7], [8] and [9]. 

Definiton 1. Relatively right prime polynomials 

matrices D(s) and N(s) of dimensions m x m and 

 n x m respectively with D(s) to be column reduced 

and column degree ordered such that  

  (𝐈s − 𝐀)−1𝐁 = 𝐍(s)𝐃−1(𝑠)        (20) 

are said to form a standard right matrix fraction 

description of system (5). The column degrees of 
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the matrix D(s) are the controllability indices of 

system (5). 

The following Lemmas are needed to prove the 

main theorem of this paper. 

Lemma 1. Let A(s) and B(s) be matrices over R[s] 

of size m x k and m x p respectively. The following 

are equivalent: 

(a) The polynomial matrices A(s) and B(s) are 

relatively left prime over R[s]. 

(b) The greatest common left divisor of 

polynomial matrices A(s) and B(s) over 

R[s] is unimodular matrix. 

(c) rank[A(s), B(s)] = m, for all complex 

numbers s. 
Proof. See [7, p. 538, Theorem 2.4]. 

Lemma 2. Let the matrices D(s) and N(s) of 

dimensions m x m and n x m over R[s] be a 

standard matrix fraction description of controllable 

system (5). Then 

(a) The rows of polynomial matrix N(s) form a 

basis for the linear space over R of all 

polynomial vectors v(s) of size 1 x m such 

that v(s)𝐃−1(𝑠) is strictly proper. 

 
Proof. See [8, pp. 73-74, Theorem 2.17]. 
 
The following lemma was first proved in [9, 
pp.184-185]. 
Lemma 3. Let C(s) be a column monic 
polynomial matrix over R[s] of size m x m. 
Suppose that degcpC(s< degcqC(s) for some p and 
q. Then C(s) can be transformed by unimodular 
transformations to a column reduced polynomial 
matrix 𝐂1(s) with column degrees given by 

degci𝐂1(s) = degciC(s)  for i ≠ p,q 

degci𝐂1(s) = degcpC(s) + 1  for i = p 

degci𝐂1(s) = degcqC(s) - 1  for i ≠q 

Proof. Add s times row p to row q in C(s). This 

leaves the degree of each column but p and q 
unchanged. It also leaves unchanged the degrees of 

the elements in position ( i, p),  i ≠ q and ( i, q),  i ≠ 

q; places a monic polynomial of degree degcpC(s)+1 
in  position (p, q) and does not increase the degree 

of the element in position (q, q). Let β= degcqC(s). 

Further let α be the coefficient of sβ in the element 
in position (q, q). Put d = degcpC(s) – 1. Substract 

αsd times column p from column q. This reduces the 

degree of column q below degcqC(s). The resulting 

matrix 𝐂1(s) then satisfies the conditions of the 
lemma. This completes the proof of the Lemma.  
The following lemma was first proved in [10].  

Lemma 4. Let (5) be a controllable system. Further 

let D(s), N(s) be a standard right matrix fraction 

description of system (5). Then for every m x n real 

matrix F the polynomial matrices [Is – A+BF] and 
[D(s)+FN(s)] have the same non-unit invariant 

polynomials.  

Proof. Let D(s) and N(s) are relatively right prime 

polynomial matrices over R[s] of respective 

dimensions m x m and n x m respectively such that  

(𝐈s − 𝐀)−1𝐁 = 𝐍(s)𝐃−1(𝑠)                   (21) 

We have that  

[𝐈s −  𝐀]𝐍(s) = 𝐁𝐃(s)                (22) 

We add BFN(s) to both sides of the above identity 

and rearrange to get  

  [𝐈s − 𝐀 + 𝐁𝐅]−1B=N(s)[𝐃(s) + 𝐅𝐍(s)]−1      (23) 

Since [𝐈s − 𝐀]and B are relatively left prime over 

R[s] by controllability of (5) and since  

  [𝐈s −  𝐀 + 𝐁𝐅, 𝐁] = [𝐈s − 𝐀, 𝐁] [
𝐈n 𝟎
𝐅  𝐈m

]      (24) 

it follows that [𝐈s − 𝐀 + 𝐁𝐅] and B are relatively 

left prime over R[s]. On the other hand D(s) and 

N(s) are relatively right prime over R[s] and  

[
𝐍(s)

𝐃(s) +  𝐅𝐍(s)
] =

= [
𝐈n 𝟎
𝐅 𝐈m

]  [
𝐍(s)

𝐃(s)
]                                               (25)               

Hence [𝐃(s) +  𝐅𝐍(s)]and 𝐍(s) are relatively right 

prime over R[s]. It follows that the matrices                  
[𝐈s −  𝐀 + 𝐁𝐅] and [𝐃(s) +  𝐅𝐍(s)] must share the 

same non-unit invariant polynomials. This 

completes the proof of the Lemma.  

Lemma 5. Let (5) be a controllable system. Further 

let D be an arbitrary matrix over R of size m x n. 

Then the following condition holds: 

(a) rank [(𝐈 − 𝐁𝐃)s – A , B] = n  for all complex 

numbers s. 

Proof. Suppose that the system (5) is controllable. 

From (19) it follows 

                  rank [Is – A , B] = n                          (26)      

we rewrite the polynomial matrix   [(𝐈 − 𝐁𝐃)s – A , 

B] as  

[(𝐈 − 𝐁𝐃)s – A , B ]= [Is – A , B] [
𝐈n 𝟎

−𝐃s  𝐈m
] (27) 

Since the following polynomial matrix over R[s] 
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[
𝐈n 𝟎

−𝐃s  𝐈m
] 

is unimodular, condition (a) of the Lemma 5 follows 

from (26) and (27) and the proof is complete. 
Lemma 6. Let (5) be a controllable system. Further 

let D be a matrix over R of size m x n such that 

det[𝐈 − 𝐁𝐃] ≠ 0. Then the following condition 

holds: 

(a) The pair [(𝐈 − 𝐁𝐃)−1A, (𝐈 − 𝐁𝐃)−1B] is 
controllable. 

Proof. We rewrite the polynomial matrix   [(𝐈 −
−𝐁𝐃)s – A , B] as  

[(𝐈 − 𝐁𝐃)s – A , B] = [𝐈 − 𝐁𝐃][𝐈s – (𝐈 − 𝐁𝐃)−1A, 

, (𝐈 − 𝐁𝐃)−1B]                                                     (28) 

Since by assumption the matrix [𝐈 − 𝐁𝐃] is non-

singular, from (28) and Lemma 5 it follows that 

    rank[𝐈s − (𝐈 − 𝐁𝐃)−1A, (𝐈 − 𝐁𝐃)−1B] = n   (29) 

for all complex numbers s .                                              

Condition (a) of the Lemma 6 follows from (29) and 

(19) and the proof is complete. 
Lemma 7. Let D(s) and N(s) be a standard right 

matrix fraction description of a controllable system 

(5) and F is a matrix over R of size m x n.  Further, 

let c1(s), c2(s), …., cr(s) be the non-unit invariant 

polynomials of polynomial matrix [D(s)+FN(s) of 

size m x m, r≤ 𝑚. Then  

(a) det[Is – A+BF[] = 𝛱𝜄=1
r ci(s) 

Proof. Let ci(s) for i=1,2,…,r be the non-unit 

invariant polynomials of the matrix det[D(s)+FN(s)] 
By Lemma 4, the polynomials c1(s), c2(s), …., cr(s) 

are the non-unit invariant polynomials of [Is – 

A+BF] and remaining invariant polynomials are  

cr+1(s),=c2(s)=….=cn(s)=1. The characteristic 
polynomial of the matrix [Is – A+BF] is given by 

[8, p. 47] 

              det[Is – A+BF] = Π𝜄=1
r ci(s)               (30) 

condition (a) of the Lemma 7 follows from (30) and 
the proof is complete. 

 

4 Problem Solution 
The following theorem is the main result of this 

paper and gives explicit necessary and sufficient 

conditions for the solution of the pole assignment 
problem by proportional-plus-derivative state 

feedback for multivariable linear time-invariant 

systems. 
Theorem 1. The pole assignment problem by 
proportional-plus-derivative state feedback for 
multivariable linear time-invariant systems has 

solution over R if and only if the following 
condition holds: 

(a) The open-loop system (5) is controllable. 

 Proof. Let c(s) be an arbitrary monic polynomial 
over R[s] of degree n. Suppose that the pole 
assignment problem by proportional-plus-derivative 
state feedback has a solution over R. From (9) it 
follows that 

        det [ (𝐈 − 𝐁𝐃)s − 𝐀 + 𝐁𝐅 ] = 𝜇c(s)          (31) 

where μ is finite nonzero real number Let V(s) be 
the greatest common left divisor of polynomial 
matrices [ Is-A] and B. Then, from (16) and (17) it 
follows that 

                    [Is – A] = V(s) X(s)                         (32) 

                           B = V(s) Y(s)                           (33) 

for polynomial matrices X(s) and Y(s) over R[s] of 
appropriate dimensions. We rewrite the polynomial 
matrix [(𝐈 − 𝐁𝐃)s – A  + BF ] as 

       [(𝐈 − 𝐁𝐃)s–A+BF]=[Is–A, B][
𝐈

−𝐃𝑠 + 𝐅
]   (34) 

Using (32), (33) and (34) and after simple algebraic 

manipulations, the relationship (31) can be rewritten 

as  

det[V(s)]det[[X(s), Y(s)] [
𝐈

−𝐃𝑠 + 𝐅
]] = 𝜇c(s)   (35)    

From relationship (35) it follows that 

                          det[V(s)] divides (𝜇c(s))          (36) 

Since by assumption c(s) is an arbitrary monic 

polynomial over R[s] of degree n, relationship (36) 

is satisfied if and only if 

                            det[V(s)] = λ                          (37) 

where λ is finite nonzero real number. From (37) 
and (11) it follows that the polynomial matrix V(s) 

is unimodular; therefore by Lemma 1 the 

polynomial matrices [ Is-A] and B are relatively left 

prime over R[s] or equivalently 

                  rank [Is – A , B] = n                          (38)      

for all complex numbers s.     

From (38) and (19) it follows that the pair (A, B) is 

controllable. This is condition (a).   
To prove sufficiency, we assume that condition (a) 

holds. We form the matrix 

                    D = [0, (-2)Im]                                 (39) 

From (6) and (39) it follows that the matrix 

                  [𝐈 − 𝐁𝐃] = diag[In-m , -Im]                 (40) 

is non-singular. Let A1 and B1 be real matrices of 
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appropriate dimensions given by 

                       A1 = [(𝐈 − 𝐁𝐃)−1𝐀                     (41) 

                        B1 = [(𝐈 − 𝐁𝐃)−1𝐁                     (42) 

By Lemma 6 the pair (A1, B1) with [𝐈 − 𝐁𝐃] given 
by (39), is controllable. Let D1(s) and N1(s) be 

relatively prime polynomial matrices over R[s], 

with D1(s) column reduced and column degree 

ordered, which satisfy 

                   (Is – A1)
-1B1 = N1(s)𝐃1

−1(s)               (43) 

Let ν1≥ν2≥……≥νm and Dh be the ordered list of 

column degrees and the highest column degree 
coefficient matrix of polynomial matrix D1(s) 

respectively. Further, let c(s) be an arbitrary monic 

polynomial over R[s] of degree n. We form the 

polynomial matrix C(s) of size m x m 

                    C(s) = diag[c(s), 1, …, 1]                (44) 

whose invariant polynomials are c(s), 1, …, 1. Then, 
Lemma 3 can be applied several times if necessary 

in order to make the polynomial matrix C(s) column 

reduced with column degrees equal to those of 

D1(s), without changing its invariant polynomials. 
We call the resulting matrix C1(s). Let Ch be the 

highest column degree coefficient matrix of 

polynomial matrix C1(s) [10]. We form the 
polynomial matrix C2(s) 

                     C2(s) = 𝐃ℎ𝐂ℎ
−1 C1(s)                       (45) 

From (45) it follows that the polynomial matrices 

C2(s) and D1(s) have the same highest column 
degree coefficient matrix [8, p.123], [10]; therefore  

        degci[𝐂2(s) - D1(s)] ≤ νi -1 ∀ i = 1,2, ....., m (46) 

from (46) it follows directly that the following 
rational matrix  

                                   [𝐂2(s) - D1(s)] 𝐃1
−1(s)            (47) 

is strictly proper [8, p.39]. From (47) and Lemma 2 

it follows directly that the equation 

                         D1(s) + F N1(s) = C2(s)               (48) 

or equivalently the equation 

                           F N1(s) = C2(s) -  D1(s)           (49) 

has a solution for F over R. From (44), (45) and 

(48) it follows that the invariant polynomials of the 
polynomial matrix D1(s) + F N1(s) of size m x m are 

                         c1(s) = c(s), c2(s)=….=cm(s)=1         (50) 

Since by Lemma 4 the polynomial matrices [Is – 

A1+ B1F] and [D(s)+FN(s)] have the same non-unit 
invariant polynomials, from (48) it follows that the 

invariant polynomials of the matrix [Is – A1 + B1F] 

of size n x n are  

                           c1(s) = c(s), c2(s)=….=cn(s)=1         (51) 

Then by Lemma 7 

         det[Is – A1 + B1F] = Π𝜄=1
n ci(s) = c(s)    (52) 

using (41) and (42) the relationship (52) can be 

rewritten as  

det[𝐈s − (𝐈 − 𝐁𝐃)−1A + (𝐈 − 𝐁𝐃)−1BF] =c(s) (53)  

since according to (40) the matrix [𝐈 − 𝐁𝐃] is non-
singular, the relationship (53) after simple algebraic 

manipulations, can be rewritten as 

det[𝐈s − (𝐈 − 𝐁𝐃)−1A + (𝐈 − 𝐁𝐃)−1BF] = 

=det[(𝐈 − 𝐁𝐃)−1]det [ (𝐈 − 𝐁𝐃)s − 𝐀 +  𝐁𝐅 ] =  

= c(s)                                                                    (54) 

From (54) it follows that 

        det [ (𝐈 − 𝐁𝐃)s − 𝐀 + 𝐁𝐅 ] = 𝜇c(s)          (55) 

where 𝜇 is nonzero real number given by 

                       𝜇 = 1/( det[(𝐈 − 𝐁𝐃)−1)               (56) 

from (55) it follows that the polynomial [𝜇c(s)] 

over R[s], is the characteristic polynomial of 

closed-loop system (8). This completes the proof.  

Corollary 1. For every multivariable linear time-

invariant controllable system (5) there exists a 

proportional-plus-derivative state feedback (7) such 
that the closed-loop system is stable. 

Proof.  Let c(s) be a monic polynomial over R[s] of 

degree n whose roots lie in the open left half 

complex plane. From Theorem 1 it follows that 

there exists matrices F and D over R of appropriate 

dimensions such that 

        det [ (𝐈 − 𝐁𝐃)s − 𝐀 + 𝐁𝐅 ] = 𝜇c(s)          (57) 

where 𝜇 is nonzero real number given by 

                       𝜇 = 1/( det[(𝐈 − 𝐁𝐃)−1)               (58) 

From (57) it follows that the polynomial [𝜇c(s)] 
over R[s], is the characteristic polynomial of 
closed-loop system (8). Since by assumption the 
roots of polynomial c(s) over R[s] of degree n, lie 
in the open left half complex plane, the closed-loop 
system (8) is stable. This completes the proof. 

The sufficiency part of the proof of Theorem 1 

suggests a simple procedure to compute the matrices 

F and D of proportional-plus-derivative state 
feedback (7) which assigns the poles of closed-loop 

system (8) to desired positions.  

Given: A, B and c(s) 

Find: F and D 
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Step 1: Form the polynomial matrix 

[Is – A, B] 

and check whether has full row rank for all 
complex numbers s. If not, the open-loop system 
(5) is uncontrollable; therefore the pole 
assignment problem by proportional-plus- 
derivative state feedback is impossible. 
Step 2: Set 

D = [0, (-2)Im] 

Step 3:Calculate the matrices 

[𝐈 − 𝐁𝐃] = diag[In-m , -Im] 

                       A1 = [(𝐈 − 𝐁𝐃)−1𝐀                      

                        B1 = [(𝐈 − 𝐁𝐃)−1𝐁      

  Step 4: Calculate relatively prime polynomial 

matrices D1(s) and N1(s) over R[s] [10], with D1(s) 

column reduced and column degree ordered, which 
satisfy 

                   (Is – A1)
-1B1 = N1(s)𝐃1

−1(s)       

  Step 5: Read out ν1, ν2, ……, νm , the column 
degrees of polynomial matrix D1(s). 
Step 6: Form the matrix C(s) of size m x m 

                    C(s) = diag[c(s), 1, …, 1]           

 Step 7: Apply Lemma 3 several times if 
necessary in order to make the polynomial matrix 
C(s) column reduced with column degrees ν1, ν2, 
……, νm. Call the resulting matrix C1(s). 
Step 8: Set 

C2(s) = 𝐃ℎ𝐂ℎ
−1 C1(s) 

where Dh and Ch are the highest column degree 
coefficient matrices of polynomial matrices D1(s) 
and C1(s) respectively 
Step 9: Calculate the solution for F over R of the 
equation 

D1(s) + F N1(s) = C2(s) 

In [10] has been proposed a computationally 
efficient method for the calculation of solution 
for F over R of the above equation. In particular 
the proposed method in [10] reduces the solution 
of the equation D1(s) + F N1(s) = C2(s) to that of 
solving a system of linear equations of the form 
FK=L, where the real matrices K and L of 
appropriate dimensions, are constructed from 
polynomial matrices N1(s), D1(s) and C2(s) over 
R[s]. For more details the reader is referred to 
[10]. 
Remark. The pole assignment problem by 

proportional state feedback for multivariable linear 
time invariant systems has been completely solved 

in [11] and [12](according to [13]). As far as we know 

the pole assignment problem by proportional-plus-

derivative state feedback for multivariable linear 

time invariant systems is an open problem yet. The 

main theorem of this paper gives explicit necessary 
and sufficient conditions for the solution of the pole 

assignment problem by proportional-plus-derivative 

state feedback for multivariable linear time invariant 
systems. This clearly demonstrates the originality of 

the contribution of the main theorem of this paper 

with respect to existing results. 

 

5 Conclusions 
In this paper is proven that the pole assignment 
problem by proportional-plus-derivative state 
feedback for multivariable linear time invariant 
systems has solution over the field of real numbers 
if and only if the given open-loop system is 
controllable. Furthermore is proven that every 
multivariable linear time-invariant controllable 
system is stabilizable by proportional-plus -
derivative state feedback. The proof of the main 
result of this paper is constructive and furnishes a 
procedure for the computation of proportional-plus-
derivative state feedback which assigns the poles of 
closed-loop system to any desired positions. 
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