
Towards handling incremental load for anomalies in near real time

data warehouse

MOHAMMED MUDDASIR N
Dept. of IS&E,

VVCE, Mysuru, Karnataka,
India

mdmsir@gmail.com

RAGHUVEER K
Dept. of IS&E,

NIE, Mysuru, Karnataka,
India

raghunie@yahoo.com

R DAYANAND
Technical Director,

India
Dayanand_7@yahoo.com

Abstract:-Refreshment anomalies occur in a data warehousing environment while performing Extract Transform
and Load (ETL) to get the data for analysis from sources. There could be several reasons for the anomalies like not
able to capture the delta on time, system time out, duplicate entries due to outer join operations and many more.
Once anomalies are detected the compensation operation is executed to get the data that was missing into the data
warehouse. In this work we would like to analyze scenario where it is necessary to perform incremental loads based
on priority in an ongoing data warehouse maintenance work. The work proposes a novel approach to decide on
when to perform ETL so that refreshment anomalies do not occur and to maintain integrity of data such that
analytics queries always provide right information to the analyst. Two novelties have been discussed in this work
one is to have a threshold before compensation of updates and two is while performing compensation updates
prioritize the query with less freshness interval to have more time limits for the updates to be completed.

Key-words: -Data warehouse, Extract Transform Load, Incremental Load, Refreshment anomalies, query priority.
Received: June 16, 2020. Revised: October 20, 2020. Accepted: November 5, 2020. Published: December 7, 2020.

1 Introduction
Real time analysis is a new normal in various
domains that include e-commerce, banking, retails,
finance etc. Every business is trying to analyze the
data available with them as part of getting to know
the good bad about their products or services in the
sight of customers or end users. Data collected
through transactions or web site visits or feedbacks
etc. is not suitable for analysis. This data has to be
cleaned, transformed and later used for analysis. The
process of getting transactional data into analytical
environment (data warehouse) is known as ETL.
Traditionally ETL was done during off peak hours
but the demand for real time analysis has made ETL
also in real time. But the very instant of capture data
could not be present for analysis and there is a slight
delay to get the data for analysis in real time, hence
the process is known as near real time ETL. Initially
while building the data warehouse the ETL is done
on the entire data available at the transaction site, but
after the initial load new data added at the transaction

site are added using incremental loads. The reason is
the incremental loads take less time because of fewer
volumes to capture only the deltas to be loaded that
were added to transaction site after initial loads. After
the first incremental load, second, third and all
subsequent loads are incremental in nature. The
incremental load in case of near real time ETL could
lead to several anomalies. There could be missing or
incorrect values; delays in capturing the deltas could
leave the two databases in an inconsistent state. This
work focuses on resolving the inconsistent database
states and to make sure anomalies due to delays in
capture of deltas is resolved. The idea to capture
deltas before answering the queries was proposed in
[1][2]. Also the idea to have threshold of number of
rows or any other similar value before performing
ETL was proposed in [3]. In this work we combine
these two ideas, i.e. we put the query on hold put
capture deltas only if it reaches a threshold value.
Also a novel approach to assign priority to a
particular query is proposed that helps to execute

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.68 Mohammed Muddasir N., Raghuveer K., R. Dayanand

E-ISSN: 2224-2856 684 Volume 15, 2020

queries with very less freshness interval. This work
has an algorithm to make sure not all queries are
stalled and only those that have a source data
reaching a threshold value along with a freshness
criterion are only put on hold. This makes sure that in
case of multiple queries being executed in parallel,
queries have got priority and in prioritized queries
also not every query is put on hold. The overall
execution time of all the queries is reduced but not
stalling every query. The experiment were done on
TPC-DS data results show less time for query
execution with minimal difference in source and
destination databases. The motivation for this work is
to reduce query waiting time and also to give updated
data by making only critical queries to stall for
getting updated data.

2 Related Works
In this section we review the existing work on
anomaly detection and resolution in a data warehouse
environment. Earlier the data warehouses were
updated based on information received from source
about the deltas being added [4]. In this scenario data
warehouse would query the source requesting it to
send the updates. The anomaly here is in case of data
warehouse query being answered there could be
concurrent deltas added at the source leading to
insertion anomalies or deletion anomalies. The
solution proposed by the authors of [4] is to have
eager compensation algorithm (ECA). In ECA using
the concept of database joins and set differences
between the source and destination tables is used to
avoid anomalies due to inter leaving of queries and
updates. Similar anomalies could be possible in case
of multiple sources, this was handled in [5] using
strobe family of algorithm. The strobe algorithm
prepares a list of actions to be executed to bring the
data warehouse in a consistent state. View
maintenance using minimal join of delta from one
table with available data warehouse table is proposed
in [6]. The algorithms are named SWEEP and Nested
SWEEP dealing with multiple sources that are
updated during different times and each is
autonomous. The idea is to join delta of one table that
is updated with stored value in data warehouse of
another table. Materialized view maintenance using
version numbers was proposed in [7]. The idea is
only highest version number in the processing queue
gets to be updated at the data warehouse. Hence all
the intermediate updates leading to anomalies are
avoided. Sirius approach [8] deals with various

refreshment issues by mapping source and
destination databases using object oriented concepts.
The issue of heterogeneity is handled in their work
by developing a global schema that consists of meta-
data information. Anomalies due to outer joins are
discussed in [9]. The problem of redundancy could
occur if the data warehouse are were build using
outer joins to keep track of records that do not match
the join conditions. If at some point in time the match
occurs there could be redundant tuple one with null
values and one without null value. The one with null
values have to be identified and deleted. Correction
strategies for distributed updates is discussed in [10].
The problem identified is current schema changes
with record updates and several updates taking
different times to finish. The solution is an agent to
keep track of all the changes and later once every
change is tracked update the data warehouse.
Incremental updates that are safe are only propagated
through a algorithm to identify and remove rows that
are created as side effects is proposed in magic set
safe updates[11]. Problem of delay is capturing deltas
and it solution is proposed in [12]. ETL solution
such as snap shot source, time stamp source are
proposed to overcome refreshment anomalies.
Change data propagation to compensate for the
limitation of change data capture techniques is
proposed in [13][14]. Change propagation logs with
source tables queried for changes using equivalence
preserving transformation rules as a solution is their
main contribution. Other techniques such as
incremental view maintenance [15] and 24/7 high
availability[16] are also dealing with incremental
data warehouse maintenance.

Various strategies problems and solution for
incremental view maintenance were proposed
previously. Compared to previous work the approach
in this work proposes a hybrid approach to stall query
as proposed in [1][2] and update deltas only if certain
threshold is reached as proposed in [3]. The novelty
in this work is in calculating freshness interval and to
decide query priority. The assumption is query
details must be available as part of meta-data.

In our previous work on refreshment anomalies
[17] We had implemented the idea of stalled query
for getting updates. As compared to this work in our
previous work the updates were stored in temporary
tables, here we have a novel approach to calculate the
threshold before stalling, later to have freshness
interval to determine whether it’s required to stall all

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.68 Mohammed Muddasir N., Raghuveer K., R. Dayanand

E-ISSN: 2224-2856 685 Volume 15, 2020

queries on only some finally to limit the time given
for performing the updates.

3 Decide on incremental loading cycle.
Refreshment anomalies in ETL occur if there are
changes in the source that are not available to the
data warehouse during query execution. Availability
of real time data for analysis at the data warehouse
depends on two main factors, freshness criteria, and
data integrity. Freshness criteria is called as when
part of incremental loading [8] helps to decide the
right interval or time for performing the refreshment.
This could be 1.regular interval 2.based on threshold
values calculated using availability of data,
information gain of data and 3.number of queries that
require data from this source. The regular interval set
for performing ETL, is normal time frame set to
perform incremental load that could refreshes the
data warehouse every day, hour and any time set by
the administrator. The threshold based refreshment
could be triggered when the source data itself reaches
a threshold value in terms of count or information it
provided. If the number of queries are limited and hit
only at certain period then refreshment could be done
at regular interval. If the queries hit are varied across
time and may need real time data then refreshment
cannot be at regular interval it has to be done using
delta updates mechanism proposed in [1][2]. Before
answering the query execution starts put it on hold
and update the relevant tables using the deltas
available in the source. Data integrity is the
availability of right information without any missing
values or failures in the process of ETL [18].
Integrity is achieved using ETL testing to make sure
there are no logical errors from joins or job failures
due to slow query execution and duplicates in case of
slowly changing dimensions.

4 ETL based on threshold value
The idea of deciding to perform ETL based on non-
static condition like number of records updated etc.
was proposed in [3]. If data reaches a threshold value
and queries are more for this data then instead of
waiting for refreshment interval perform ETL
immediately. Even if threshold value is reached and
no queries then do not perform ETL wait for the
interval to perform the next incremental load. If
queries are more and threshold value is less do not
perform ETL and again wait for the next interval to
perform incremental load. Threshold value could be

the number of new rows available or it could be
domain specific value such as max sales, average
sales etc. Number of queries is just the count of how
many analytics task are performed on the data
warehouse. The delta updates proposed in [1][2] is
enhanced with threshold criteria in deciding to
perform refreshment or not. Also the threshold value
helps in maintaining the data integrity so that we
could cross check on the count of number of new
rows refreshed.

5 Prioritize query to reduce execution

time
Once it is decided to perform delta updates based on
threshold value next consideration is how much time
is given to perform the ETL so the query that is
waiting for the compensated records is not over
loaded. Normal ETL is done by round robin or round
robin by blocks in case of multiple sources. If there is
a query marked as critical then based on freshness
cycle the following is done. Critical query are
checked for refreshment of data. If data is having
freshness interval of 1 day or more means avoid ETL
and execute the query. If freshness interval of data
source for the query is less then put query on hold
and perform ETL and then later after this answer the
query that shall have latest information.

To illustrate the above taking e-commerce as
example, there could be three possible sources,
structured, semi-structured and un-structured. The
structured source could be the sales transaction by a
customer, semi-structured could be the click stream
analysis and un-structured could be review comments
etc. While a ETL system takes three sources like the
above and refreshment is done in a round robin
fashion to get updates on each, the refreshment time
given to each source depend on the freshness criteria
of the data desired. In case of sales the freshness is
high and hence the refreshment interval i.e. the time
given for the structured source to finish is high, then
the time given for click stream analysis source is
moderate and the time given for refreshment of
unstructured source is less. This helps to bring in
most recent data for analysis in case of critical
requirement.

The query is put on hold and ETL is performed to
make sure the query does not miss any new updates,
while doing so if the ETL takes a lot of time then the
query execution that is put on hold shall become
overwhelmed. To avoid this certain limit has to be set

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.68 Mohammed Muddasir N., Raghuveer K., R. Dayanand

E-ISSN: 2224-2856 686 Volume 15, 2020

based on the type of query. High priority query is
given more waiting time to finish the delta updates,
although this leads to more latency but it gives
updated records. Low priority query may not need
updated records but requires to finish with less
latency hence waiting times is low.

Priority is decided based on type of analysis.
Example three types of sources structured, semi-
structures, and unstructured are used for analysis.
Each contains different information like structured
could be sales data how many unit of item sold, semi-
structured would be click stream analysis, demo
graphics of the user, unstructured could be feedback.
If the analysis query is for sales then structured
source is given more time to complete delta updates,
if click stream analysis then semi-structured source is
given more time, and if feedback analysis is to be
done then unstructured source is given more time to
complete.

In case of multiple queries for the same type of
analysis are being executed. To decide upon the
priority of queries the freshness interval is taken as a
parameter. If the freshness interval of the sources for
the query is very low then priority of the query is
high. Low freshness interval is set for the source that
is being constantly updated and those updates are
required for critical analysis. If there are n numbers
of queries the most critical query is the one with less
freshness interval. The Algorithm makes sure high
priority query gets the most recent for critical
analytical requirement.

The above is the idea of prioritize the query based
on type of analytics and freshness criteria. Table1
illustrates the meta-data for the idea presented. In this
meta-data hypothetical values are used for structured
data as having less freshness interval with high
priority and hence given more time for refreshment.

Table1: Meta data for refreshment
Query Source Freshness interval Priority Refreshment Time
1 Structured Less High High
2 Semi –structured Moderate Moderate Moderate
3 Un-Structured High Low Low

If at a given point in time query analyzing the un-

structured data source is being hit, also no other
query is being hit at this time, then to put the query in
hold and perform ETL is decided based on the
content of the Meta data. Check for freshness interval
and compare with the last refreshment for example if
the freshness interval is 1 hour and last refreshment
was done within 1 hour then the query need not be
put on hold and directly executed on the available
data. Similar rules are applied for other types of
sources. This mechanism does not put all the queries
on hold and starts ETL. The queries with less
freshness interval are only put on hold.

6 Algorithm stalled query update
Step1: Begin

Step2: Query execution on data warehouse

received

Step3: Stall the query

Step4: Check threshold value at source about
the number of rows count changed

Step5: Count>Threshold? Go-to Step6 else; Go-
to Step11

Step6: Check Priority and Freshness

Step7: Freshness is high? Go-to Step8 else; Go-
to Step11

Step8: Update the source

Step9: Watch update time> set limit? Go-to

Step10 else; Go-to Step11

Step10: Stop Update

Step11: Execute Query

Step12: End

7 Implementation and Results
The simulation of different types for sources was
done using a standard bench mark tool. The
implementation was done using TPC-DS bench

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.68 Mohammed Muddasir N., Raghuveer K., R. Dayanand

E-ISSN: 2224-2856 687 Volume 15, 2020

mark[19] data with a scale factor of 1 producing data
of size 1GB on a machine with core i5 having 4GB
RAM as configuration. TPC-DS contains various
types of sources and related ad-hoc analytic queries.
As shown in the fig1 [19]below we have taken three
sources such as catalog sales, web sales and store
sales and executed relevant queries that access these
sources. The bench mark for having structured,
semi-structured and unstructured data at once was not
found hence TPC-DS having all structured sources is
taken for demo. The experiments show priority of the
query based on threshold and freshness criteria as
explain in the previous sections.

Figure1: Partial TPC-DS sources and queries

The simulation requires meta-data for knowing the
priority based on freshness. The threshold value of
available deltas at source in terms of count of rows is
calculated dynamically upon query execution. The
TPC-DS bench mark give 99 queries and we have
taken randomly 3 queries each related to store sales,
catalog sales and web sales as shown Table2; the
table shows the hypothetical values of freshness for
the query number 6 through 82.

Table2: Implementation meta-data
Sales Type Query

Number
Freshness

Store Sales 6 1
Store Sales 27 1
Store Sales 82 1
Catalog Sales 15 2
Catalog Sales 18 2
Catalog Sales 20 2
Web Sales 12 3
Web Sales 45 3
Web Sales 62 3

Freshness is calculated valued based on difference

between Previous Query Execution Completion Time
(PQECT) and Current Query Execution Start Time

(CQEST). If the difference is above a set threshold
value then the query is stalled delta updates take
place before the start of execution. In Table2 the
freshness for web sales is shown as high because
threshold value of difference between PQECT and
CQEST is set has low. The reason for a setting a low
threshold value is that the sources for web sales are
updated at a rate higher that the update rate of catalog
sales and store sales.

Initially every source had data to the tunes of few
lakh rows on which related queries were executed.
Later incremental load of 2lakh rows each for catalog
sales and store sales was done. Web sales had an
incremental load of 3lakh rows. A delay of 6 seconds
was uniformly assumed for incremental loads. Web
sales also had a high freshness value as shown in
table2. This made the source web sales as candidate
for stalling the execution as compared to catalog
sales and store sales. The results show the time in
milliseconds for execution of queries in the meta-data
table2. First are the catalog sales we could see there
is delay when the queries are stalled for delta
updates, similar results are seen for store sales and
web sales. Fig2 show catalog sales query execution
similarly Fig3 and Fig4 show store sales and web
sales query execution. The overall idea to stall only
those queries with a less freshness interval which is
web sales in this case is done by only stalling web
sales queries and naturally the execution time of
overall query suit has improved as show in Fig5.

Figure2: Catalog Sales Query Execution

0

2000

4000

6000

8000

10000

12000

15 18 20

Tms

Query Number

Catalog Sales

Initial Load

No Stalled

Stalled

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.68 Mohammed Muddasir N., Raghuveer K., R. Dayanand

E-ISSN: 2224-2856 688 Volume 15, 2020

Figure3: Store Sales Query Execution

Figure4: Web Sales Query Execution

8 Discussions
The proposed approach has reduced the overall query
execution time from a given suite of queries. As seen
in the result every query is not stalled and only web
sales queries are stalled that makes no query waiting
time for stores sales and catalog sales. Advantage is
not all the queries are stalled; disadvantage is that we
need build a meta-data for queries by recording
previous execution history to use the algorithm.
Building meta-data dynamically is proposed as a
future enhancement.

Figure5: Overall Query Suit Execution

9 Conclusion and future enhancement
The assumption in this work is queries are known in
advance and their detail such as query number is
known. If a new query apart from the once stored in
meta-data arrives then the algorithm does not work
until the query information is inserted in to the meta-
data table. Also every query execution has to be
tracked from the meta-data table to know the priority.
Stalling a query requires it to be present in the meta-
data after which the threshold is calculated and later
deltas are updated based on priority given by
freshness attribute. As the result show there is an
improvement in overall query execution time for the
entire suit of queries present in the meta-data. To
overcome the limitation of having to store query
information in meta-data. In future the enhancement
is of adding the new queries to meta-data
dynamically are so that even new queries could be
handled effectively for refreshment anomalies shall
be taken up.

References:

[1] and S. D. Weiping Qu, Vinanthi Basavaraj,
Sahana Shankar, “Real-Time Snapshot
Maintenance with Incremental ETL Pipelines
in Data Warehouses,” Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 9263,
pp. 28–39, 2015, doi: 10.1007/978-3-319-
22729-0.

[2] W. Qu, “Incremental ETL Pipeline
Scheduling for Near Real-Time Data
Warehouses 1,” no. Btw, pp. 299–308, 2017.

0

50000

100000

150000

200000

6 27 82

Tms

Query Number

Store Sales

Initial Load

No Stalled

Stalled

0

500

1000

1500

2000

12 45 62

Tms

QueryNum

Web Sales

Initial Load

No Stalled

Stalled

240000

250000

260000

270000

280000

290000

300000

310000

All Query

Tms

Aggregate Query Suit

Performance Comparison All stalled

vs Web Stalled

All Stalled

Web Stalled

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.68 Mohammed Muddasir N., Raghuveer K., R. Dayanand

E-ISSN: 2224-2856 689 Volume 15, 2020

[3] L. Chen, W. Rahayu, and D. Taniar,
“Towards near real-time data warehousing,”
Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA,
pp. 1150–1157, 2010, doi:
10.1109/AINA.2010.54.

[4] Y. Zhuge, H. García-Molina, J. Hammer, and
J. Widom, “View maintenance in a
warehousing environment,” in SIGMOD ’95:

Proceedings of the 1995 ACM SIGMOD

international conference on Management of

data, 1995, pp. 316–327, doi:
10.1023/A:1008698814840.

[5] Y. Zhuge, H. Garcia-Molina, and J. L.
Wiener, “Consistency Algorithms for Multi-
Source Warehouse View Maintenance,”
Distrib. Parallel Databases, vol. 6, no. 1, pp.
7–40, 1998, doi: 10.1023/A:1008698814840.

[6] D. Agrawal, A. El Abbadi, A. Singh, and T.
Yurek, “Efficient view maintenance at data
warehouses,” pp. 417–427, 1997, doi:
10.1145/253260.253355.

[7] T. W. Ling and E. K. Sze, “Materialized view
maintenance using version numbers,” Proc. -

6th Int. Conf. Database Syst. Adv. Appl.

DASFAA 1999, pp. 263–270, 1999, doi:
10.1109/DASFAA.1999.765760.

[8] A. Vavouras, S. Gatziu, and K. R. Dittrich,
“Modeling and executing the data warehouse
refreshment process,” vol. 2000, no. January,
pp. 66–73, 2003, doi:
10.1109/dante.1999.844943.

[9] A. G. ; I. S. H. V. J. Mumick, “Data
Integration Using Self-Maintainable Views,”
in Advances in Database Technology —

EDBT ’96, 1997, pp. 9–19, doi:
10.14220/9783666565441.9.

[10] Z. Shu, S. Li, Y. Zuo, X. Zhou, and Y. Tang,
“Correction strategy for view maintenance
anomaly after schema and data updating
concurrently,” Proc. 9th Int. Conf. Comput.

Support. Coop. Work Des., vol. 2, no. 031542,
pp. 1046–1051, 2005, doi:
10.1109/cscwd.2005.194333.

[11] A. Behrend and T. Jörg, “Optimized

incremental ETL jobs for maintaining data
warehouses,” ACM Int. Conf. Proceeding

Ser., pp. 216–224, 2010, doi:
10.1145/1866480.1866511.

[12] T. Jörg and S. Dessloch, “Near real-time data
warehousing using state-of-the-art ETL
tools,” Lect. Notes Bus. Inf. Process., vol. 41
LNBI, pp. 100–117, 2010, doi: 10.1007/978-
3-642-14559-9_7.

[13] T. Jörg and S. Deßloch, “Towards generating
ETL processes for incremental loading,” ACM

Int. Conf. Proceeding Ser., vol. 299, pp. 101–
110, 2008, doi: 10.1145/1451940.1451956.

[14] T. Jorg and S. Dessloch, “Formalizing ETL
Jobs for Incremental Loading of Data
Warehouses,” Datenbanksysteme Business,

Technol. Web, pp. 327–346, 2009.
[15] X. Zhang, L. Yang, and D. Wang,

“Incremental view maintenance based on data
source compensation in data warehouses,”
ICCASM 2010 - 2010 Int. Conf. Comput.

Appl. Syst. Model. Proc., vol. 2, no. Iccasm,
pp. V2-287-V2-291, 2010, doi:
10.1109/ICCASM.2010.5620479.

[16] R. J. Santos, J. Bernardino, and M. Vieira,
“24/7 real-time data warehousing: A tool for
continuous actionable knowledge,” Proc. -

Int. Comput. Softw. Appl. Conf., pp. 279–288,
2011, doi: 10.1109/COMPSAC.2011.44.

[17] N. Mohammed Muddasir and K. Raghuveer,
“A Novel Approach to Handle Huge Data for
Refreshment Anomalies in Near Real-Time
ETL Applications,” Advances in Intelligent

Systems and Computing, vol. 1154. pp. 545–
554, 2020, doi: 10.1007/978-981-15-4032-
5_50.

[18] H. Homayouni, S. Ghosh, and I. Ray, Data

Warehouse Testing, 1st ed., vol. 112. Elsevier
Inc., 2019.

[19] M. M. Susanne Englert, “Transaction
Processing Performance Council (TPC)
www.tpc.org info@tpc.org Legal Notice,”
2018.

 Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2020.15.68 Mohammed Muddasir N., Raghuveer K., R. Dayanand

E-ISSN: 2224-2856 690 Volume 15, 2020

