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Abstract: - Previous studies revealed that the coefficient of variation (CV) is important in ensuring process 
quality, especially for monitoring a process where its process mean and variance are highly correlated. The fact 
that almost all industrial process monitoring involves a minimum of two or more related quality characteristics 
being monitored simultaneously. The existing adaptive charts for monitoring the multivariate CV are focused 
on detecting upward process shifts. The downward process monitoring is crucial since it shows process 
improvement. Very little research works are available on the downward adaptive multivariate CV chart. This 
makes it difficult for the quality engineer who wishes to implement the adaptive multivariate CV chart on the 
downward process monitoring. Therefore, this paper filled the research gap by proposing a downward variable 
parameter chart for the multivariate coefficient of variation. The performance measures of the proposed charts 
are derived based on the Markov-chain approach. Numerical comparisons between the proposed and existing 
charts have been made, in terms of the average time to signal criterion. The findings reveal that the proposed 
charts outperform the existing charts for detecting small and moderate downward process shifts. 
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1. Introduction 

Control charting techniques are commonly used and 
received great attention to their application in various 
industries, such as manufacturing healthcare, 
chemical, biological, agriculture and service 
industries. The traditional X  and R charts could not be 
used for some processes especially when the mean and 
standard deviation of the processes are highly 
correlated. In this case, the traditional control charts 
may provide erroneous conclusions. To deal with this 
kind of process, the implementation of a coefficient of 
variation (CV) control chart is the best solution. In the 
past few decades, the application of CV is very 
common to be applied in various disciplines. This can 
be shown in some recent research works. Whelan and 
Siqueira [1] applied the CV in crop area classification 
across multiple climates. Weber [2] investigated the 
CV as the predictor of risk sensitivity. Chanda et al. 
[3] presented the use of CV on the sugarcane 
population and stalk production. Additionally, the CV 
can be implemented to evaluate the global solar 
radiation in terms of time scale separation [4] and 
chemical reactor process [5]. 

Kang et al [6] were the pioneer to introduce a 
standard CV chart. Subsequently, research works on 
CV charts have been extensively conducted to 

improve the sensitivity of the standard CV chart, in 
terms of detecting small and moderate CV shifts. such 
as those by [7 – 10], to name a few. Besides, Yeong et 
al. [11] introduced a multivariate CV (MCV) chart for 
multivariate process monitoring. Khaw et al. [12, 13] 
suggested the adaptive MCV and synthetic MCV 
charts enhance the statistical performance of the 
standard MCV chart of Yeong et al. [11]. Nguyen et 
al. [14] and Chew and Khaw [15] proposed the one-
sided MCV charts by incorporating the variable 
sampling interval (VSI) and variable sample size and 
sampling interval (VSSI), respectively. Chew et al. 
[16] discussed the upward MCV chart with variable 
parameters. In addition, a fixed and variable 
exponentially weighted moving average (EWMA) 
chart for monitoring the MCV was presented by Giner-
Bosch et al. [17] and Ayyoub et al. [18], respectively. 

The adaptive scheme is a well-known scheme in 
the control charting technique, which consists of VSI, 
variable sample size (VSS), VSSI and variable 
parameter (VP) strategies. Among those strategies, VP 
is known as the most effective adaptive scheme. The 
VP strategy is continuously being investigated by 
many researchers. Yeong et al. [19] recommended a 
VP chart for monitoring the CV. Lee [20] and Lin and 
Chou [21] used a VP chart to monitor the 
autocorrelated and non-normality processes, 
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respectively. Moreover, the VP charts with correlated 
A&L switching rule [22], VP X  chart [23] and VP S 
chart [24] were investigated in terms of economic 
criterion. More recently, Sabahno et al. [25] 
considered the VP chart for simultaneously monitoring 
the process mean and variability with measurement 
error while the VP auxiliary information based chart 
was developed using a Markov-chain approach [26]. 

The VP MCV chart of Chew et al. [16] showed an 
outstanding performance in the detection of MCV 
shifts when compared to other existing MCV charts. 
However, a setback of this study is the VP MCV chart 
was only considered for the detection of upward MCV 
shifts. In most of the scenarios, the detection of 
downward MCV shifts is important as it shows process 
improvement. With the intention to fill the research 
gap in downward process monitoring and the excellent 
feature of the VP scheme, this paper extends the VP 
MCV chart of Chew et al. [16] and proposes a one-
sided downward VP (DVP MCV) chart for monitoring 
the downward MCV shifts. Note that the one-sided 
DVP MCV chart can avoid the biased average time to 
signal (ATS) performance.  In the existing literature, 
only the Shewhart (SH) and VSSI MCV charts are 
available for monitoring the downward process shifts. 
The SH MCV chart can detect large process shifts 
quickly but it is rather slow in the detection of small 
and moderate process shifts. The statistical sensitivity 
of the SH MCV chart can be enhanced by using a 
variable parameter strategy. This paper proposes a 
one-sided downward VP MCV (called DVP MCV) 
chart. The performance measures of the proposed chart 
are derived using the Markov-chain approach. As it 
will be shown in Section 3, the DVP MCV chart 
generally outperforms the existing DSH MCV and 
DVSSI MCV charts, in the detection of small and 
moderate shifts, in terms of the ATS criterion. 

The remainder sections are organized as follows: 
Section 2 discusses the design of the one-sided DVP 
MCV charts. The derivations of the formulae and 
algorithms to compute the ATS values, by adopting 
the Markov-chain method are also provided. 
Numerical comparisons among the DVP MCV, 
DVSSI MCV and DSH MCV charts are enumerated in 
Section 3. Lastly, the research findings and 
recommendations for future research are given in the 
last section. 

 

2. One-sided Downward Variable 

Parameter MCV Chart 

Let 1 2, ,...,
n

X X X  refers to a multivariate 0n  from 
the p-variate normal distribution with  and . Voinov 

and Nikulin [27] derived the population MCV statistic 

as  
1

1 2T


 μ μ∑ , where  and  refer to the mean 
vector and covariance matrix, respectively. Note that 
  can be estimated by the sample MCV, ̂  when μ  

and ∑  are unspecified. Thus,  
1

1 2ˆ T


 X S X  by 
replacing  and   with X  and S , respectively. Here, 
X  is the sample mean vector whereas S  is the 
sample covariance matrix. The computations of X  
and S  are 1/ n X X  and 

  1/ ( 1)
T

n    S X X X X , respectively, where 
X  and S are independent of one another. 

The DSH MCV chart of Yeong et al. [11] uses a 
fixed sampling interval, 0h , fixed sample size, 0n  and 
fixed-width constant. It consists of two regions, i.e. the 
safe region and the action region. Contrary to the DSH 
MCV chart, the DVP MCV chart contains three 
regions, which represent the safe, warning and action 
regions. The VP scheme varies the sampling interval, 
sample size and width constant to enhance the flaw of 
the DSH MCV chart in the detection of small and 
moderate downward MCV shifts. The sampling 
interval adopted for the proposed chart is varied 
between the short sampling interval, 

Sh  and the long 
sampling interval,

Lh , where 0ASIS Lh h   while the 
sample size is varied between the small sample size, 

Sn  and the large sample size, 
Ln , where 

0ASSS Ln n  . Note that 0ASI  and 0ASS  refer to the 
in-control average sampling interval (ASI) and in-
control average sample size, respectively, where 0ASI  
and 0ASS  of the DVP MCV chart is equal to the fixed 
sampling interval and fixed sample size of the DSH 
MCV for ensuring a fair comparison can be made. The 
DVP MCV chart works as follows: 

i) When the t-th sample MCV, ˆ
t  falls 

above the warning limit, the process 
shows no indication of trouble. Hence, 

Lh

, 
Sn  and loosened control and warning 

limits are taken to compute the  (t + 1)-th 
sample MCV, 1t̂ 

; 
ii) When ˆ

t  falls below the warning limit 
and above the control limit, the process 
still shows no indication of trouble but 
there is a higher tendency for it to become 
out-of-control. Hence, 

Sh , Ln  and 
tightened control and warning limits are 
taken to compute 1t̂ 

; and 
iii) When ˆ

t  falls below the control limit, the 
process shows an indication of trouble at 
the t-th sample due to the presence of 
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assignable causes. In this case, an 
immediate investigation should be taken. 

 
Subsequently, the lower warning and control 

limits of the DVP MCV chart are computed as 
 
 1

ˆ 0LWL | , ,k k rF n p    ,           (1) 
 
and 
 

 1
ˆ 0LCL | , ,k k rF n p   .           (2) 

 
Note that in Eqns (1) and (2), when k = S, then 

r Ln n . Conversely, when k = L, then 
r Sn n . The 

Type-I error probability, 0  is set based on the desired 
in-control ATS  0ATS  and 0k   . The Type-I error 
probability is used in the computation of lower control 
limit, i.e. LCL. The LCL is computed according to the 
specified ATS0 value, where the Type-I error 
probability is set to fulfil this constraint. LWLS

, 
LCLS

, LWLL
 and LCLL

 denote the tightened 
warning limit, tightened control limit, loosened 
warning limit and loosened control limit, respectively, 
where 0LCL LCL LCLS L  . Here, 0LCL  is the 
lower control limit of the non-adaptive MCV chart and 
can be obtained using Eqn (2) by substituting 

k  as 

0 . Here, 2
0 0/n   and p denotes the number of 

quality characteristics.  
Equations (1) and (2) follow an inverse cumulative 

distribution function (cdf) of ̂ , i.e.  1
ˆ , ,F n p   

 1[( ( )) / (( 1) )] (1/ 1 , , )Fn n p n p F p n p      . Note 
that  1   FF    refers to an inverse cdf of a noncentral F 
distribution, where this distribution is only valid when 
p < n due to the degree of freedom and  is defined as 

 
2

0/n  , where the shift size 1   when the process 
is in-control. Note that 1 0   is the out-of-control 
MCV, where 1  , with the values of 0 1   refer to 
downward MCV shifts. 

The Markov chain model of the DVP MCV chart 
has three states, which correspond to the safe, warning 
and action regions. States 1 and 2 are the transient 
states (i.e. A11, A12, A21 and A22) while state 3 is the 
absorbing state, where Aij is the transition probability 
from the previous state i to the current state j. Then, 
the transition probabilities of the transient states in the 
matrix can be obtained as 
 

   ˆ11 11 11ˆPr LWL , , 1 LWL , ,L S L SA n p F n p     

, where 11 2
1

Sn



                (3) 

 
 12 11ˆPr LCL LWL , ,L L SA n p     

   ˆ ˆ11 11LWL , , LCL , ,L S L SF n p F n p        (4) 
 

   ˆ21 12 12ˆPr LWL , , 1 LWL , ,S L S LA n p F n p     

, where 12 2
1

Ln



                (5) 

 
 22 12ˆPr LCL LWL , ,S S LA n p     

   ˆ ˆ12 12LWL , , LCL , ,S L S LF n p F n p        (6) 
 

The ATS of the DVP MCV chart can be computed 
as 

 
 

1ATS= T 

b I Q t                (7) 
 
I and Q are the identity and transient state transition 
probability matrices with 2 2  dimension, 
respectively, whereas  2 1,T

h ht  is a sampling 
intervals vector. Subsequently,  1 2,T

b bb  is the initial 
probability vector, subject to 1 2 1b b  . Here, 1b  and 

2b  are the time spent proportions in the safe and 
warning regions, respectively. Both 1b  and 2b  are 
obtained based on 1  , where 
 

 
 

ˆ 11
1

ˆ 11

1 LWL , ,
1 LCL , ,

L S

L S

F n p
b

F n p













           (8) 

 
And 
 

   
 

ˆ ˆ12 12
2

ˆ 12

LWL , , LCL , ,
1 LCL , ,
S L S L

S L

F n p F n p
b

F n p

 



 







,  (9) 

 
subject to the specified values of 0ASS , 0ASI  and 

0UCL , where 0 2 1 1 2ASI h b hb  , 0 1 1 2 2ASS n b n b   and 
0UCL  1 2UCL UCLL Sb b . 

 

3. Numerical Comparison 

The numerical performance of the proposed chart 
is evaluated in terms of the ATS criterion and the ATS0 
is specified as 370. According to Muhammad et al. 
[28], an ATS0 of 370 ensures a low false alarm rate, 
Moreover, it also allows a fair comparison to be made 
with other MCV charts, i.e. DSH MCV, DVSI MCV, 
DVSS MCV and DVSSI MCV charts. The existing 
DSH MCV chart for monitoring the downward 
process has its fixed sampling interval set as, say 

0 1h  . As ATS = 0h ATS, then ATS = ARL for the 
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proposed DVP MCV chart. For ensuring a fair 
comparison with the DSH MCV chart in terms of the 
ATS criterion, the  0 0ASI h  of the DVP MCV chart 
is set as unity. Then, the Sh  value is set to be at least 
0.1 to minimize the ATS1 values, for detecting the 
decrease of MCV shifts.  Tables 1 – 2 present the 
comparison between the DVP MCV, DVSSI MCV 
[15], DVSS MCV [15], DVSI MCV [15] and DSH 
MCV [11] charts, in terms of the ATS1 criterion, for 

{2,3}p , 0 {0.1,0.3,0.5}  , {5,10}n  and  {0.50, 
0.60, 0.70, 0.80, 0.90}. In the detection of downward 
MCV shifts, it is clear that the DVP MCV chart has 
the best performance, for small and moderate 
downward shift sizes. For example, from Tables 1 and 
3, when p = 2, n0 = 5, 0 0.1   and  = 0.50, the DVP 
MCV, DVSSI MCV, DVSS MCV, DVSI MCV and 
DSH MCV charts provide ATS1 = 2.09, 2.56, 4.69, 
6.18 and 33.43, respectively, where the DVP MCV 
chart has the smallest ATS1 value. Another example 
can be shown from Tables 2 and 4, when p = 3, n0 = 
10, 0 0.1   and  = 0.70, the DVP MCV, DVSSI 
MCV and DSH MCV charts give ATS1 = 2.82, 3.78, 
6.92, 7.05 and 44.02, respectively, where the DVP 
MCV chart has the smallest ATS1 value. In addition, 
from Tables 1 to 4, another notable trend observed is 
that the larger shift   provides smaller TARL1 values 
regardless of the sample size n values. When n and   
values are fixed, the TARL1 values increase 
consistently by increasing the 0  value. When 0  and 
  values are fixed while the n value increases, the 
TARL1 value decreases. When the p value increases, 
the TARL1 value increases as well, this shows that the 
p value is proportional to the TARL1 value. 
 
Table 1. ATS1 values of the DVP MCV, DVSSI MCV 
and DSH MCV charts when p = 2, 0 {5,10}n  , 

0 {0.1,0.3,0.5}  , 0.1Sh   and ATS0=370. 
  

 DVP MCV DVSSI MCV DSH MCV 
 0 0.1   

  n0 = 5 
0.5 2.09 2.56 33.43 
0.6 3.90 5.41 64.03 
0.7 9.41 15.52 103.67 
0.8 25.80 80.80 129.98 
0.9 102.31 203.13 237.24 

 n0 = 10 
0.5 1.13 1.18 5.28 
0.6 1.40 1.58 14.50 
0.7 2.40 3.12 36.56 
0.8 8.01 16.70 80.33 
0.9 64.37 88.68 187.53 

 0 0.3   

  n0 = 5 
0.5 2.14 2.60 52.15 

0.6 4.18 5.59 87.72 
0.7 10.29 15.68 135.30 
0.8 28.47 81.93 198.12 
0.9 108.36 204.42 277.14 

 n0 = 10 
0.5 1.14 1.19 5.88 
0.6 1.43 1.62 15.94 
0.7 2.57 3.18 39.28 
0.8 8.97 17.28 86.08 
0.9 66.80 90.43 190.22 

 0 0.5   

  n0 = 5 
0.5 2.23 2.84 55.84 
0.6 4.55 6.70 93.57 
0.7 13.62 19.89 142.81 
0.8 10.88 98.25 204.75 
0.9 115.21 214.12 282.74 

 n0 = 10 
0.5 1.16 1.22 7.08 
0.6 1.52 1.71 18.55 
0.7 2.71 3.78 44.45 
0.8 9.08 20.17 96.26 
0.9 69.43 98.72 197.42 

 
Table 2. ATS1 values of the DVP MCV, DVSSI MCV 
and DSH MCV charts when p = 3, 0 {5,10}n  , 

0 {0.1,0.3,0.5}  , 0.1Sh   and ATS0=370. 
 

 DVP MCV DVSSI MCV DSH MCV 
 0 0.1   

  n0 = 5 
0.5 3.67 5.24 93.38 
0.6 8.12 12.79 135.17 
0.7 18.35 37.64 183.46 
0.8 42.47 142.73 237.73 
0.9 125.64 259.18 302.76 

 n0 = 10 
0.5 1.17 1.24 8.22 
0.6 1.52 1.76 20.33 
0.7 2.82 3.78 44.02 
0.8 9.70 21.43 101.49 
0.9 70.58 102.47 202.16 

 0 0.3   

  n0 = 5 
0.5 4.53 5.42 96.66 
0.6 9.34 13.29 139.23 
0.7 19.98 38.57 186.39 
0.8 44.66 145.04 241.67 
0.9 128.21 260.56 304.71 

 n0 = 10 
0.5 1.19 1.27 8.46 
0.6 1.61 1.93 21.05 
0.7 2.97 3.94 48.60 
0.8 10.26 23.21 103.33 
0.9 73.62 110.39 203.71 

 0 0.5   

  n0 = 5 
0.5 4.94 6.36 103.00 
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0.6 10.67 15.97 146.12 
0.7 21.81 46.98 194.52 
0.8 47.18 164.27 248.88 
0.9 135.79 267.85 309.54 

 n0 = 10 
0.5 1.21 1.30 9.88 
0.6 1.72 1.95 24.26 
0.7 3.13 4.70 54.47 
0.8 13.99 25.92 111.62 
0.9 77.80 113.17 210.63 

 
Table 3. ATS1 values of the DVP MCV, DVSS MCV 
and DVSI MCV charts when p = 2, 0 {5,10}n  , 

0 {0.1,0.3,0.5}  , 0.1Sh   and ATS0=370. 
  

 DVP MCV DVSS MCV DVSI MCV 
 0 0.1   

  n0 = 5 
0.5 2.09 4.69 6.18 
0.6 3.90 7.11 12.11 
0.7 9.41 17.71 32.55 
0.8 25.80 83.49 85.43 
0.9 102.31 227.32 205.96 

 n0 = 10 
0.5 1.13 2.02 1.46 
0.6 1.40 2.74 2.47 
0.7 2.40 5.86 5.31 
0.8 8.01 26.15 23.11 
0.9 64.37 147.58 105.16 

 0 0.3   

  n0 = 5 
0.5 2.14 4.72 6.29 
0.6 4.18 7.98 12.77 
0.7 10.29 18.12 33.33 
0.8 28.47 87.80 86.90 
0.9 108.36 256.49 208.42 

 n0 = 10 
0.5 1.14 2.03 1.51 
0.6 1.43 2.93 2.52 
0.7 2.57 6.23 6.03 
0.8 8.97 27.34 24.43 
0.9 66.80 154.59 107.41 

 0 0.5   

  n0 = 5 
0.5 2.23 5.11 6.86 
0.6 4.55 8.98 14.71 
0.7 13.62 22.74 38.87 
0.8 10.88 104.09 96.18 
0.9 115.21 266.05 224.61 

 n0 = 10 
0.5 1.16 2.13 1.62 
0.6 1.52 3.23 2.83 
0.7 2.71 7.46 7.39 
0.8 9.08 33.90 30.01 
0.9 69.43 166.49 118.35 

 

Table 4. ATS1 values of the DVP MCV, DVSS MCV 
and DVSI MCV charts when p = 3, 0 {5,10}n  , 

0 {0.1,0.3,0.5}  , 0.1Sh   and ATS0=370. 
 

 DVP MCV DVSS MCV DVSI MCV 
 0 0.1   

  n0 = 5 
0.5 3.67 7.64 10.27 
0.6 8.12 14.94 23.13 
0.7 18.35 38.49 56.23 
0.8 42.47 145.31 120.84 
0.9 125.64 289.12 263.32 

 n0 = 10 
0.5 1.17 2.19 1.62 
0.6 1.52 2.87 2.88 
0.7 2.82 6.92 7.05 
0.8 9.70 30.75 29.08 
0.9 70.58 157.08 112.68 

 0 0.3   

  n0 = 5 
0.5 4.53 7.82 11.97 
0.6 9.34 15.10 25.34 
0.7 19.98 39.54 58.83 
0.8 44.66 148.52 124.45 
0.9 128.21 293.75 268.24 

 n0 = 10 
0.5 1.19 2.29 1.74 
0.6 1.61 3.28 3.07 
0.7 2.97 7.07 7.73 
0.8 10.26 32.21 30.27 
0.9 73.62 169.74 119.34 

 0 0.5   

  n0 = 5 
0.5 4.94 8.67 13.31 
0.6 10.67 17.61 29.32 
0.7 21.81 49.32 67.10 
0.8 47.18 167.58 134.79 
0.9 135.79 300.02 274.36 

 n0 = 10 
0.5 1.21 2.33 1.89 
0.6 1.72 3.62 3.48 
0.7 3.13 8.58 9.54 
0.8 13.99 40.05 36.83 
0.9 77.80 181.76 130.58 

 

4. Conclusion 

In this paper, a one-sided downward DVP MCV 
chart is proposed for enhancing downward 
multivariate process monitoring. The performances of 
the proposed chart are measured in terms of the ATS 
criterion based on the Markov-chain approach. The 
numerical comparisons reveal that the proposed DVP 
MCV chart outperforms the existing DVSSI MCV, 
DVSS MCV, DVSI MCV and DSH MCV charts, for 
detecting small or moderate downward MCV shifts. 
No attempt has been made to improve the efficiency 
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of the downward multivariate process monitoring 
using the VP strategy in the existing literature. The 
existing VP MCV chart only considered monitoring 
the upward MCV shifts. In certain scenarios, the 
detection of downward MCV shifts is very important 
as it shows process improvement. Moreover, the 
proposed DVP MCV chart also can resolve the 
problem of ATS-biased performances. In future 
research, the proposed chart can be extended to the 
DVP MCV charts with the presence of measurement 
errors and estimated parameters for monitoring the 
downward process shifts. 
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