
 
 

 

Mathematical modeling of three - dimensional genetic regulatory 
networks using logistic and Gompertz functions 

INNA SAMUILIK1 , FELIX SADYRBAEV1,2 , DIANA OGORELOVA1 

1Department of Natural Sciences and Mathematics 
Daugavpils University 

Parades street1  
LATVIA 

2Institute of Mathematics and Computer science 
University of Latvia 
Rainis boulevard 29 

LATVIA 
 

Abstract: Mathematical modeling is a method of cognition of the surrounding world in which the 
description of the object is carried out in the language of mathematics, and the study of the model is 
performed using certain mathematical methods.  Mathematical models based on ordinary differential 
equations (ODE) are used in the study of networks of different kinds, including the study of genetic 
regulatory networks (GRN). The use of ODE makes it possible to predict the evolution of GRN in time. 
Nonlinearity in these models is included in the form of a sigmoidal function. There are many of them, 
and in the literature, there are models that use different sigmoidal functions. The article discusses the 
models that use the logistic function and Gompertz function. The comparison of the results, related to 
three-dimensional networks, has been made. The text is accompanied by examples and illustrations. 
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1 Introduction 
The main problem in mathematical modeling of a 
dynamic system is to develop a model and then to 
determine dependencies and coefficients in the 
equations used in developing the model. For 
complex dynamic systems, the determination of 
the coefficients and dependencies in the model is 
a nontrivial task. 
In nonlinear models, we consider cycles, stable 
and unstable regimes [11], a strange attractor and 
chaos [1]. Cycles are regular impacts on the 
economic mechanism with a period of one year 
(autumn harvest, increased heating costs in the 
winter season). Chaos, in socio-economic systems 
and biological communities can be interpreted as 
a natural form of competition. Artificial 
elimination of chaos (in mechanics - due to a 
large dissipation of energy, in the economy - due 
to excessive regulation, high taxation, in society - 

due to legislative restrictions) leads to the 
elimination of complex dynamic regimes and the 
transition to simple solutions, degradation of the 
system. In mechanics, these are the usual simplest 
periodic fluctuations, in economics - a situation of 
stagnation. During the transition from chaos to 
orderliness or after the loss of stability of the 
previous regime, new stable non-trivial solutions 
arise in mechanics as well as inprofitable 
directions in the economy. 
Consider the general form of writing the n-
dimensional dynamical system, that is expected to 
model a genetic regulatory network,  

𝑥 =
     ⋯  

− 𝑣 𝑥 ,
…

𝑥 =
     ⋯  

− 𝑣 𝑥 ,

                             

  or 
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𝑥′ =  𝑒
(    ⋯  )

− 𝑣 𝑥 ,
…

𝑥′ = 𝑒
(    ⋯  )

− 𝑣 𝑥 ,

  

                                                                            (1) 
where 𝜇 > 0,𝜃  and 𝑣 > 0 are parameters, and 
𝑤  are elements of the 𝑛 ×  𝑛 regulatory matrix 

𝑊. The parameters of the GRN have the 
following biological interpretations: 
𝑣 − the rate of degradation of the i-th gene 
expression product;  
𝑤 − the connection weight or strength of control 

of gene j on gene i. Positive values of 𝑤 indicate 

activating influences while negative values define 
repressing influences; 
𝜃 −the influence of external input on gene i, 
which modulates the gene’s sensitivity of 
response to activating or repressing influences. 
[13] 

The sigmoidal functions  𝑓(𝑧) =  and 

𝑓(𝑧) = 𝑒
( )

are used in (1).  

 
Figure 1.Logistic function.   

 
 
 
 
 
 
 
 
 

    Figure 2. Gompertz function. 
 

Sigmoidal functions are monotonically increasing 
from zero to unity and have a single inflection 
point. They are many, but the above functions suit 
well for the analysis and visualizations. A set of 

coefficients 𝑤  form the so-called regulatory 

matrix 

𝑊 =  
𝑤 … 𝑤
… … …

𝑤 … 𝑤
. (2) 

 

2 Three-element GRN 
Consider the three-dimensional system for 
Logistic function 

⎩
⎪
⎨

⎪
⎧𝑥 ′ =

1

1 +  𝑒 (     )
− 𝑣 𝑥 ,

𝑥′ =
1

1 +  𝑒 (     )
− 𝑣 𝑥 ,

𝑥′ =
1

1 +  𝑒 (     )
− 𝑣 𝑥 ,

  (3) 

and for Gompertz function 

⎩
⎨

⎧𝑥 ′ =  𝑒
    

− 𝑣 𝑥 ,

𝑥′ =  𝑒
    

− 𝑣 𝑥 ,

𝑥′ =  𝑒
    

− 𝑣 𝑥 .

  (4) 

The nullclines for the system (3) are defined by 
the relations 

⎩
⎪
⎨

⎪
⎧𝑥 =

      
,

𝑥 =
      

,

𝑥 =
      

.

   (5) 

For the system (4) the nullclines are defined by 
the relations 

⎩
⎪
⎨

⎪
⎧𝑥 = 𝑒

    
,

𝑥 = 𝑒
    

,

𝑥 = 𝑒
    

.

   (6) 

2.1 Logistic function 
Case 1. Stable limit cycles can exist in systems of 
the form (3). Consider the system (3) with the 
matrix 

𝑊 =  
0 1 0

−1 1 0
1 1 0.01

(7) 

and 𝜇 = 𝜇 = 5, 𝜇 = 15; 𝑣 = 𝑣 = 𝑣 = 1; 
𝜃 = 0.5, 𝜃 = 0.04, 𝜃 = −0.5. Three nullclines 
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are located as shown in Figure 3. Computations  
and graphical results  are performed using 
Wolfram Mathematica. 

 
Figure 3. Nullclines (𝑥 − 𝑟𝑒𝑑, 𝑥 − 𝑔𝑟𝑒𝑒𝑛,  𝑥 − 𝑏𝑙𝑢𝑒) 

 

There is one critical point 𝑝 : 
(0.4018;  0.4204;  0.9987). Linearization around 
this point provides us with the characteristic 
numbers 𝜆 given in Table 1. 

Table 1. The characteristic numbers λ 

- λ1 λ2 λ3 
p1 -0.9999 0.8275-1.0261𝑖 0.8275+1.0261𝑖 

 

 
 
 
 
 
 
 
 
 
 

Figure 4. Periodic solutions 
 

 
 

Figure 5. The graphs of 𝑥 (𝑡), 𝑖 = 1,2,3 
 

Case 2. Consider the system (3) with the matrix 

𝑊 =  
1.2 0 2
0.5 1 −0.5
−2 0.01 1

(8) 

and 𝜇 = 𝜇 = 5, 𝜇 = 15; 𝑣 = 𝑣 = 𝑣 = 1; 
𝜃 = 1.0, 𝜃 = 0.4, 𝜃 = −0.5. Three nullclines 
are located as shown in Figure 6. 

 
Figure 6. Nullclines (𝑥 − 𝑟𝑒𝑑, 𝑥 − 𝑔𝑟𝑒𝑒𝑛,  𝑥 − 𝑏𝑙𝑢𝑒) 

 
There are three critical points 𝑝 ,  𝑝  
and 𝑝 : (0.4885;  0.0342;  0.2023), 
(0.4890;  0.1297;  0.2022), 
(0.4935;  0.9999;  0.2013). Linearization around 
these points provides us with the characteristic 
numbers 𝜆 given in Table 2. 

- λ1 λ2 λ3 
p1 -0.5026 0.1522-1.9782𝑖 0.1522+1.9782𝑖 
p2 0.6965 0.1511-1.9799𝑖 0.1511+1.9799𝑖 
p3 -0.9998 0.1518-1.9743𝑖 0.1518+1.9743𝑖 

 
Figure 7. Periodic solutions 
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Figure 8. The graphs of 𝑥 (𝑡), 𝑖 = 1,2,3 

 
2.2 Gompertz function 
Case 1. Stable limit cycles can exist in systems of 
the form (4). Consider the system (4) with the 
same matrix (7) and the same parameters 𝜇, 𝑣 and 
𝜃. Three nullclines are located as shown in Figure 
9. Computations  and graphical results  are 
performed using Wolfram Mathematica. 
 

 
Figure 9.  Nullclines (𝑥 − 𝑟𝑒𝑑, 𝑥 − 𝑔𝑟𝑒𝑒𝑛,  𝑥 − 𝑏𝑙𝑢𝑒) 

 

There is one critical point 𝑝 : 
(0.4894;  0.5672;  0.9996). Linearization around 
this point provides us with the characteristic 
numbers 𝜆 given in Table 3. 

- λ1 λ2 λ3 
p1 -0.9999 9.346-4.9497𝑖 9.346+4.9497𝑖 

  
Figure 10. Periodic solutions 

 

 
                 Figure 11. The graphs of 𝑥 (𝑡), 𝑖 = 1,2,3 
 
Case 2. Consider the system (4) with the same 
matrix (8) and the same parameters 𝜇, 𝑣 and 𝜃. 

 
Figure 12. Nullclines  (𝑥 − 𝑟𝑒𝑑, 𝑥 − 𝑔𝑟𝑒𝑒𝑛,  𝑥 − 𝑏𝑙𝑢𝑒) 

 
There are three critical points 𝑝 , 𝑝  and 𝑝 : 
(0.4109;  0; 0.2652),
(0.4124;  0.3169;  0.2647) and 
(0.4156;  0.9999;  0.2637). Linearization around 
these points provides us with the characteristic 
numbers 𝜆 given in Table 4. 
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Table 4. The characteristic numbers λ 

- λ1 λ2 λ3 
p1 −1 3.2096-5.75024𝑖 3.2096+5.75024𝑖 
p2 12.3148 3.2286-5.73206𝑖 3.2286+5.73206𝑖 
p3 14.0087 3.2278-5.80828𝑖 3.2278+5.80828𝑖 

 
Figure 13. Periodic solutions 

 
Figure 14. The graphs of 𝑥 (𝑡), 𝑖 = 1,2,3 

 
3 More on 3D systems 
We will show now some differences when 
applying both functions. Consider system (3) with 
the following set of parameters: 𝑣 = 1, 𝜇 = 10, 
𝜃 = 1.5, 𝜃 = −0.5, 𝜃 = 0.32 and the 
regulatory matrix is  

𝑊 =  
1 2 0

−2 1 0
0 0 1

. (9) 

This system is uncoupled. The 2-dimensional 
system with the matrix  

𝑊  =
1 2

−2 1
(10) 

is known to have the periodic solution. The 1-
dimensional equation  

𝑥′ = ( ) − 𝑥  has the nullcline which is 

a union of two points. These points are seen in the 
Figure 15. 

 
Figure 15. Logistic function (blue) and Gompertz 

function (red) for 𝜃 = 0.32. 
 

The third nullcline for 3D-system with the logistic 
function consist of two planes of the form 𝑥 = 𝑝  
and 𝑥 = 𝑝 , where 𝑝 ,  are roots of the equation 

𝑥 = ( ). They are two, one of them 

corresponds to the tangent point of the blue graph 
with the graph of the bisectrix. The 3D system has 
two periodic solutions that locate in the planes 
𝑥 = 𝑝  and 𝑥 = 𝑝 . Only the second one is 
attractive. Consider the 3D-system (4), where the 
Gompertz function is used in a model, and all the 
parameters are the same as above. Since the red 
curve has three points of intersection with the 
bisectrix, this system has three periodic solutions 
in the planes 𝑥 = 𝑞 , 𝑖 = 1,2,3, where the points  
𝑞 , 𝑞 , 𝑞  are roots of the equation𝑥 =

𝑒
( )

. The first and the third periodic 
solutions are attractive. Do the same for both 3D-
systems where only the parameter 𝜃 is set for 
0.15. The result is seen in Figure 16.  

 
Figure 16. Logistic function (blue) and Gompertz 

function (red) for 𝜃 = 0.15. 
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Now the first 3D system with the logistic function 
has one periodic solution, which is attractive. The 
second 3D system with Gompertz function has 
two periodic solutions corresponding to two roots 

of the equation 𝑥 = 𝑒
( )

, 𝜃 = 0.15. 
We conclude that for the set of parameters listed 
above, where only 𝜃  varies, the following is true. 
For 0.15 < 𝜃 <  0.32 the first 3D system (3) has 
one periodic solution which is attractive. The 
second 3D-system (4) has three periodic 
solutions. Of them two periodic solutions are 
stable. The structure of phase spaces for the two 
systems is completely different despite of the fact 
that they use the same set of parameters.  

 
Figure 17. Logistic function, the attractive 

solution, 𝜃 = 0.24 

 
Figure 18. Gompertz function,                              

three periodic solutions, 𝜃 = 0.24 
 

4 Conclusions 
The Gompertz function resembles a logistic 
function, both sigmoidal functions have a lot in 
common, but also a lot of differences. In the 
Gompertz function, growth deceleration does not 

occur as fast as its acceleration. Both functions are 
activation functions. In this paper we approach 
mathematical models of genetic networks. The 
same set of ordinary differential equations appear 
in models of telecommunication networks and 
neuronal networks. The systems of ODE are 
quasi-linear and nonlinearities are represented by 
sigmoidal functions. To which extent the results 
obtained can coincide and/or differ if different 
sigmoidal functions are used? We got partial 
answer to this question. We have studied two 
systems with the same sets of parameters (and 
they are many). The only difference was that in 
the first system the logistic function was used, 
while in the second one it was substituted by 
Gompertz function. Both functions are quite 
similar, but the second one uses double exponent 
and this makes it rapidly going to limits. 
Nevertheless, if both systems had a single critical 
point of the non-attractive  nature, as expected, 
both had a stable periodic solution. For a different 
regulatory matrix (8) both systems had three 
critical points of non-attractive nature. Both 
systems had periodic solutions and behavior of 
solutions tending to this periodic one, is quite 
similar (Fig. 5 and Fig. 11). The section 3 is 
devoted to differences that can occur when 
applying both functions to the same model. The 
uncoupled systems were considered with the 
specific third nullcline, which could be in the 
form of one or three 𝑥 -planes. Only one 
parameter,𝜃 , was allowed to vary. On a relatively 
long interval, 𝜃  ∊  (0.15, 0.32), significant 
differencies between two systems were observed. 
The reason is that the third nullcline is defined by 
the equation of the form 𝑥 = 𝑓(𝑥 ), where 𝑓 can 
be logistic or Gompertz function. For 𝜃  in the 
above interval these equations have different 
number of roots. This leads to substantial 
differencies in the strucrture of attractors in both 
systems. Stable periodic solutions serve as 
attractors in both systems, but their number (and 
location) is different. This may lead to 
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misunderstanding in interpretation of behavior of 
modeled networks. 
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