
Optimizing Particle Systems through CUDA-Assisted Multithreading

FADI N. SIBAI ANDREW POTVIN, STEVEN NGO
Computer Engineering Dept. Electrical Engineering & Computer Science Dept.

 Prince Mohammad Bin Fahd University Wichita State University
 Al-Khobar Wichita, Kansas

 SAUDI ARABIA U.S.A.

Abstract: - Particle systems present challenges that have warranted and attracted large amount of attention in both
usage and optimization. The use of particle systems has driven complexity of simulation to greater needs of data
size and accuracy. Optimization, thus, has become a moving target for researchers to reach. Studies show that
multithreading has potential to make the simulation efficient while optimizing complex and data-intensive
particle systems. The CUDA (Compute Unified Device Architecture) works with programming languages such
as C/C++ and Python to make multithreaded parallel programming easier. This work serves to analyze particle
systems using CUDA and provide an understanding about how various parameters such as the particle count and
grid size influence the simulation performance. We improve the CUDA particles demo by Nvidia using our
Python scripts and study the impact of particles and grids on execution time and throughput. Experimental results
indicate that a required level of performance can be achieved by varying the number of particles, the size grids,
and the orientation of grids as needed.

Key-Words: - Parallel computing methodologies, Parallel programming languages, Application programming
interfaces

Received: June 13, 2020. Revised: October 17, 2020. Accepted: November 6, 2020. Published: December 7, 2020.

1 Introduction
Particle systems provide simulation of real world
events at both macro and micro scales. Particle
systems have been used as a technique to simulate
various effects, models, and game physics [1].
Particle systems were first introduced in a 1982 Start
Trek movie. Particle systems represent collections of
multitude of small particles, which move then die
over time. Particle systems are most commonly used
in video games but are also used in animations and
arts [2]. Animators such as Pixar use it as an effective
tool, which artists utilize to create realistic physical
effects such as water, smoke and fire effects. In their
movies, Pixar used millions of particles, where the
more particles used, the closer it gets to real physics.
These particle calculations, and keeping track of each
individual particle out of the multitude of particles in
the particle system, have formed a workload that may
create issues with some computer hardware/software.
Unity, a Danish-American video game software
development company, uses particle systems when
desiring to create some special physical effects [3].
Dynamic objects such as water are difficult to create
through sprites or meshes; sprites and meshes are
better for solid objects. Optimization of particle
systems help creators save time by processing their
work quicker without sacrificing accuracy.

Simulation assists individuals in sciences,
entertainment, businesses, and research and creates a
more accurate and reliable approximation of their
respective needs [4]. The study of optimizing a
system provides an insight of how the system works
and the progression of advancements in the related
fields. Optimization techniques make use of
calculation reductions, data savings, and better
approximations to result in a better and faster
processing time. Particle Swarm Optimization [5] is
an optimization method, based on particle systems,
which iteratively attempts to improve a candidate
solution with respect to a quality measure. In this
work, we study one such optimization technique and
examine its improvements, drawbacks, and
implication for future advancements.
The CUDA (Compute Unified Device Architecture),
a parallel computing platform and an Application
Programming Interface (API), works with
programming languages such as C/C++ and Python
to make graphics processing unit (GPU)-assisted
multithreading easier. OpenCL, another API, is
designed to be an open platform agnostic standard.
CUDA is a proprietary Nvidia property that performs
multithreaded parallel programming on Nvidia GPU
cards. Therefore, CUDA is expected to perform
better because CUDA/GPU is a complete in-house

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.69 Fadi N. Sibai, Andrew Potvin, Steven Ngo

E-ISSN: 2224-2856 691 Volume 15, 2020

solution. In [14], Nvidia reports a top simulation
performance of 64K colliding particles in 460 frames
per second on an Nvidia Fermi GPU.
In this paper, we optimize a particle system on a
CUDA platform using Python. The goal of this
optimization effort is to further performance of
particle systems and identify system properties such
as particle count and grid size on the performance
(processing time, and throughput) of particle
systems.
This paper is organized as follows. Section 2 reviews
related published articles. Section 3 describes the
algorithm employed and the experiments conducted.
The experimental results are presented and discussed
in Section 4. Finally, Section 5 concludes the paper.

2 Literature Survey
Particle systems are used to model fuzzy objects to
represent changes of form, motion, and dynamics [1,
3]; the particles of such a system may affect movie
animations [2, 21] and 3D games [22].
Particle swarm optimization (PSO) is a population
based stochastic optimization technique developed
by Dr. Eberhart and Dr. Kennedy in 1995, inspired
by social behavior of bird flocking or fish schooling
[5]. Various applications of POS in fluid simulation,
virtual reality, and computer animation show
promises [6-8]. POS has gained distinction in the
recent years due to its ease of application in
unsupervised, complex problems that cannot be
solved using traditional deterministic algorithms [9-
10].
In the realm of deep learning, two popular deep
learning APIs PyTorch and TensorFlow both only
support CUDA for GPU acceleration [11]. Part of the
reason for PyTorch only supporting CUDA in the
mainline instead of OpenCL seems to be Advanced
Micro Devices’ (AMD) push for another computing
language API: ROCm (Radeon Open Compute),
which PyTorch AMD (an official branch of PyTorch)
runs on. The classic XKCD comic regarding
standards comes to mind. There was no official
statement from Google on why TensorFlow only runs
on CUDA for the GPU branch. A prior study utilizes
the Adiabatic QUantum Algorithm (AQUA), which
is “a Monte Carlo simulation of a quantum spin
system written in C++” [12]. The Monte Carlo
simulation itself is another naturally parallel problem
as it is the averaging of many random guesses, so it
is a kind of analog to the Mandelbrot set generator. It
is found that CUDA performs better when
transferring data to and from the GPU and that
CUDA’s kernel execution is also consistently faster

than OpenCL, despite the two implementations
running nearly identical code [12, 13].
Historically, various applications have been studied
on shared memory multiprocessors, GPUs, and
message passing systems, and their performance
evaluated on these systems [17, 18, 19, 20, 25, 26,
27]. Uberflow [23] is a GPU-based particle engine
featuring particle advection, sorting, and rendering.
Drone [24] studied real-time particle systems on the
GPU including storage requirements, integrating the
motion equations with Euler integration and Runge-
Kutta methods, saving the particle states including
position and velocity using double buffering, and
changing particle behaviors as a result of changing
the velocity or position of a particle. Particle systems
were also implemented on the GPU to simulate
hundreds of flocking spaceships, featuring collision
avoidance, separation, cohesion, and alignment.
Cohesion drives the spaceships to the common
(position) center, while alignment drives the
spaceships to the common velocity, where
“common” is calculated by averaging positions or
velocities.

3 Algorithm and Experimentation
CUDA, developed by Nvidia, allows developers to
access GPU cards for extensive parallelization of
their code. Nvidia provides code examples making
use of the CUDA interface. One such example is
about particles in a controlled environment with
various parameters [14]. In this work, we explore
such a particle system using CUDA. Due to the
nature of particles being separate entities operating
on well-defined physical properties, parallelization is
a prime candidate for optimization of any system.
The algorithm being discussed will make use of this
advantage for great performance increases in the
simulation while making full use of the GPU.
Parallelization will be handled through the
organization of particles into grid spaces. These grid
spaces will hold particles that will likely interact with
each other, but likely not with others outside.

3.1 Algorithm Considered
The discussed and tested algorithm, using the
aforementioned CUDA example code by Simon
Green [14], provides a framework and environment
for testing various configurations and needs with
their resulting performance metrics. The system
being discussed, while processing particles
individually for final updates, particles are
approximated together in grids in order to limit the
needed number of comparisons and thus reduce time

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.69 Fadi N. Sibai, Andrew Potvin, Steven Ngo

E-ISSN: 2224-2856 692 Volume 15, 2020

to update. Only particles sharing the same grid space
are checked against each other for collision [14, 15].
This collision check happens with a simple check
comparing the distance between two particles against
the sum of their radii, as given P1 and P2 in Fig. 1,
where P1 and P2 are three-component vectors
representing points in three dimensional space, with
radii R1 and R2, respectively. In 3D space as
commonly used in Engineering and Science
disciplines, collision check between P1 and P2 is
conducted using Equation (1), as follows.

√(𝑃1𝑥 − 𝑃2𝑥)2 + (𝑃1𝑦 − 𝑃2𝑦)2 + (𝑃1𝑧 − 𝑃2𝑧)2 2

 < (𝑅1 + 𝑅2) (1)

Fig. 1: Collision check between two particles

Equation (1) is derived from the Pythagorean
theorem and the Euclidean distance formula [16]. A
true state of Equation (1) indicates intersection (i.e.,
collision) of particles, while a false state indicates no
collision. It is important to understand that an
optimization to the formula in Equation (1) by
removing the square root, as shown in Equation (2),
is needed for better performance.

(𝑃1𝑥 − 𝑃2𝑥)2 + (𝑃1𝑦 − 𝑃2𝑦)2 +
 (𝑃1𝑧 − 𝑃2𝑧)2 < (𝑅1 + 𝑅2)2 (2)

Equation (2) provides a less computationally
expensive early exit before performing more
expensive collision resolution, especially when
multithreaded parallel computing is used.
The simulation environment constructs a 2 x 2 x 2
cube area centered at the origin (0, 0, 0) and proceeds
to fill it with the given number of particles in the
specified arrangement. Arrangements can be in either
an organized grid spaced evenly among the particles,
or a random location for each particle within the
cube. The cube is then divided in memory into grid
cells where each grid cell can hold a small number of

particles (the cell size should be ideally around the
size of a few particles). Since each particle is in a
three-dimensional space with a three-dimensional
volume, a particle at minimum will be in one grid
cell, but can be at maximum in eight grid cells (by
being placed in their intersection points). Each grid
cell can then keep a reference to each cell in their
region and only process updates on these particles.
Updates are able to run in parallel and brought
together at the end of the total batch set. Resolution
of resulting collisions is handled in this step using
digital elevation model (DEM) data. This allows
particles to transfer “energy” between each other
until the collisions in the local system have
dissipated, and participants come to rest.

3.2 Experimental Details
For this study, the CUDA particles demo [14] by
Nvidia is modified and managed to create a
benchmark. The data measuring performance
changes because of the multithreaded algorithm
properties. The properties of the particle system
configuration are modified to measure results such as
processing time and throughput, and information
about the algorithm.
The existing code in the particles demo provides a
large amount of configuration and a platform for
performing tests. However, we modify the code to
allow for additional testing on the particles
simulation. The main improvement is to allow for an
extra command line argument for benchmarking that
would set the starting organization of the particles. In
the original demo, benchmark mode would default
particle positions to an organized grid that chooses an
equal distance from neighboring particles. The demo
code is also modified to allow for a random
positioning of particles. Experiment data is collected
using an Nvidia GeForce 940MX GPU card with 384
CUDA cores.

3.2.1 Experiment Automation Script

In order to facilitate the increased needs and provide
easy collection of data, a Python script is developed
to wrap calls to the benchmark demo and to pass the
correct configuration values. The Python script
allows for:

• A variable number of particles to simulate in
the system at one time.

• The grid size to divide into each axis. For
example, a grid of size 24 would be 24 x 24 x
24 = 13824 total grid cubes.

• A type of simulation (GRID or RANDOM) to
run. The type determines the starting
orientation of particles in the system as
discussed earlier.

P1

R1

P2

R2
X

Y

Z

P1

X

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.69 Fadi N. Sibai, Andrew Potvin, Steven Ngo

E-ISSN: 2224-2856 693 Volume 15, 2020

• A number of iterations to run the simulation for
the benchmark.

• A number of test runs with the same
configuration values. The average values of
each run are considered and calculated.

Parameters used in Test Run 1:

• Particle Amount: varied from 8192 to 65536
• Grid Size: 64
• Arrangement: GRID
• Iterations: 300
• Number of trials: 100

Parameters used in Test Run 2:
• Particle Amount: 32768
• Grid Size: varied from 32 to 256
• Arrangement: GRID
• Iterations: 300
• Number of trials: 100

Parameters used in Test Run 3:
• Particle Amount: varied from 8192 to 65536
• Grid Size: 64
• Arrangement: RANDOM
• Iterations: 300
• Number of trials: 100

Parameters used in Test Run 4:
• Particle Amount: 32768
• Grid Size: varied from 32 to 256
• Arrangement: RANDOM
• Iterations: 300
• Number of trials: 100

Test run 3 is an exact copy of Test run 1 except that
the particle arrangement is RANDOM instead of
GRID. Similarly, Test run 4 is an exact copy of Test
run 2 except that the particle arrangement is
RANDOM instead of GRID. Test runs 1 and 3 vary
the particle count while keeping the grid size fixed at
64. Test runs 2 and 4 vary the grid size while keeping
the particle count fixed at 32768.

3.2.2 Experiment Questions

The experiments conducted in this work are to find
answers to four questions, each one is important for
its own implication.

The first question: How the number of particles
being simulated in the benchmark would affect the
processing time? What implication would it have?
This question has the possibility to display the
improvements of multithreading in particles
simulation.

The following hypothesis seek to give answers to the
question: If the number of particles is increased, then
the time to process all computations scales linearly.
This is because, while multithreaded, all cores are
used and threads are processed in all cores
simultaneously.

The second question: What difference would the
grid size make on the performance of the system?
This question is very interesting because this is the
main optimization that the demo focuses on. The grid
size determines the number of checks against the
neighboring particles. The grid size also determines
how the particles are organized in memory. Thus,
results could be used to comment on the data access,
data manipulation, and overall performance.
The following hypothesis seeks to give answers to the
question: If the grid size is increased, the time to
process all computations decreases. This is because,
in case of an increased grid size, there are fewer
collisions to be removed from the system resulting in
a breakdown of the optimization algorithm. In case of
a decreased grid size, the time to process increases
because there are more particle comparisons to be
made each update.

The third question seeks to answer what impact
would it have on the throughput of the system while
changing the number of particles and the size of grid.
The throughput measures the thousands of particles
that must be processed per second in the simulation.
A higher throughput should be able to give a better
indication of the efficient processing of the system
and efficient use of the hardware.
The following hypotheses seek to give answers to the
question: If the particle count or grid size is varied,
then the throughput will change linearly with the
change of each variation, because the throughput is
directly proportionate to the amount of processed
particles (a larger grid size should have a higher
particle count) at that time.

The fourth question is about the grid arrangement,
whether the results would differ when conducted
with a GRID or RANDOM orientation at the starting
point. If the results differ, how? The GRID
orientation should provide a consistent and overall
stable result, while a RANDOM orientation of
particles could result in more complex and
unpredicted ways (when compared with the results
from the GRID orientation).
The following hypothesis seek to give answers to the
question: If the processing times due to a random start
and a grid start are compared, then a random start
should require more time to process, on average,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.69 Fadi N. Sibai, Andrew Potvin, Steven Ngo

E-ISSN: 2224-2856 694 Volume 15, 2020

because a random start should create compact groups
of particles that requires more iterations of the DEM
solving than a grid start.

4 Experimental Results & Discussion
This section serves to present the experimental
results and then attempts to reason why they
occurred, and what could possibly be learned from
the information. Numbers reported are averages of
100 runs or trials.

4.1 Number of Particles
The processing time obtained by changing the
number of particles used in the simulation is as
expected on the surface, i.e., the time increases on
higher particle counts and decreases on lower ones,
as shown in Fig. 2, for both GRID and RANDOM
orientations. The grid size is fixed at 64. The GRID
arrangement slightly outperforms the RANDOM
arrangement with a particle count of 32768, or
greater.

Fig. 2: Processing time due to particle count.

However, a deeper analysis shows that there must be
some more information to extract from the results. As
the particle size increases, the time to process does
not linearly increase with the particle size. Therefore,
in the case of ~16K particles, the time to process was
0.00137 sec. each update, but with ~32K particles,
the time to process was only 0.00216 sec each update.
A doubling of the particles would possibly indicate a
doubling of the processing time (minus overhead of
each update setup), but this was not the case, instead
the result is about ~58% increase in processing time.
This proportional gap between processing times for

doubled particle size seems to get smaller as particle
size increases. The interesting trend of this data
seems to indicate that multiplicative growth in
particle count causes only linear (and not
multiplicative) growth in processing time.
Another interesting trend is the change in throughput
at low particle count in a GRID or RANDOM
arrangement. The grid size is fixed at 64. The
throughput increases from a low point when the
particle number is increased as shown in Fig. 3 (grid
size =64). This may be due to more difficulty in
parallelizing the lower particle amounts, or possibly
a limitation of the algorithm used.

Fig. 3: Throughput due to particle count.

4.2 Size of Grid
The grid size, starting at 32 and moving up to 256,
shows a decrease in processing time for both
orientations, as shown in Fig. 4, with the particle
count fixed at 32764. Before size 128, the processing
time decreases sharply as the grid size increases. Past
grid size 128, the processing time remains nearly the
same, to a degree. Note that as the grid size increase
from 32 to 256, the processing times drops by about
4% for the GRID arrangement case, and by
approximately 2% for the RANDOM arrangement
case.
The behavior of the processing time with the grid size
128 or higher could be due to the higher grid size
spreading the particles away from each other and
thereby reducing the number of collisions computed,
as only particles sharing the same grid space are
checked against each other for collision. When the
particles are positioned far from each other, they are
also checked for collision. However, given that the

0.0000

0.0016

0.0032

0.0048

8192 16384 32768 65536

P
ro

c
e
ss

in
g

 T
im

e
 (

s)

Particle Count

Particle Count vs. Processing Time

Grid Arrangement

Random Arrangement

5000

10000

15000

20000

8192 16384 32768 65536

T
h

ro
u

g
h

p
u

t
(1

0
0
0
/

s)

Particle Count

Particle Count vs. Average
Throughput

Grid Arrangement

Random Arrangement

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.69 Fadi N. Sibai, Andrew Potvin, Steven Ngo

E-ISSN: 2224-2856 695 Volume 15, 2020

particles are far from each other, computations
related to collisions, such as updating the velocities
and direction of colliding particles, are skipped,
thereby reducing the execution time.

Fig. 4: Processing time due to grid size.

The grid size to throughput results are demonstrated
in Fig. 5. The plots of Fig. 5 were obtained with the
particle count fixed at 32764. In the GRID starting
orientation, the throughput flattens to a consistent
value for the higher grid sizes (128 and above). In
case of the RANDOM orientation, the throughput
increases steadily with the grid size as would have
been more expected. These results can be explained
by the predictable nature of the grid resulting in even
distribution of particles, while random would result
in not so even distribution of particles in the grids,
thus a less optimal distribution of particles.

Fig. 5: Throughput due to grid size.

Moreover, there seems to be higher parallelism
taking place in the GPU with larger grid sizes
resulting in lower processing time and higher
throughput, until the grid size reaches 128-256 at
which point the number of particles processed per
second starts to saturate.

4.3 Orientation of Particles
In the experiments, the particles’ starting orientation
is varied between GRID and RANDOM
arrangements. It is observed, in Fig. 2, that the
processing time consistently increases when the
particle count increases from ~8K to ~64K for both
orientations. However, for both orientations, the
processing time decreases sharply when the grid size
increases from 32 to 128 and remains about the same
for higher grid sizes as shown in Fig. 3.
From Figs. 3 and 5, the average throughput increases
when either the particle count or the grid size
increases, as expected. However, for the GRID
arrangement, the average throughput seems to even
out at grid size 128 and higher as illustrated in Fig. 5.
Although more parallelism takes place at higher grid
sizes, the fixed particle count dilutes the number of
particles processed in parallel resulting in the
flattening of the throughput curve starting with a grid
size of 128.

5 Conclusion
Particle simulations are important for many modern
applications including scientific research and
exploration, where the data size and complexity is
ever growing. As a result, particle simulations require
constant improvement through more accurate
simulation and higher particle count. The need for
improved simulation has led to a constant demand for
optimization of both hardware and software. Studies
show that particle placement and organization in
memory form one such optimization area that can
provide large performance improvement. The
improvement has shown the potential of parallel
computing in the simulation for less time and more
throughput.
In this work, we study a particle system using CUDA
Python that provides an understanding about how
various parameters such as the particle count and grid
impact on the simulation performance. According to
the experimental results, both the processing time and
throughput increase when the particle count increases
from ~8K to ~64K. The uses of grids in particle
optimization may reduce the processing time by
checking and processing particle collisions against
the immediately near ones. For a required
performance, the grid size and arrangement can be

0.00225

0.00230

0.00235

0.00240

32 64 128 256

P
ro

c
e
ss

in
g

 T
im

e
 (

s)

Grid Size

Grid Size vs. Processing Time

Grid Arrangement

Random Arrangement

13750

13950

14150

14350

32 64 128 256

T
h

ro
u

g
h

p
u

t
(1

0
0
0
/

s)

Grid Size

Grid Size vs. Average Throughput

Grid Arrangement

Random Arrangement

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.69 Fadi N. Sibai, Andrew Potvin, Steven Ngo

E-ISSN: 2224-2856 696 Volume 15, 2020

varied as needed depending on particle properties
such as radius and collision response.
We plan to study the impact of particle configuration
variance on performance in one of our next
endeavors.

References:

[1] William Reeves, Particle Systems — a
Technique for Modeling a Class of Fuzzy
Objects, ACM Trans. Graphics, Vol. 2, No. 2,
1983, pp. 91-108.

[2] Jenny Green, How Particles Impact Movie
Animation, 2017, https://obportland.org/how-
particles-impact-movie-animation/

[3] Unity Technologies, Introduction to Particle

Systems, 2020, https://learn.unity.com/tutorial/
introduction-to-particle-systems#

[4] Adam Augustyn, Patricia Bauer, Emily
Rodriguez, et al, Simulation: Scientific Method,
2016, https://www.britannica.com/science/
simulation

[5] James Kennedy, Russell Eberhart, Particle
swarm optimization. Proceedings of the IEEE

International Conference on Neural Networks

(ICNN'95), Perth, Australia, 1995,
doi:10.1109/ICNN.1995.488968

[6] Matthias Müller, David Charypar, and Markus
Gross, Particle-Based Fluid Simulation for
Interactive Applications, Proceedings of 2003

ACM SIGGRAPH Symposium on Computer

Animation, 2003, pp. 154–159.
[7] Matthias Müller, Bruno Heidelberger, Marcus

Hennix, John Ratcliff, Position Based
Dynamics, Workshop in Virtual Reality

Interactions and Physical Simulation

(VRIPHYS), 2006, pp. 109-118.
[8] Erin Hastings, Ratan Guha, and Kenneth

Stanley, Interactive Evolution of Particle
Systems for Computer Graphics and Animation,
IEEE Transactions on Evolutionary

Computation, Vol. 13, No. 2, 2009, pp. 418-
432, doi: 10.1109/TEVC.2008.2004261

[9] Yudong Zhang, Shuihua Wang, and Genlin Ji, A
Comprehensive Survey on Particle Swarm
Optimization Algorithm and Its Applications,
Mathematical Problems in Engineering,
Hindawi, 2015, https://doi.org/10.1155/2015/
931256

[10] Saptarshi Sengupta, Sanchita Basak, and
Richard Peters II, Particle Swarm Optimization:
A survey of historical and recent developments
with hybridization perspectives. J. Machine

Learning and Knowledge Extraction, Vol. 1,

No. 1, 2019, pp. 157-191.
https://doi.org/10.3390/make1010010

[11] Nikolya Dimolarov, On the state of Deep
Learning outside of CUDA’s walled garden,
2019, https://towardsdatascience.com/on-the-
state-of-deep-learning-outside-of-cudas-
walled-garden-d88c8bbb4342

[12] Kamran Karimi, Neil Dickson, and Firas
Hamze. A Performance Comparison of CUDA
and OpenCL, 2011, https://arxiv.org/vc/arxiv/
papers/ 1005/1005.2581v1.pdf

[13] Ayaz Khan, Mayez Al-Mouhamed, Muhammed
Al-Mulhem, Adel Ahmed, RT-CUDA: A
Software Tool for CUDA Code Restructuring,
Int. J. Parallel Prog., Vol. 45, 2016, pp. 551–
594. https://doi.org/10.1007/s10766-016-0433-
6

[14] Simon Green, Particle Simulation Using

CUDA, Nvidia, 2010, http://developer.
download.nvidia.com/assets/cuda/files/particle
s.pdf

[15] Mikael Kalms, High-performance particle

simulation using CUDA, Department of
Electrical Engineering, Linkoping University.
2015, https://liu.diva-portal.org/smash/get/
diva2:816727/FULLTEXT01.pdf

[16] Eric Weisstein, Distance Equations, Wolfram
Resource, 2020, https://mathworld.wolfram.
com/ Distance.html

[17] A Asaduzzaman, Fadi N. Sibai, H. ElSayed,
Performance and Power Comparisons of MPI vs
PTHREAD Implementations on Multicore
Systems, Proc. 9th IEEE Int. Conference on

Innovations in Information Technology

(IIT’13), 2013, pp. 1-6.
[18] F. N. Sibai, S. Mohammad, H. Kidwai, B.

Qamar, F. Awad, Parallel Implementation and
Performance Analysis of a 3D Oil Reservoir
Data Visualization Tool on the Cell Broadband
Engine and CUDA GPU, Proc. 14th IEEE Int.

Conference on High Performance Computing

and Communications (HPCC-12), 2012, pp.
970-975.

[19] F. N. Sibai, A. El-Moursy, Performance
evaluation and comparison of parallel conjugate
gradient on modern multi-core accelerator and
massively parallel systems, International

Journal of Parallel, Emergent and Distributed

Systems, Vol. 29, No. 1, 2014, pp. 38-67.
https://www.tandfonline.com/doi/pdf/10.1080/
17445760.2012.762774

[20] F. N. Sibai, Performance analysis and workload
characterization of the 3DMark05 benchmark
on modern parallel computer platforms, ACM

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.69 Fadi N. Sibai, Andrew Potvin, Steven Ngo

E-ISSN: 2224-2856 697 Volume 15, 2020

SIGARCH Computer Architecture News, Vol.
35, No. 3, 2007, pp. 44-52.

[21] B. Reeves, K. Sims, Particle Systems and
Artificial Life, History of Computer Graphics

and Animation, Wayne Carlson (Ed.).,
https://ohiostate.pressbooks.pub/graphicshistor
y/chapter/19-1-particle-systems-and-artificial-
life/

[22] Iain Cantlay, High-Speed Off-Screen Particles,
GPU GEMS 3, nVIDIA, H. Nguyen (Ed.), 2007,
https://developer.nvidia.com/gpugems/
gpugems3/part-iv-image-effects/chapter-23-
high-speed-screen-particles

[23] Peter Kipfer, Mark Segal, Rudiger Westermann,
UberFlow: A GPU-based Particle Engine,
Proceedings of the ACM SIGGRAPH/

EUROGRAPHICS Symposium on Graphics

Hardware, Grenoble, France, 2004, pp. 29-30,
https://pdfs.semanticscholar.org/9129/ef791f8cb
29c0cec6a11c7d387207e93fce3.pdf

[24] Shannon Drone, Real-Time Particle Systems on
the GPU in Dynamic Environments, Proceedings

of ACM SIGGRAPH’07, 2007, pp. 80-96,
https://doi.org/10.1145/1281500.1281670

[25] Hashir Kidwai, F. N. Sibai, T. Rabie, “Image
Magnification and Reduction Using High Order
Filtering on the Cell Broadband Engine,” Proc.

5th IEEE International Multi-Conference on

Systems, Signals and Devices (SSD’08), Amman,
Jordan, July 2008, pp. 1-5.

[26] A. Asaduzzaman, F. N. Sibai, H. ElSayed,
“'Performance and Power Comparisons of MPI
vs PTHREAD Implementations on Multicore
Systems,” Proc. 9th IEEE Int. Conference on

Innovations in Information Technology (IIT’13),
Al Ain UAE, 2013, 6 pages.

[27] F. N. Sibai, "Evaluating the Performance of
Single and Multiple Core Processors with
PCMark®05 and Benchmark Analysis," ACM

Performance Evaluation Review, Vol. 35, No. 4,
March 2008, pp. 62-71.

Contribution of individual authors to

the creation of a scientific article

(ghostwriting policy)

Fadi Sibai was responsible for the general theme and
editing.
Andrew Potvin and Steven Ngo were responsible for
the programming and obtaining the results.

Creative Commons Attribution

License 4.0 (Attribution 4.0

International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.69 Fadi N. Sibai, Andrew Potvin, Steven Ngo

E-ISSN: 2224-2856 698 Volume 15, 2020

https://doi.org/10.1145/1281500.1281670

