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Abstract: - In the paper a solution for building of 3D map of unknown terrain for the purposes of control of  
wheeled autonomous mobile robots operating in an isolated and hard-access area is described. The work 
environment is represented by a three-dimensional occupancy grid map built with SLAM techniques using 
LIDAR sensor system. Probabilistic methods such as adaptive Monte Carlo localization and extended Kalman 
filter are used to concurrently build a map of surroundings and a robot’s pose estimation. A robot’s 
displacement and orientation are obtained from odometry and inertial navigation system. All algorithms and 
sub-systems have been implemented and verified with Robot Operation System with a framework for 
exploration tasks in multi-level buildings. 
  
Key-Words: - mobile robot, SLAM 3D, mapping, exploration, localization  

1 Introduction 
 The use of autonomous mobile robots in an 
unknown  environment, where a human being  
presence is dangerous,  has known an increasing 
interest in recent years. To execute efficiently its 
missions the robot needs a system to see its 
surrounding area. Nowadays, the simultaneous 
localization and mapping (SLAM), one of the 
most active topics in robotics researches, seems to 
be the attractive solution to this problem [3, 4, 5, 
13, 15, 18, 19, 20]. SLAM is the computational 
technique which allows the mobile robot to 
generate a map of the investigated environment 
using its onboard sensors while, at the same time, 
this map is concurrently used to find its location 
within it. 

The paper consists of five sections. In Section 2 
a brief description of the SLAM problem is 
presented. A mobile robot’s control is written in 
Section 3. In Section 4 results of numerical study 
are provided. Conclusions are given in Section 5. 

 
 

2 SLAM principles 
The SLAM problem is commonly defined by four 
vectors:  controls U, observations Z, map m and 
robot’s pose X for a period of time from 0 to t  
[8, 12]:  
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where U, Z are given values, m and X calculated or 
estimated. A pose of the robot during planar 
motion, according to its kinematics, is defined by 
the following state vector of positions and 
orientation  𝑿(2) = [𝑥 𝑦 ]𝑇 with respect to 2D 
coordinate frame. 

Probabilistic estimation of the robot’s pose and 
the map for every step is named as probability 
density function and can be described by the 
following generic form [12, 17]: 
 
 

Received: December 2, 2020. Revised: July 13, 2021. Accepted: July 27, 2021. Published: August 11, 2021.   
 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2021.16.40

Andrii Kudriashov, Tomasz Buratowski, 
Jerzy Garus, Mariusz Giergiel

E-ISSN: 2224-2856 450 Volume 16, 2021



𝑝(𝑋0:𝑡, 𝑚 |𝑍1:𝑡 , 𝑈1:𝑡)   (2) 
 

Currently the most often used SLAM algorithm 
for robot’s pose estimation is adaptive Monte-
Carlo localization (AMCL). The AMCL is a 
particular filter, the variant of Markov localization 
family. It uses Bayes rule to update beliefs –  
a probability distribution of robot’s localization 
when it is moving or getting information from 
sensors [3, 16]. 

By applying Bayes rule and Markov 
assumption the robot’s pose can be described as 
recursive posterior estimation and presented in the 
following form [7]: 

 
𝑝(𝑋0:𝑡, 𝑚 |𝑍1:𝑡, 𝑈1:𝑡) = 
= 𝛼 ∙ 𝑝(𝑍𝑡  |𝑋0:𝑡, 𝑚, 𝑍1:𝑡−1, 𝑈1:𝑡) (3) 

      ∙ 𝑝(𝑋0:𝑡, 𝑚 |𝑍1:𝑡−1, 𝑈1:𝑡)    

 
where α is a normalization constant which is used 
to ensure that ),( 1:0:1 ttt UZXp  is one over all 

tX .  
AMCL is generally carried out in two steps: 
prediction and correction. Prediction 

),( 11  ttt XUXp  is given from the robot’s previous 
control 1tU  and 1tX  pose while correction 

)( tt XZp  is taken from observation tZ in position 

tX . 
In three-dimensional space, robot’s pose 

describes a state vector consisting of six 
coordinates: Cartesian x, y, z and Euler angles 
 𝜑, 𝜗, : 

 
𝑿(3) = [𝑥 𝑦 𝑧 𝜑  𝜗 ]𝑇   (4) 

 
The 3D map applied in this work is represented 

by occupancy grids, which were introduced as 
binary cells by  Moravec et al [16] and Elfes et al 
[3]. Each cell is presented by a binary random 
variable which gives a probability of its occupancy 
in the following way - 0 for free and 1 for 
definitely occupied. The cells which have been 
unobserved yet are fulfilled with some default 
values (e.g. 0.5). In such a way, the map m is 
obtained by a product of each cell occupancy 
probability: 

 
 ∏ 𝑝(𝑚𝑥𝑖,𝑦,𝑧𝑖 )

𝑁
𝑖     (5) 

 
The 3D mapping Octomap framework 

developed by Hornung et al [7] is used as the basis 
for our research. The Octomap, instead of quadtree 
representation commonly used for 2D occupancy 

grids, uses an octree hierarchical data structure, 
where each volume named node has eight child 
connections with inner nodes [7]. The specific 
details of three dimensional mapping techniques 
with occupancy grids can be found in [5, 8, 12, 17, 
21]. 

For exploration and mapping of multi-level 
buildings the usage of independent SLAM process 
for each level is required. For that purpose we 
applied the AMCL-EKF hybrid pose estimation 
which had been developed for robust pose 
estimation in isolated terrain and described in 
details in [14]. This approach, based on data 
obtained from LIDAR and inertial navigation unit 
(IMU) sensing,  is used together with odometry 
technique for local pose estimation by n extended 
Kalman filter (EKF). The global localization is 
determined by Rao-Blackwellized 2D SLAM 
algorithm based on particle filter approach [6] with 
motion data delivered from EKF estimates. The 
Rao-Blackwellization approach was introduced by 
Doucet et al in [2]. Its idea is to factorize the 
SLAM posterior (2) into 𝑀 sampled versions, 
where each particle is a pose with individual 
landmarks estimated by low-dimensional EKF: 
 
𝑝(𝑋0:𝑡, 𝑚 |𝑍1:𝑡 , 𝑈1:𝑡) = 𝑝(𝑋0:𝑡, 𝑚1:𝑀 |𝑍1:𝑡, 𝑈1:𝑡) = 

(6) 
=(𝑋0:𝑡, 𝑚1:𝑀 |𝑍1:𝑡, 𝑈1:𝑡) ∏ 𝑝(𝑚𝑖  |𝑍1:𝑡 , 𝑈1:𝑡)𝑀

𝑖=1  
 

(5) 

The Rao-Blackwellized SLAM can be applied 
for both grids and landmark based maps, and its 
application gives much faster solution in 
comparison to EKF one. Robustness of this 
approach is shown and confirmed in numerous 
research works [1, 4, 10, 15]. 

 
 

3 Problem formulation  
The mobile platform used for implementation and 
testing is a differential drive robot, the typical one,  
which has two wheels on common axis. Its 
orientation is controlled by differences of rotation 
direction and speed of each wheel (see Figure 1).  

The control system is based on kinematics of 
the robot, where the relation between its linear and 
angular (𝑉𝑥, 𝑉𝑦,𝜃̇) velocities to angular velocity of 
each wheel (𝜔𝑟, 𝜔𝑙) is the key. Under assumption 
that wheel parameters like radius of wheels  
(𝑟 = 𝑟𝑟 = 𝑟𝑙) are known a kinematic model of 
differential drive in robot’s frame can be described 
as follows: 
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Fig. 1. Two-wheeled mobile robot schema in 2D. 

 
 

The mobile wheeled robot can operate only in  
3 DOF therefore for path planning and state 
estimation purposes three dimensional state vector 
can be written as follows:  

 
𝑿(𝟑) = {𝑿(𝟐) 𝑧 𝜑 𝜗}𝑇   (8) 

 
where two-dimensional state vector  𝑿(𝟐) is used 
for motion control while the rest of coordinates 
might be usedt for robot’s tracking in 3D space. 

Hence, it is possible to find a hybrid solution 
suitable to multi-level building exploration. The 
solution is based on 2D SLAM for precise 2D 
robot’s pose tracking and control as well as on 3D 
mapping.  

For 𝑿(𝟐) pose estimation purpose the hybrid 
AMCL-EKF filtering can be applied [14]. Since 
the mentioned above algorithm besides global 𝑿(𝟐) 
also calculates local 𝑿(𝟑) (see Figure 2), it makes 
possible to reconstruct global 3D pose and 
flawlessly use it for further 3D mapping. 
 
 
4 Implementation and verification  
The multilevel 3D inspection system has been 
implemented and evaluated with ROS software 
framework and VREP simulator. The wheeled 
robot and Velodyne LIDAR models which were 
used in simulation study relate to real equipment 
that is used in our Lab. The workspace 
environment scenarios, used in the investigations, 

were developed using CAD software and imported 
to VREP software from STL files (see Fig. 3a and 
Fig. 3b).  
 
 

 
Fig. 2. Local pose estimation: Combined AMCL-EKF 

techniques for 3 DOF odometry estimations [14]. 
 
 

 
(a) 

 

 
(b) 

 
Fig. 3. Multi-level building exploration scene in VREP. 

 
 
The 3D workspace for the solution regardless 

of the chosen scene can be also represented as  
the planar 3D map M𝒑𝒍

(𝟑) in form of a set of 2D 
layers, maps of each floor/level of the building 
connected by the function f  which describes the 
geometrical relation between neighboring level 2D 
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maps by the 𝑙𝑧,𝑖  (value related to the distance 
between level bottom surfaces): 
 

M𝒑𝒍
(𝟑)

= ∑ 𝑓(M𝒊
(𝟐)

, M𝒊−1
(𝟐)

, 𝑙𝑧,𝑖)
𝑵
𝒊=𝟏    (9) 

 
Such approach allows to perform 2D SLAM 

estimation on each level. The  main problem is 
continuous 3D pose tracking and fluent switching 
between levels. It was solved by applying values 
of coordinates from (8) to continuous 3D pose 
tracking under assumption that 𝑧 coordinate is 
related to the 𝑧-axis 'ground-ceiling' distance on 
the current level and  𝜑 angle is used for tracking  
movement between levels. The 𝑿(𝟐) is quasi-
isolated since on each level 𝑖 𝑿𝑔𝑙𝑜𝑏,𝑖

(2)  is connected 
with others by 𝑧 coordinate and is a part of the 
𝑿𝑔𝑙𝑜𝑏

(3)  pose creation: 
 

𝑿𝑔𝑙𝑜𝑏0:𝑡

(3)
= ∑ {𝑿𝑔𝑙𝑜𝑏,𝑖

(2)
𝑧 𝜑 𝜗}

0:𝑡

𝑇
𝑁
𝑖=0   (10) 

 
Since 𝑿𝑔𝑙𝑜𝑏

(3)  and 3D laser data – cloud of points 
- are known for each while of time the 3D map can 
be performed. For such conditions the 
implementation of well-known Octomap algorithm 
[7] can be applied. However, the calculation of 
two simultaneous SLAM processes is very costly 
(time consuming) and the 3D pose is already 
estimated by the process mentioned before, the 
only 'mapping' part of 3D SLAM Octomap 
algorithm is needed. Therefore, the full system can 
be organized as shown in diagram in Figure 4. 

Switching between levels is realized by 'level 
database' application which stores number of 
levels information as 𝐿 data structure: 

 
𝐿 = ∑ 𝑙𝑖

𝑁
𝑖=0     (11) 

 
where each 𝑙𝑖 structure consists of floor’s ground 
𝑙𝑔𝑛𝑑 and ceiling 𝑙𝑐𝑒𝑖𝑙 levels, which are given from 
an octotree map and 2D map of each 𝑖 floor M𝒊

(𝟐): 
 

𝑙𝑖 = {𝑙𝑔𝑛𝑑 𝑙𝑐𝑒𝑖𝑙  𝐌𝒊
(𝟐)}

𝑇
  (12) 

 

In the initial state 𝑙𝑔𝑛𝑑 and 𝑙𝑐𝑒𝑖𝑙 are calculated 
and 𝑧 variable is tracked to be inside these level 
borders. When 𝑧 starts to change (increase or 
decrease) along with continuation of the same 
direction change 𝜑 for the system  means that the 
level will be switched, the system saves all data of 
2D map for the level. Then, if 𝑧 is over the level 

limit and 𝜑 is close to 'zero' state the level 
switching is done and the new level initiation 
procedure is repeated with an additional check 
under condition that the map of the level already 
exists in the database. If yes, it is loading 
immediately and the system works on updating the 
map instead of building it from a scratch. 3D 
SLAM with octotree map construction is placed 
into a separate thread with a conditional 
independence from 2D mapping. The developed 
algorithms are shown below as Algorithm 1 and 
Algorithm 2. 

 

 

 

Fig. 4. Developed map building system for  
a 3D workspace diagram. 

 
 

Algorithm 1. Multi-level handler. Main loop. 
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Algorithm 2. Multi-level handler. 2D SLAM handler. 

 
 

The results of performance check for the 
proposed solution for the multi-level building 
scene shown in Figure 3 can be found in Figure 5 
where he reconstructed global 3D pose is shown, 
and Figure 6 where pictured planar 3D map 
M𝒑𝒍

(𝟑)of the environment. 
The 3D map of the whole workspace is built by 

reduced Octomap algorithm and represented as 
three-dimensional occupancy grip map and is 
presented in Figure 7. 

 
 

 
 

Fig. 5. Global 3D path passed by robot during 
exploration. 

 
 

Fig. 6. M𝒑𝒍
(𝟑)map represented by the 2D occupancy grid 

maps of each level with geometric relations. 
 
 

Since all maps are represented as a grid, cells 
might be considered as a graph with fixed 
topography. Therefore, path planning algorithms 
like the Djikstra’s algorithm and its extensions can 
be easily applied. However, the hybrid solution 
where global path is being calculated by the 
shortest path finder algorithm like A* and the local 
path by a potential field planner is more 
recommended as it allows to avoid dynamic 
obstacles during exploration [9, 18, 21]. 

 
 

 
 

Fig. 7. 3D Octomap built during exploration by the 
developed multi-level exploration system. 

 
 

5 Conclusions 
The system developed and presented in the paper 
is a working solution of 3D mapping for 
inspection purposes in the isolated terrain, 
especially where presence is dangerous and 
inadvisable for humans.  
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It can be used for service tasks in public multi-
level buildings such as hotels, hospitals and 
warehouses with traffic requirements between 
levels and precise pose tracking along with current 
3D  mapping.  

The proposed system is based on  laser 
rangefinder measurements, inertial navigation and  
two SLAM processes – full 2D SLAM which 
ensures reliable tracking of pose in isolated terrain 
and half-way 3D mapping algorithm based on 
Octomat framework.  

The described approach is hierarchical or 
hybrid, and connects two different world 
assumptions - static and dynamic – therefore it can 
be applied to path planning with the best practice 
usage - shortest path search and reaction motion 
planning.  

The system was implemented and tested with 
Robot Operation System navigation stack 
framework. Obtained results confirm correctness 
of the proposed solution and the possibility of its 
application in real conditions. 
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