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Abstract: - Material selection is a very entangled and decisive stage in the design and development of products. 
There are large numbers of on hand and newly developed materials available in the market. In addition, 
inability to select the correct materials adversely affects the reputation and profitability of the company. Thus, 
designers need to study and trace the performance of available materials with appropriate functionalities.   Thus, 
this research aims at establishing an efficient and systematic platform for the optimum selection of materials 
while accommodating the designated conflicting performance requirements. The developed model encompasses 
designing a hybrid decision support system in an attempt to circumvent the shortcomings of single multi-criteria 
decision making-based (MCDM) models. First, the objective relative importance weights of attributes are 
interpreted capitalizing on Shannon entropy algorithm. Then, an integrated model that encompasses the 
utilization of six different types of multi-criteria decision making algorithms is designed to create a reliable 
selection of material alternatives. The utilized MCDM algorithms comprise weighted product method (WPM), 
simple additive weighting (SAW), additive ratio assessment (ARAS), new combinative distance-based 
assessment (CODAS), complex proportional assessment (COPRAS) and technique for order of preference by 
similarity to ideal solution (TOPSIS). Afterwards, COPELAND algorithm is exploited to generate a consensus 
and distinct ranking of material alternatives. Eventually, Spearman’s rank correlation analysis is used to 
evaluate the rankings obtained from the MCDM algorithms. Five numerical examples in diverse fields of 
material selection are tackled to examine the features and efficiency of the developed integrated model. Results 
illustrated that the developed model was able to solve the five material selection problems efficiently. On the 
other hand, no individual MCDM algorithm was able to solve all the assigned material selection problems. For 
instance, CODAS and TOPSIS only succeeded in solving one and two material selection problems, 
respectively. It was also inferred that notable differences and perturbations are encountered between the 
rankings of MCDM algorithms in the first, third, fourth and fifth numerical examples, which necessitates the 
implementation of COPELAND algorithm. It was also revealed that the highest correlation lied between 
COPRAS and WPM with an average Spearman’s rank correlation coefficient of 92.67%. On the other hand, the 
correlation between TOPSIS and CODAS attained the lowest rank with an average Spearman’s rank correlation 
coefficient of 18.95%. Results also demonstrated that COPRAS accomplished the highest Spearman’s rank 
correlation coefficient with 59.54%. Hence, it is the most efficient MCDM algorithm among the five algorithms 
which can serve as a reference for solving material selection problems. It can be also deduced that CODAS and 
TOPSIS are not advised to be implemented in solving similar material selection problems. 
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1 Introduction 
Selection of materials plays a major role during the 
design and manufacturing processes.  There are over 
100,000 materials in the world. Each one has its 
own distinctive properties alongside its pros and 
cons. In addition, there are several conflicting 
criteria that need to be taken into consideration for 
the sake of proper material selection such as 
chemical properties, physical properties, mechanical 
properties, financial requirements aesthetic value, 
environmental impact, etc. Selection of materials 
plays a key role in the success and failure of the 
organization. In this regard, failure to select the 
correct material can undermine the reputation, 
profitability and productivity of the company [1, 2]. 
Complexity of Selection of materials requires 
formulating a multi-criteria decision making 
problem. In the past few decades, multi-criteria 
decision making has been one of the fast growing 
approaches employed to solve engineering 
problems. Multi-criteria decision making process 
encompasses the following: 1) defining relevant 
design attributes and alternatives, 2) linking 
numerical measures to the relative importance of 
attributes and performance scores of alternatives and 
3) process the performance scores and weights to 
evaluate the ranking of alternatives. There are 
various multi-criteria decision making such as 
analytical hierarchy process, weighted sum model 
(WSM), elimination and choice translating reality 
(ELECTRE), preference ranking organization 
method for enrichment evolution (PROMETHEE), 
operational competitiveness ratings analysis 
(OCRA), etc. Recently, multi-criteria decision 
making under interval neutrosophic setting is 
introduced to deal with inconsistencies and 
incomplete information [3].    
In view of the above, this research an integrated 
multi-criteria decision making model for optimizing 
material selection process in the light of presence of 
wide range of available material alternative and 
conflicting performance criteria. Thus, the main 
objectives of the present research study lie in the 
following: 
1. Develop a hybrid multi-criteria decision making 

model for sustainable material selection. 
2. Study the level of consistencies between the 

employed MCDM algorithms.  
3. Validate the developed integrated model 

through several case studies.   
Several material selection models have been 
proposed which exploited the use of multi-criteria 
decision making. Singh et al. [4] proposed multi-
criteria decision making approach for the selection 
of the most suitable metal matrix composite. Several 

material alternatives were studied according to their 
melting point, cost, density, hardness and tensile 
strength. Fuzzy analytical hierarchy process was 
implemented to find the weights of judging 
attributes. Then, TOPSIS algorithm was used to 
identify the most suitable design material. 
Chatterjee et al. [5] studied the implementation of 
multi-criteria decision making for solving material 
selection problems of light weight automotive 
industries. In this context, several material 
alternatives were studied including low strength, 
high strength steel, cast aluminum, magnesium 
aluminum, advanced high strength steel, etc. The 
materials were appraised based on some attributes 
such as modulus of elasticity, yield strength, tensile 
strength, thermal performance, corrosion resistance, 
etc. Entropy algorithm was used to find the weights 
of attributes. The rankings of alternatives were then 
explored by the help of multi attributive ideal real 
comparative analysis (MAIRCA) algorithm. 
Dhanaraj and Rathinasuriyan [6] introduced an 
approach that enables the selection of the material 
for energy weld process. The materials were 
compared according to welding quality, ease of 
automation, cost of welding, work safety level, 
environmental effects, energy requirements, etc. 
Analytical hierarchy process was used to find the 
weights of attributes and sort the material 
alternatives. Results demonstrated that welding 
quality is the most important attribute followed by 
cost of welding while initial preparation requirement 
is the least important attribute. Reddy et al. [7] 
introduced a quantitative approach for sustainable 
concrete assessment. Five concrete options were 
investigated, namely ordinary portland cement, 
Pozzolona Portland Cement Flyash based, 
Pozzolona Portland Cement Slag based, Metakaolin 
and composite cement. The best material alternative 
were identified including life cycle cost, split 
tensile, flexural strength, workability, compressive 
strength, etc. The prioritization of material 
alternatives was carried out using TOPSIS 
algorithm, whereas Pozzolona Portland Cement 
Flyash based concrete was found to be the most 
concrete option.    
Demir [8] presented a knowledge-based system for 
the purpose of fine aggregate selection in concrete 
production. In the developed model, the fine 
aggregates were assessed based on set of attributes, 
namely methylene blue, compressive strength, water 
absorption by volume, ultrasonic pulse velocity, 
flexural strength, water absorption by volume, 
capillary coefficient, and modulus of dynamic 
elasticity. Five different five aggregates were 
studied, whereas TOPSIS algorithm was applied to 
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find the best fine aggregate series. Zoghi et al. [9] 
introduced a model that aimed the selection of the 
most feasible materials of building components. 
Kano model was first used to identify and categorize 
of the most relevant design attributes. Thus, eight 
design criteria were considered which were: 
expected durability, space for equipment and 
maneuvering, parallel flexibility, reusable materials 
and components, etc. Fuzzy analytical hierarchy 
process was deployed to extract the weights of 
attributes. A final ranking of the material 
alternatives in five building components were 
defined based on fuzzy TOPSIS algorithm.  
Patnaik et al. [10] presented a methodology for the 
sake of selecting of best polymer composite material 
in engineering applications. The selection process 
was performed according to specific wear rate, 
impact strength, flexural strength, tensile strength, 
density, etc. Analytical hierarchy process was used 
to obtain the weightage of attributes. Multi-
objective optimization on the basis of ratio analysis 
(MOORA) algorithm was utilized to prioritize the 
compared material alternatives. Kiani et al. [11] 
introduced a model that enabled the selection of best 
repair material for concrete structures. The repair 
materials were compared using a set of criteria, 
namely shrinkage, net creep, bond strength, 
Poisson’s ratio, tensile modulus and tensile strength. 
Five material alternatives were experimented which 
were acrylic mortar, sand mortar, polyester mortar, 
epoxy mortar and SBR modified. VIKOR algorithm 
was then used for sorting patch repair materials.       
Falqi et al. [12] introduced multi-criteria decision 
making approach for sustainable assessment of 
siliceous concrete materials. The siliceous concrete 
materials were evaluated as per economic, social, 
technical and environmental requirements. The 
judging criteria encompassed lifelong maintenance 
cost, concrete production cost, energy conservation, 
concrete curing system, concrete compaction 
system, etc. Fuzzy TOPSIS algorithm was finally 
employed for the ranking of siliceous concrete 
materials.  Results showed that nano-cement is the 
most sustainable material while recycled aggregate 
is the least sustainable one. Rashid et al. [13] 
proposed a model for the optimal selection of 
concrete mix design based on multi-criteria decision 
making. The mix designs were assessed based on 
some attributes such as raw materials, 
environmental impact, amount of water, cost of 
materials, amount of water to cement ratio, 
compressive strength. Analytical hierarchy process 
was then deployed for the optimized selection of 
concrete mix design.    
 

 
2 Proposed Model 
The ultimate objective of the present research study 
is to establish an integrated model that aims at 
selecting the most sustainable materials. The 
framework of the proposed model is presented in 
Figure 1. The first step is to define the main goal, 
design attributes and the available material 
alternatives. The next step is to obtain the relative 
importance weighting vector of the design attributes 
based on Shannon entropy algorithm. It is an 
objective weight interpretation algorithm that relies 
on the variations in the performance scores to find 
the attributes’ weights. Shannon entropy is a widely-
used algorithm that has been successfully employed 
in several engineering applications such as 
minimizing environmental emissions [14], optimal 
operation of dam reservoir [15], ranking renewable 
energy sources [16] and storm water management 
[17].   
An accurate decision support system requires 
exploring and analyzing several different types of 
multi-criteria decision making algorithms [18, 19, 
20]. In this regard, the proposed model studies the 
utilization of six different types of multi-criteria 
decision making algorithms for the sake of 
prioritizing material alternatives. The variable 
“NUM_MCDM” stands for total number of MCDM 
algorithms. The used algorithms encompass WPM, 
SAW, ARAS, CODAS, COPRAS and TOPSIS.. As 
a result of the implementation of several multi-
criteria decision making algorithms, different 
rankings of material alternatives are obtained [21, 
22]. In this regard, the developed model exploits 
COPELAND algorithm to aggregate and converge 
the rankings of material alternatives into a final 
consensus ranking [23, 24]. COPELAND algorithm 
proved its efficiency in dealing with wide range of 
diverse application such as minimization of 
seawater intrusion [25], prioritization of road 
maintenance plans [26], optimal service selection 
[27] and six sigma project selection [28]. The basic 
assumption of the developed model is that exact 
information about the performance scores of the 
design alternatives is available.     
Five numerical examples in the field of material 
selection are extracted from the literature to validate 
the developed model and describe its capabilities.  
The variable “NUM_EX” denotes total number of 
case studies examined in the present research study.  
The case studies are chosen to cover wide range of 
applications in material selection, and to encompass 
different numbers of alternatives and design 
attributes in order to test the applicability and 
generalization of the developed model. The case 
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studies are pertinent to the selection of construction 
materials, gear materials, energy efficient materials, 
tool holder materials and mechanical components’ 
materials. Spearman’s rank correlation coefficient is 
deployed to investigate the level of correlation 
between each pair of multi-criteria decision making 
algorithms.  
 
 
3 Model Development 
Herein, some of the techniques mentioned in the 
“Proposed Model” section are described in detail.  
 
3.1 Shannon Entropy 
Shannon entropy is an objective weight 
interpretation algorithm that is used to derive the 
weights of attributes based on the contrast and 
dispersion in the performance scores of the 
alternatives. In this context, higher contrast indicates 
higher importance of the alternative. On the other 
hand, lower dispersion indicates a less important 
design attribute. The steps of Shannon entropy 
algorithm are as follows [29, 14]: 
The first step is to normalize the performance scores 
of the input decision matrix as follows  
 
nij =

xij

∑ xij
m
i=1

     (1 ≤ i ≤ m, 1 ≤ j ≤ n)                  (1)       

 
Where; 
xij is the performance index of the i − th alternative 
with respect to j − th attribute. Pij is the normalized 
performane score of the i − th alternative with 
respect to j − th attribute. n and m stand for 
numbers of attributes and alternatives, respectivley.  
After the normalization process, the next step is to 
compute the entropy value of each atrribute as 
shown in Equation (2). 
 
ej =   −k × ∑ nij

m
i=1 ×  ln(nij)  (1 ≤ i ≤ m, 1 ≤ j ≤

n)                                                                                    (2)                                                           
 
Such that; 
k =

1

ln (m)
                                                                       (3)                                                                                                                             

 
Where; 
ej stands for the Entropy value of the j − th design 
attribute.  
The third step is to interpret the inherent contrast 
intensity for each design attribute as shown in 
Equation (4).   
 
dj  = 1 − ej                                                                   (4)                                                                                                                                         

  
Where; 
Higher value of dj indicates a more important 
criterion.                                                                           
The final step is to calculate the objective weightage 
of each attribute using Equation (5).  
 
wj =

dj

∑ dj
n
j=1

                                                                    (5)  

 
3.2 SAW 

It is a widely-used algorithm that is capitalized on 
the linear utility function for the evaluation of 
alternatives. Its implementation steps are as follows 
[30, 31]: 
The first step is the normalization process which 
depends on the type of criteria. The normalization 
process in the cases of benefit and cost criteria can 
be done using Equations (6) and (7), respectively.  
 
nij

=
xij

max (xij)
                                                                   (6) 

 

nij =
min(xij)

xij
                                                               (7) 

 
Where; 
nij is the normalized performance score of the the 
i − th alternative with respect to j − th attribute. 
The overall score of each alternative can be 
computed through the summation of weighted 
normalized performance scores as shown in 
Equation (8).  
 

Si = ∑ wj ×

n

j=1

nij                                                           (8) 

 
Where; 
A higher value of Si indicates a better alternative.  
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Fig.1: Flowchart of the developed material selection 
model. 
 
3.3 ARAS 
This algorithm involves the use of utility function to 
estimate the relative efficiency of alternatives. Its 
basic steps are reported in the following lines 
[32,33]: 
The first is the normalization of the initial decision 
matrix, whereas the initial values are normalized 
based on the type of attribute. The normalization 
process of the performance indices in the beneficial 

and non-beneficial attributes is accomplished using 
Equations (9) and (10), respectively.  
 
rij =

xij

∑ xij
m
i=1

                                                                 (9) 

 

rij =
x^ij

∑ x^ij
m
i=1

                                                            (10) 

 
Such that; 

x^ij =
1

xij
                                                                    (11) 

 
The weighted normalized decision matrix can be 
expressed using Equation (12). 
 
vij = wj × nij                                                             (12) 
 
The total function value (utility function) of each 
alternative is calculated according to Equation (13). 
 

Si = ∑ wj × vij                                                        (13)

n

j=1

 

 
The relative utility degree of each alternative can be 
expressed as follows. 
 

Ki =
Si

S0
                                                                         (14) 

 
Where; 
S0 refers to the optimum function value of the i − th 
alternative. The obtained values of Ki lie within the 
interval [0, 1]. The best alternative is the one that 
has the highest value of Ki.  
 
3.4 CODAS 
CODAS algorithm utilizes two measures to 
determine the preference of the alternative which 
are: its Euclidean distance from the negative ideal 
solution and Taxicab distance from the negative 
ideal solution. Its computational steps are presented 
in the following lines [34,35]: 
The first step is the linear normalization process for 
the benefit and cost attributes as reported in 
Equations (15) and (16), respectively.  
nij

=
xij

max (xij)
                                                                (15) 

 

nij =
min(xij)

xij
                                                            (16) 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2021.16.36

Eslam Mohammed Abdelkader, 
Abobakr Al-Sakkaf, Ghasan Alfalah

E-ISSN: 2224-2856 408 Volume 16, 2021



 
The second step is to calculate the weighted 
normalized decision matrix as given by Equation 
(17). 
 
vij = wj × nij                                                             (17) 
 
The third step is to identify the negative ideal 
solution with regards to each criterion as follows. 
 
nsj = min(vij)                                                          (18) 
 
The next step is to calculate the Euclidean distance 
and Taxicab distance of each alternative from each 
negative ideal solutions as given by Equations (19) 
and (20), respectively.  
 

Ei = √∑(vij − nsj)
2

n

j=1

                                             (19) 

 

Ti = ∑ |vij − nsj|

n

j=1

                                                    (20) 

 
The fifth step is to construct relative assessment 
matrix as shown in Equations (21) and (22). 
 
Ra = [hik]n×n                                                            (21) 
 
hik = (Ei − Ek) + Ψ  (Ei − Ek) × (Ti − Tk)      (22) 
 
Where; 
k ϵ {1, 2, 3, 4, 6,…..n}. Ψ refers to a threshold 
function that identifies the equality of the Euclidean 
distances of two alternatives as given by Equation 
(23). 
 

Ψ(x) = {
1           if |x| > 𝜏
0           if|x| < 𝜏

                                       (23) 

 
Where; 
τ is a threshold parameter which is usually set as 
0.02 [36, 37]. 
The final step is to compute the final assessment 
score for each alternative as shown in Equation (24). 

Hi = ∑ hik

n

k=1

                                                               (24) 

 
Where; 
The alternatives are sorted in a descending order 
according to the assessment score of Hi. In this 

context, a higher value of Hi indicates a better 
option among the set of alternatives. 
 
3.4 COPELAND 
COPELAND is regarded as a modified version of 
BORDA count algorithm [38,39]. It is used to 
aggregate and consolidate the different rankings of 
the multi-criteria decision making algorithms. 
Assume “M” multi-criteria decision making 
algorithms. In COPELAND algorithm, each pair of 
alternatives is compared against each other with 
regards to the “M” studied multi-criteria decision 
making algorithm. The alternative that accomplishes 
a higher number of predominance attains a win and 
known as “Winner” and the other alternative is 
known as “Loser” [40]. In this context, number of 
predominance implies number of MCDM 
algorithms in which an alternative outranks the 
other. The alternatives are sorted stepping on a final 
score, which is generated by subtracting number of 
losses from number of wins as shown in Equation 
(25) [41]. When all pair-wise comparisons are 
finalized, the alternatives are sorted in a descending 
order, whereas the most optimum alternative is the 
one that accomplishes a higher final score. It is 
worth noting that alternatives with equal final score 
obtain an equal ranking. 
 

SCi = ∑ Wi − Li                                                      (25)

m

i=1

 

 
Where; 
Wi and Li stand for number of wins and losses 
attained by each alternative, respectively. SCi 
denotes the final score of each alternative.  
 
 
4 Model Implementation 
In this section, five real case studies are adopted 
from the literature to examine the applicability of 
the developed model. 
 

4.1 Numerical Example (1) 
The first example is a material selection problem of 
construction projects that is extracted from Marzouk 
[42]. It considers five material alternatives and four 
attributes. In Table 1, the original data of the case 
study is recorded. The considered material 
alternatives are clear glass, tinted glass-single 
glazed, tinted glass-double glazed, reflective glass 
and glass plus 3M film. The judging attributes are 
initial cost, annual savings, aesthetics and ease of 
installation. The cost attribute is initial cost while 
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the benefit attributes are annual saving, aesthetics 
and ease of installation. Table 2 shows the entropy 
value, inherent contrast intensity and weight of each 
design attribute. It can be observed that from Table 
2 that ease of installation and aesthetics have nearly 

equal weight. In this regard, aesthetics and ease of 
installation have weighting value of 52.84% and 
55.83%, respectively.       
 

 
Table 1. Original decision matrix of first numerical example adopted from Marzouk [42] 

Material 

alternative 

Initial cost Annual 

savings 

Aesthetics Ease of 

installation 

clear glass 60000 0 20 100 
Tinted glass-single 

glazed 
75000 7600 40 70 

Tinted glass double 
glazed 

100000 15200 40 40 

Reflective glass 750000 7600 70 70 
Glass plus 3M film 750000 11400 60 70 

  
Table 2. Final weights of attributes of first numerical example 

Index 
Initial 

cost 

Annual 

savings 
Aesthetic 

Ease of 

installation 

Entropy value 0.484 0.614 0.053 0.776 
Inherent contrast 

intensity 
0.516 0.386 0.265 0.224 

Weight 34.81% 44.13% 52.84% 55.83% 

Table 3. Full rankings of material alternatives in the first numerical example
Material alternative TOPSIS SAW COPRAS WPM ARAS CODAS 

clear glass 1 5 5 5 5 1 
Tinted glass-single glazed 2 3 2 1 2 5 
Tinted glass-double glazed 3 2 1 2 1 4 

Reflective glass 4 4 4 4 3 3 
Glass plus 3M film 5 1 3 3 4 2 

 
Table 3 shows the rankings of material alternatives 
based on the six multi-criteria decision making 
algorithms. Based on TOPSIS algorithm, clear glass 
is the most preferable alternative based on TOPSIS 
and CODAS. Tinted glass-single glazed is the best 
alternative based on WPM. It can be found also that 
tinted glass-double glazed is the optimum 
alternative according to COPRAS and ARAS. Glass 
plus 3M film is the best alternative with regards to 

SAW. COPELAND algorithm is implemented to 
generate final rankings of the material alternatives 
as shown in Table 4. In Table 4, it can be noticed 
that tinted glass-double glazed has the highest net 
value based on the wins and losses. Hence, it 
accomplished the first ranking followed by tinted 
glass-single glazed while clear glass has the lowest 
ranking.     
 

 
Table 4. Final rankings of material alternatives in the first numerical example 

Material alternative Loss Win Difference Rank 

clear glass 4 0 -4 5 
Tinted glass-single glazed 1 3 2 2 
Tinted glass-double glazed 0 4 4 1 

Reflective glass 3 1 -2 4 
Glass plus 3M film 2 2 0 3 

4.2 Numerical Example (2) 
The second numerical example is gear material 
selection problem that is borrowed from Milani et 

al. [43]. The input data matrix is reported in Table 5. 
The second case study takes into consideration nine 
material options and five design criteria. The 
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material options are cast iron, ductile iron, S.G iron, 
cast alloy steel, through hardened alloy steel, 
surface hardened alloy steel, carburised steel, 
nitrided steel and through hardened carbon steel. 
The design attributes are surface hardness, core 
hardness, surface fatigue limit, bending fatigue limit 
and ultimate tensile strength. In this context, the 
beneficial attribute involve surface hardness, surface 
fatigue limit, bending fatigue limit and ultimate 
tensile strength. The cost attribute is core hardness. 

 
 
 
 
 
 
 
 
 
 

 
Table 5. Original decision matrix of second numerical example adopted from Milani et al. [43]

Material alternative Surface 

hardness 

Core 

hardness 

Surface fatigue 

limit 

Bending fatigue 

limit 

Ultimate tensile 

strength 

Cast iron 200 200 330 100 380 

Ductile iron 220 220 460 360 880 

S.G iron 240 240 550 340 845 

Cast alloy steel 270 270 630 435 590 

Through hardened alloy 
steel 

270 270 670 540 1190 

Surface hardened alloy 
steel 

585 240 1160 680 1580 

Carburised steel 700 315 1500 920 2300 

Nitrided steel 750 315 1250 760 1250 

Through hardened 
carbon steel 

185 185 500 430 635 

  
Table 6. Final weights of attributes of second numerical example

Index 
Surface 

hardness 

Core 

hardness 

Surface 

fatigue limit 

Bending 

fatigue limit 

Ultimate 

tensile strength 

Entropy value 0.932 0.993 0.947 0.947 0.942 
Inherent 
contrast 
intensity 

0.068 0.007 0.053 0.053 0.058 

Weight 28.58% 2.88% 22.23% 22.05% 24.26% 
 
The calculations of the weights of attributes are 
reported in Table 6. It can be noticed that surface 
hardness is the most important attribute and then 
ultimate tensile strength while core hardness is the 
least important attribute. In this context, the weights 
of surface hardness,, ultimate tensile strength and 
core hardness are 28.58%, 24.26% and 2.88%, 
respectively. The rankings of the material 
alternatives are found in Table 7. Based on the six 
multi-criteria decision making algorithms, caburised 

steel is the most optimum material alternative 
followed by nitrided steel while cast iron is the least 
preferable alternative. The consensus final rankings 
of material alternatives are reported in Table 8. 
Caburised is found as the best alternative with eight 
wins and zero losses while cast iron is the lowest 
ranking with zero wins and eight losses.        
 
 
 
 

 
Table 7. Full rankings of material alternatives in the second numerical example

Material alternative TOPSIS SAW COPRAS WPM ARAS CODAS 

Cast iron 9 9 9 9 9 9 
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Ductile iron 8 8 7 7 8 7 
S.G iron 7 6 6 6 6 6 

Cast alloy steel 4 5 5 5 5 5 
Through hardened alloy steel 6 4 4 4 4 4 
Surface hardened alloy steel 3 3 3 3 3 3 

Carburised steel 1 1 1 1 1 1 
Nitrided steel 2 2 2 2 2 2 

Through hardened carbon steel 5 7 8 8 7 8 
  

Table 8. Final rankings of material alternatives in the second numerical example
Material alternative Loss Win Difference Rank 

Cast iron 8 0 -8 8 
Ductile iron 6 1 -5 7 

S.G iron 5 3 -2 6 
Cast alloy steel 4 4 0 5 

Through hardened alloy 
steel 

3 5 2 4 

Surface hardened alloy 
steel 

2 6 4 3 

Carburised steel 0 8 8 1 
Nitrided steel 1 7 6 2 

Through hardened carbon 
steel 

6 1 -5 7 

 
4.3 Numerical Example (3) 
The third numerical example is designated for the 
selection of energy efficient materials, which is 
adopted from Bhowmik et al. [44]. The initial 
decision matrix is reported in Table 9. The third 
numerical example studies nine energy efficient 
materials which are: alkaline earth lead glass, 
silicon, cast magnesium, wrought magnesium, 
lanthanum commercial purity min 99%, magnesium 
commercial purity, nickel iron chromium alloy HW 
grade and cerium commercial purity. The nine 

material options are assessed based on density (C1), 
bulk modulus (C2), compressive strength (C3), 
thermal conductivity (C4), thermal expansion (C5), 
resistivity (C6), cost (C7), energy production (C8) 
and CO2 emissions (C9). In this regard, the non-
beneficial attributes encompass cost, energy 
production and CO2 emissions. On the contrary, the 
beneficial attributes are density, bulk modulus, 
compressive strength, thermal conductivity, thermal 
expansion and resistivity.   
 

  
Table 9. Original decision matrix of third numerical example adopted from Bhowmik et al. [44]

Material 

alternative 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

Alkaline earth 
lead glass 

0.113 4.83 36.5 0.47 5.27 1.22 74.7 2578 1.28 

Silicon 0.082 13.7 46.4 86.6 1.11 1.1 164 6164 3.07 
Cast magnesium 0.063 4.78 10.1 29.4 13.6 5.35 104 4.99 29 

 Wrought 
magnesium 

0.062 5.07 12.3 28.8 13.6 4.15 119 5.51 32 

Cast nickel iron 
alloy 

0.29 18.8 31.9 6.35 6.38 108 112 1.37 7.98 

 Lanthanum 
commercial purity 

min 99% 

0.22 3.77 15.9 7.51 2.5 56 261 3.54 20.6 

Magnesium 
commercial purity 

0.062 4.78 9.42 86.6 14.1 4.2 104 3.96 32.8 
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Nickel iron 
chromium alloy 

HW grade 

0.29 18.8 45.6 6.35 6.38 108 373 1.18 6.84 

Cerium 
commercial purity 

0.238 2.32 13 5.77 3.33 75 673 6.57 38.2 

 
The entropy values and weights of attributes are 
recorded in Table 10. It is derived that energy 
production is the most important criterion followed 
by resistivity and then thermal conductivity. In this 
context, the weighing values of energy productivity, 
resistivity and thermal conductivity are 37.06%, 
15.62% and 13.96%, respectively. Table 11 shows 
the rankings of the materials based on TOPSIS, 
SAW, COPRAS, WPM, ARAS and CODAS. Cast 
nickel iron alloy is found as the best material option 
based on TOPSIS and COPRAS. Nickel iron 
chromium alloy HW grade is selected as the best 
material based on SAW, WPM and ARAS. CODAS 
yielded cerium commercial purity as the optimum 
material alternative. Alkaline earth lead glass is the 
least preferable material option according to SAW, 
COPRAS, WPM and ARAS. Silicon is the worst 
material option according to TOPSIS and CODAS. 

The final ranking outcome based on COPELAND 
algorithm is recorded in Table 12. Nickel iron 
chromium alloy HW grade attained the highest 
ranking with zero losses and eight wins. In addition, 
Alkaline earth lead glass has the lowest ranking with 
eight losses and zero wins. 
 
 
 
 
 
 
 
 
 
 
 
 

   
Table 10. Final weights of attributes of third numerical example 

Index C1 C2 C3 C4 C5 C6 C7 C8 C9 

Entropy value 0.917 0.887 0.920 0.731 0.898 0.700 0.873 0.287 0.864 
Inherent contrast 

intensity 0.083 0.113 0.080 0.269 0.102 0.300 0.127 0.713 0.136 

Weight 4.32% 5.88% 4.15% 13.96% 5.29% 15.62% 6.63% 37.06% 7.09% 

Entropy value 0.917 0.887 0.920 0.731 0.898 0.700 0.873 0.287 0.864 
  

  Table 11. Full rankings of material alternatives in the third numerical example 
Material alternative TOPSIS SAW COPRAS WPM ARAS CODAS 

Alkaline earth lead glass 8 9 9 9 9 7 
Silicon 9 5 8 8 4 9 

Cast magnesium 6 6 4 5 6 6 
 Wrought magnesium 7 7 6 6 8 8 
Cast nickel iron alloy 1 2 1 2 2 3 

 Lanthanum commercial purity min 99% 4 4 5 3 5 5 
Magnesium commercial purity 3 3 3 4 3 4 

Nickel iron chromium alloy HW grade 2 1 2 1 1 2 
Cerium commercial purity 5 8 7 7 7 1 

  
   

 

 

 

Table 12. Final rankings of material alternatives in the third numerical example
Material alternative Loss Win Difference Rank 
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Alkaline earth lead glass 8 0 -8 8 
Silicon 7 1 -6 7 

Cast magnesium 4 4 0 5 
 Wrought magnesium 5 2 -3 6 
Cast nickel iron alloy 1 7 6 2 

 Lanthanum commercial purity min 99% 3 5 2 4 
Magnesium commercial purity 2 6 4 3 

Nickel iron chromium alloy HW grade 0 8 8 1 
Cerium commercial purity 5 2 -3 6 

 

4.4 Numerical example (4) 
The fourth numerical example is material selection 
problem of the tool holder used in hard milling. It is 
quote from Çalişkan et al. [45], and it accounts four 
material alternatives and six performance criteria 
(see Table 13). The material options are AISI 1020, 
AISI 1040, AISI 4140, AISI 6150, AISI 8620, 
maraging steel, AISI S5, tungsten carbide–cobalt 

and Fe–5Cr–Mo–V. The four performance criteria 
involve Young’s modulus (M1), compressive 
strength (M2), fracture toughness (M3), mechanical 
loss coefficient (M4), hardness (M5) and cost (M6). 
The beneficial attributes are Young’s modulus, 
compressive strength and fracture toughness. The 
non-beneficial attributes are hardness and cost.  
 

  
 Table 13. Initial decision matrix of fourth numerical example borrowed from Çalişkan et al. [45]

Material alternative M1 M2 M3 M4 M5 M6 

AISI 1020 210 330 54.5 0.00111 150 0.67 
AISI 1040 212 633 46 0.00117 355 0.7 
AISI 4140 212 655 87.5 0.00052 305 0.86 
AISI 6150 207 1575 38 0.00026 483 1.18 
AISI 8620 207 360 111.5 0.00089 190 0.87 

Maraging steel 188 183 80 0.00071 532.5 6.97 
AISI S5 210 1930 21 0.00002 771 7.99 

Tungsten carbide–cobalt 593 4405 14.1 0.00135 1250 79.6 
Fe–5Cr–Mo–V 213 1655 120 0.00113 448.5 1.73 

 
The criteria weights of the material selection of the 
tool holder are presented in Table 14. In it, cost is 
found as the most important criterion and then 
compressive strength while Young’s modulus is the 
least important factor. It can be also observed that 
fracture toughness, mechanical loss coefficient and 
hardness have nearly the same relative importance. 
In this context, the relative importance weights of 
cost, compressive strength and Young’s modulus 
are 56.79%, 16.59% and 3.76%, respectively. Table 
15 demonstrates the ranking results of the fourth 
numerical example solved using the six multi-
criteria decision making algorithms. AISI 1040 is 
the best material according to COPRAS, WPM and 
ARAS. AISI 1020, maraging steel and Fe–5Cr–Mo–
V are the best options based on the results of SAW, 
CODAS and TOPSIS, respectively. Table 16 
illustrates the final ranking results based on 
COPELAND algorithm. It can be inferred that AISI 

1040 is in the first ranking with zero losses and 
seven wins. AISI 1020 is the second rank with one 
loss and seven wins. It is also found that maraging 
steel is in the lowest ranking with seven losses and 
zero wins.     
 

   
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 14. Final weights of attributes of fourth numerical example 
Index M1 M2 M3 M4 M5 M6 
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Entropy value 0.959 0.820 0.922 0.913 0.916 0.384 
Inherent contrast intensity 0.041 0.180 0.078 0.087 0.084 0.616 

Weight 3.76% 16.59% 7.14% 8.00% 7.72% 56.79% 
   

Table 15. Full rankings of material alternatives in the fourth numerical example
Material alternative TOPSIS SAW COPRAS WPM ARAS CODAS 

AISI 1020 7 1 2 2 2 2 
AISI 1040 4 2 1 1 1 4 
AISI 4140 5 4 4 3 4 5 
AISI 6150 2 5 6 5 6 7 
AISI 8620 6 3 3 4 3 3 

Maraging steel 8 8 9 7 9 1 
AISI S5 3 9 8 8 8 9 

Tungsten carbide–cobalt 9 7 5 9 5 6 
Fe–5Cr–Mo–V 1 6 7 6 7 8 

  
  Table 16. Final rankings of material alternatives in the fourth numerical example

Material alternative Loss Win Difference Rank 

AISI 1020 1 7 6 2 
AISI 1040 0 8 8 1 
AISI 4140 3 5 2 4 
AISI 6150 5 2 -3 6 
AISI 8620 2 6 4 3 

Maraging steel 7 0 -7 8 
AISI S5 6 2 -4 7 

Tungsten carbide–cobalt 4 1 -3 5 
Fe–5Cr–Mo–V 5 2 -3 6 

 
4.5 Numerical Example (5) 
This numerical example is adopted from Manshadi 
et al. [46] and it deals with the selection process of 
materials in mechanical components. Seven material 
options were examined, namely Al 2024-T6, Al 
5052-O, SS 301-FH, SS 310-3AH, Ti–6Al–4V, 
Inconel 718 and 70Cu–30Zn. This numerical 
example includes seven performance attributes 
which are toughness index (S1), yield strength (S2), 
Young’s modulus (S3), density (S4), thermal 
expansion (S5), thermal conductivity (S6) and 
specific heat (S7) (see Table 17). The benefit 
attributes encompass yield strength and Young’s 

modulus. The cost attributes are density, thermal 
expansion, thermal conductivity and specific heat.  
 
 
 
 
 
 
 
 
 
 

  

 
Table 17. Initial decision matrix of fifth numerical example extracted from Manshadi et al. [46]

Material 

alternative 
S1 S2 S3 S4 S5 S6 S7 

Al 2024-T6 75.5 420 74.2 2.8 21.4 0.37 0.16 
Al 5052-O 95 91 70 2.68 22.1 0.33 0.16 
SS 301-FH 770 1365 189 7.9 16.9 0.04 0.08 

SS 310-3AH 187 1120 210 7.9 14.4 0.03 0.08 
Ti–6Al–4V 179 875 112 4.43 9.4 0.016 0.09 
Inconel 718 239 1190 217 8.51 11.5 0.31 0.07 
70Cu–30Zn 273 200 112 8.53 19.9 0.29 0.06 
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Table 18. Final weights of attributes of fifth numerical example 
Index S1 S2 S3 S4 S5 S6 S7 

Entropy value 0.855 0.879 0.954 0.953 0.979 0.819 0.964 
Inherent contrast intensity 0.145 0.121 0.046 0.047 0.021 0.181 0.036 

Weight 24.29% 20.28% 7.62% 7.91% 3.47% 30.34% 6.10% 
 

Table 19 reports the rankings results of material 
options in the fifth case study. Al 5052-O is found 
as the least preferable material alternative based on 
the six multi-criteria decision making algorithms. 
SS 301-FH is selected as the best material option 
with regards to TOPSIS, SAW, COPRAS and 

WPM. Furthermore, Ti–6Al–4V and 70Cu–30Zn 
are the most optimum materials with respect to 
ARAS and CODAS, respectively. The ranking 
results of COPELAND algorithm are shown in 
Table 20. SS 301-FH accomplished the first ranking 
with zero losses and six wins. Al 2024-T6 obtained 
the lowest ranking with five losses and one win.      

 

Table 19. Initial decision matrix of fifth numerical example extracted from Manshadi et al. [36]
Material alternative TOPSIS SAW COPRAS WPM ARAS CODAS 

Al 2024-T6 6 5 6 6 6 3 
Al 5052-O 7 7 7 7 7 7 
SS 301-FH 1 1 1 1 2 5 

SS 310-3AH 2 3 3 3 3 6 
Ti–6Al–4V 3 2 2 2 1 2 
Inconel 718 4 4 4 4 4 4 
70Cu–30Zn 5 6 5 5 5 1 

 

Table 20. Final rankings of material alternatives in the fifth numerical example
Material alternative Loss Win Difference Rank 

Al 2024-T6 5 1 -4 7 
Al 5052-O 6 0 -6 6 
SS 301-FH 0 6 6 1 

SS 310-3AH 2 4 2 3 
Ti–6Al–4V 1 5 4 2 
Inconel 718 3 3 0 4 
70Cu–30Zn 4 2 -2 5 

 

4.6 Spearman’s Rank Correlation Analysis  
Table 21 shows the Spearman’s rank correlation 
coefficient between the six deployed multi-criteria 
decision making algorithms.  It should be noted that 
the values of Spearman’s rank correlation 
coefficient are the average of the calculated 
Spearman’s rank correlation coefficient from the 
five numerical examples. In this context, a 
Spearman’s rank correlation matrix is constructed 
for each numerical example, and the values recorded 
in Table 21 are based on averaging Spearman’s rank 
correlation coefficients of the five numerical 
examples. For instance, Spearman’s rack correlation 
coefficient between CODAS and SAW is 18.95%. 
This value is based on taking the average of 
Spearman’s rack correlation coefficient between 
these two MCDM algorithms of the five numerical 

examples. Each entry of this matrix depicts the 
correlation between one MCDM algorithm and 
another one. The entries on the diagonal are equal to 
100% since each MCDM algorithm is compared 
against itself. The highest correlation lies between 
the pair (COPRAS, WPM) followed by the pair 
(COPRAS, ARAS). In addition, the lowest 
agreement exists between the pairs (TOPSIS, 
CODAS) and (ARAS, CODAS). In this regard, the 
Spearman’s rank correlation coefficient between the 
pairs (COPRAS, WPM), (COPRAS, ARAS), 
(TOPSIS, CODAS) and (ARAS, CODAS) are 
92.67%, 92.62%, 18.95% and 21.62%, respectively. 
The average Spearman’s rank correlation coefficient 
of TOPSIS, SAW, COPRAS, WPM, ARAS and 
CODAS are 21.06%, 58.17%, 59.54%, 58.08%, 
57.02% and 20.26%, respectively. This exemplifies 
that COPRAS is the most dominant multi-criteria 
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decision making algorithm with regards to the 
agreement of its ranking with other algorithms. 
Hence, COPRAS is the most reliable ranking 
algorithm and it can be used as a reference for 
optimizing material selection. It is also noticed that 
TOPSIS and CODAS obtained low average 
Spearman’s rank correlation coefficients, which 
demonstrates its inefficiency of TOPSIS in material 
selection problems despite its wide use.    
 
 
 

 
 
 
 
 
 
 
 
 
 
 
      

Table 21. Spearman’s rank correlation matrix between the applied multi-criteria decision making algorithms 
 TOPSIS SAW COPRAS WPM ARAS CODAS 

TOPSIS 100% 37.57% 47.62% 55.62% 45.52% 18.95% 
SAW 37.57% 100% 88.29% 86.95% 84.24% 31.38% 

COPRAS 47.62% 88.29% 100% 92.67% 92.62% 24.14% 
WPM 55.62% 86.95% 92.67% 100% 86.62% 24.14% 
ARAS 45.52% 84.24% 92.62% 86.62% 100% 21.62% 

CODAS 18.95% 31.38% 24.14% 24.14% 21.62% 100% 
 

 

5 Analysis and Discussion  
In the first example, the developed model selected 
tinted glass-double glazed as the best material. 
However, TOPSIS, SAW, WPM and CODAS failed 
to obtain the best material. COPRAS and ARAS are 
the only MCDM algorithms that were able to find 
the best material alternative. The second study 
showed a noticeable agreement in the rankings of 
material alternatives between the integrated model 
and the six MCDM algorithms, whereas all of them 
chose carburised steel as the optimum material 
alternative. In the third case study, nickel iron 
chromium alloy HW grade was found to be the best 
material option. SAW, WPM and ARAS also 
selected chromium alloy HW grade as the best 
material option. On the other hand, TOPSIS, 
COPRAS and CODAS were not able to identify 
the best material option. With regards to the fourth 
numerical example, AISI 1040 was defined as the 
best material capitalizing on the developed model. 
In addition, COPRAS, WPM and ARAS obtained 
the same results. On the contrary, TOPSIS, SAW 
and CODAS failed to find the best material option. 
With respect to the fifth numerical example, it was 
derived that SS 301-FH as the best option based on 
the developed integrated model. Furthermore, 
TOPSIS, SAW, COPRAS and WPM also identified 
SS 301-FH as the best option. On the other hand, 
ARAS and CODAS did not succeed in solving the 
material selection problem. In the light of 
foregoing, it can be interpreted that CODAS 
succeeded in solving only one numerical example. 

Also, it is observed that TOPSIS and SAW were 
able to solve only two and three numerical 
examples successfully, respectively. Thus, CODAS 
and TOPSIS are not recommended to be exploited 
in solving similar material selection problems. It is 
also interpreted that COPRAS, ARAS and WPM 
managed to solve four numerical examples 
successfully. Another observation can be stated is 
that there are explicit perturbations in the rankings 
of MCDM algorithms in the first, third, fourth and 
fifth numerical examples. In the first one, clear glass 
was the best by TOPSIS and CODAS while tinted 
glass-double glazed was the best according to 
COPRAS and ARAS. Tinted glass-single glazed 
and glass plus 3M film were selected by WPM and 
SAW, respectively. In the third example, cast nickel 
iron alloy was considered ass the best option based 
on TOPSIS and COPRAS. Cerium commercial 
purity was regarded as the best option according to 
CODAS. Nickel iron chromium alloy HW grade 
was defined as the best option stepping on SAW, 
WPM and ARAS. At the level of fourth case study, 
AISI 1020, maraging steel, and Fe–5Cr–Mo–V 
were the most sustainable options according to 
SAW, CODAS and TOPSIS, respectively. AISI 
1040 achieved the highest ranking according to 
COPRAS, WPM and ARAS. In the fifth case study, 
SS 301-FH obtained the highest ranking according 
to TOPSIS, SAW, COPRAS and WPM. Ti–6Al–4V 
and 70Cu–30Zn were found to be the best options 
based on ARAS and CODAS, respectively. In the 
light of above, it can be deduced that no single 
MCDM algorithm can be used to solve all material 
selection problems, which exemplifies the need for 
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integrated decision support system that can account 
for the presence of several material alternatives and 
wide conflicting design attributes.   
Another study is carried out to test the agreement 
between the utilized MCDM algorithms based on 
Spearman’s rank correlation coefficients of the five 
numerical examples. Results showed low consensus 
between the rankings obtained from TOPSIS and 
CODAS and the remainder of the MCDM 
algorithms which illustrates their incapability to deal 
with such material selection problems. It is also 
found that COPRAS, WPM and ARAS managed to 
obtain similar ranking of material alternatives. In 
this context, COPRAS was found to yield the 
highest level of consensus with other MCDM 
algorithms with an average Spearman’s rank 
correlation coefficient of 59.54%. Thus, it is advised 
to be used over other individual MCDM algorithms 
in material selection problems.    
6 Conclusion  
Material selection is an exhaustive and challenging 
process due to the existence of various types of 
materials and complex relationships among them. In 
addition, they imply explicit implications on the 
company’s reputation and productivity. Hence, this 
research proposes an integrated multi-criteria 
decision making platform to aid decision-makers in 
the reliable and sustainable optimization of 
materials in several disciplines. In the developed 
model, Shannon entropy is deployed for the sake of 
objective assessment of the relative importance of 
each performance criterion. The developed model 
exploits the use of six different types of MCDM 
algorithms in an attempt to create trustworthy 
selection of material alternatives. The used MCDM 
algorithms are TOPSIS, SAW, COPRAS, WPM, 
ARAS and CODAS. COPELAND algorithm is then 
applied to hybridize the ranking results of the 
MCDM algorithms and append the best material 
alternative. Average Spearman’s rank correlation 
coefficient is employed to select the best MCDM 
algorithm stepping on measuring the similarities 
between the obtained ranks of the MCDM 
algorithms.  
In the light of the obtained results of the five 
numerical examples, it can be observed no single 
MCDM algorithm managed to solve all the material 
selection problems successfully, whereas they 
proved to be case dependent. This necessitates the 
creation of an integrated decision support system to 
be able to deal with material selection problems. In 
the selection of construction materials, tinted glass-
double glazed is chosen as the best material option. 
However, TOPSIS, SAW, WPM and CODAS failed 
in this problem selecting other materials like clear 

glass, glass plus 3M film, and tinted glass-single 
glazed as the most sustainable materials. In the gear 
material selection example, a significant agreement 
is experienced between the developed model and the 
remainder of the MCDM algorithms since all of 
them chose carburised steel as the best material 
option. With regards to the selection of energy 
efficient materials, nickel iron chromium alloy HW 
grade was defined as the material option while 
TOPSIS, COPRAS and CODAS selected cast nickel 
iron alloy and cerium commercial purity. With 
respect to the material selection of tool holder in 
hard milling, the developed model yielded AISI 
1040 as the most optimum material while TOPSIS, 
SAW and CODAS defined Fe–5Cr–Mo–V, 
maraging steel and AISI 1020 as the most optimum 
materials. In the selection of mechanical 
components’ materials, SS 301-FH was determined 
to be the best option. However, ARAS and CODAS 
failed in dealing with this problem obtaining Ti–
6Al–4V and 70Cu–30Zn as the best options, 
respectively.       
It can be also deduced that significant deviations are 
experienced in the rankings of MCDM algorithms 
such as the first, third, fourth and fifth numerical 
examples. In the first case study, clear glass was 
selected as the best alternative by TOPSIS and 
CODAS and at the same time it was regarded as the 
least alternative by the remainder MCDM 
algorithms. In the third case study, cast nickel iron 
alloy was the best option by TOPSIS and COPRAS. 
In addition, nickel iron chromium alloy HW grade 
was found as the best option based on SAW, WPM 
and ARAS while CODAS determined cerium 
commercial purity as the best alternative. At the 
level of fourth case study, AISI 1020 was 
determined as the best option by SAW and one of 
the least options by TOPSIS. CODAS chose 
maraging steel and it was regarded as one of the 
least material options by other MCDM algorithms.  
Fe–5Cr–Mo–V accomplished the best ranking by 
TOPSIS while it obtained low ranking by other 
MCDM algorithms. With respect to the fifth case 
study, 70Cu–30Zn was considered as the best option 
by CODAS while it achieved low rankings by other 
MCDM algorithms. This analysis of case studies 
substantiates the use of COPEALND algorithm to 
find the best material alternative. It was also 
inferred that the rankings of material alternatives are 
greatly identical to each other in the second 
numerical example.  
With regards to Spearman’s rank correlation 
analysis, it was also concluded that the top-ranked 
correlation was between WPM and COPRAS while 
the correlation between CODAS and ARAS 
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exhibited the lowest rank. Results also showed that 
COPRAS is the best MCDM algorithm which can 
be used as a benchmark for material selection while 
CODAS and TOPSIS are inefficient in solving 
material selection problems. The main limitation of 
the developed model is its long computational time 
elicited from the need to implement six types of 
MCDM algorithms.  
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