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Abstract:-Refreshment anomalies occur in a data warehousing environment while performing Extract Transform 
and Load (ETL) to get the data for analysis from sources. There could be several reasons for the anomalies like not 
able to capture the delta on time, system time out, duplicate entries due to outer join operations and many more. 
Once anomalies are detected the compensation operation is executed to get the data that was missing into the data 
warehouse. In this work we would like to analyze scenario where it is necessary to perform incremental loads based 
on priority in an ongoing data warehouse maintenance work. The work proposes a novel approach to decide on 
when to perform ETL so that refreshment anomalies do not occur and to maintain integrity of data such that 
analytics queries always provide right information to the analyst. Two novelties have been discussed in this work 
one is to have a threshold before compensation of updates and two is while performing compensation updates 
prioritize the query with less freshness interval to have more time limits for the updates to be completed. 
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1 Introduction 
Real time analysis is a new normal in various 
domains that include e-commerce, banking, retails, 
finance etc. Every business is trying to analyze the 
data available with them as part of getting to know 
the good bad about their products or services in the 
sight of customers or end users.  Data collected 
through transactions or web site visits or feedbacks 
etc. is not suitable for analysis. This data has to be 
cleaned, transformed and later used for analysis. The 
process of getting transactional data into analytical 
environment (data warehouse) is known as ETL. 
Traditionally ETL was done during off peak hours 
but the demand for real time analysis has made ETL 
also in real time. But the very instant of capture data 
could not be present for analysis and there is a slight 
delay to get the data for analysis in real time, hence 
the process is known as near real time ETL. Initially 
while building the data warehouse the ETL is done 
on the entire data available at the transaction site, but 
after the initial load new data added at the transaction 

site are added using incremental loads. The reason is 
the incremental loads take less time because of fewer 
volumes to capture only the deltas to be loaded that 
were added to transaction site after initial loads. After 
the first incremental load, second, third and all 
subsequent loads are incremental in nature. The 
incremental load in case of near real time ETL could 
lead to several anomalies. There could be missing or 
incorrect values; delays in capturing the deltas could 
leave the two databases in an inconsistent state. This 
work focuses on resolving the inconsistent database 
states and to make sure anomalies due to delays in 
capture of deltas is resolved. The idea to capture 
deltas before answering the queries was proposed in 
[1][2]. Also the idea to have threshold of number of 
rows or any other similar value before performing 
ETL was proposed in [3]. In this work we combine 
these two ideas, i.e. we put the query on hold put 
capture deltas only if it reaches a threshold value. 
Also a novel approach to assign priority to a 
particular query is proposed that helps to execute 
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queries with very less freshness interval. This work 
has an algorithm to make sure not all queries are 
stalled and only those that have a source data 
reaching a threshold value along with a freshness 
criterion are only put on hold. This makes sure that in 
case of multiple queries being executed in parallel, 
queries have got priority and in prioritized queries 
also not every query is put on hold. The overall 
execution time of all the queries is reduced but not 
stalling every query. The experiment were done on 
TPC-DS data results show less time for query 
execution with minimal difference in source and 
destination databases. The motivation for this work is 
to reduce query waiting time and also to give updated 
data by making only critical queries to stall for 
getting updated data.   
 
2 Related Works 
In this section we review the existing work on 
anomaly detection and resolution in a data warehouse 
environment. Earlier the data warehouses were 
updated based on information received from source 
about the deltas being added [4]. In this scenario data 
warehouse would query the source requesting it to 
send the updates. The anomaly here is in case of data 
warehouse query being answered there could be 
concurrent deltas added at the source leading to 
insertion anomalies or deletion anomalies. The 
solution proposed by the authors of [4] is to have 
eager compensation algorithm (ECA). In ECA using 
the concept of database joins and set differences 
between the source and destination tables is used to 
avoid anomalies due to inter leaving of queries and 
updates. Similar anomalies could be possible in case 
of multiple sources, this was handled in [5] using 
strobe family of algorithm. The strobe algorithm 
prepares a list of actions to be executed to bring the 
data warehouse in a consistent state. View 
maintenance using minimal join of delta from one 
table with available data warehouse table is proposed 
in [6]. The algorithms are named SWEEP and Nested 
SWEEP dealing with multiple sources that are 
updated during different times and each is 
autonomous. The idea is to join delta of one table that 
is updated with stored value in data warehouse of 
another table. Materialized view maintenance using 
version numbers was proposed in [7]. The idea is 
only highest version number in the processing queue 
gets to be updated at the data warehouse. Hence all 
the intermediate updates leading to anomalies are 
avoided. Sirius approach [8] deals with various 

refreshment issues by mapping source and 
destination databases using object oriented concepts. 
The issue of heterogeneity is handled in their work 
by developing a global schema that consists of meta-
data information. Anomalies due to outer joins are 
discussed in [9]. The problem of redundancy could 
occur if the data warehouse are were build using 
outer joins to keep track of records that do not match 
the join conditions. If at some point in time the match 
occurs there could be redundant tuple one with null 
values and one without null value. The one with null 
values have to be identified and deleted. Correction 
strategies for distributed updates is discussed in [10]. 
The problem identified is current schema changes 
with record updates and several updates taking 
different times to finish. The solution is an agent to 
keep track of all the changes and later once every 
change is tracked update the data warehouse. 
Incremental updates that are safe are only propagated 
through a algorithm to identify and remove rows that 
are created as side effects is proposed in magic set 
safe updates[11]. Problem of delay is capturing deltas 
and it solution is proposed in [12].  ETL solution 
such as snap shot source, time stamp source are 
proposed to overcome refreshment anomalies. 
Change data propagation  to compensate for the 
limitation of change data capture techniques is 
proposed in [13][14]. Change propagation logs with 
source tables queried for changes using equivalence 
preserving transformation rules as a solution is their 
main contribution. Other techniques such as 
incremental view maintenance [15] and 24/7 high 
availability[16] are also dealing with incremental 
data warehouse maintenance. 

Various strategies problems and solution for 
incremental view maintenance were proposed 
previously. Compared to previous work the approach 
in this work proposes a hybrid approach to stall query 
as proposed in [1][2] and update deltas only if certain 
threshold is reached as proposed in [3]. The novelty 
in this work is in calculating freshness interval and to 
decide query priority. The assumption is query 
details must be available as part of meta-data.  

In our previous work on refreshment anomalies 
[17] We had implemented the idea of stalled query 
for getting updates. As compared to this work in our 
previous work the updates were stored in temporary 
tables, here we have a novel approach to calculate the 
threshold before stalling, later to have freshness 
interval to determine whether it’s required to stall all 
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queries on only some finally to limit the time given 
for performing the updates.  

3 Decide on incremental loading cycle. 
Refreshment anomalies in ETL occur if there are 
changes in the source that are not available to the 
data warehouse during query execution. Availability 
of real time data for analysis at the data warehouse 
depends on two main factors, freshness criteria, and 
data integrity. Freshness criteria is called as when 
part of incremental loading [8] helps to decide the 
right interval or time for performing the refreshment. 
This could be 1.regular interval 2.based on threshold 
values calculated using availability of data, 
information gain of data and 3.number of queries that 
require data from this source. The regular interval set 
for performing ETL, is normal time frame set to 
perform incremental load that could refreshes the 
data warehouse every day, hour and any time set by 
the administrator. The threshold based refreshment 
could be triggered when the source data itself reaches 
a threshold value in terms of count or information it 
provided. If the number of queries are limited and hit 
only at certain period then refreshment could be done 
at regular interval. If the queries hit are varied across 
time and may need real time data then refreshment 
cannot be at regular interval it has to be done using 
delta updates mechanism proposed in  [1][2].  Before 
answering the query execution starts put it on hold 
and update the relevant tables using the deltas 
available in the source.  Data integrity is the 
availability of right information without any missing 
values or failures in the process of ETL [18]. 
Integrity is achieved using ETL testing to make sure 
there are no logical errors from joins or job failures 
due to slow query execution and duplicates in case of 
slowly changing dimensions.  
 

4 ETL based on threshold value 
The idea of deciding to perform ETL based on non-
static condition like number of records updated etc. 
was proposed in [3]. If data reaches a threshold value 
and queries are more for this data then instead of 
waiting for refreshment interval perform ETL 
immediately. Even if threshold value is reached and 
no queries then do not perform ETL wait for the 
interval to perform the next incremental load.  If 
queries are more and threshold value is less do not 
perform ETL and again wait for the next interval to 
perform incremental load. Threshold value could be 

the number of new rows available or it could be 
domain specific value such as max sales, average 
sales etc. Number of queries is just the count of how 
many analytics task are performed on the data 
warehouse. The delta updates proposed in [1][2] is 
enhanced with threshold criteria in deciding to 
perform refreshment or not. Also the threshold value 
helps in maintaining the data integrity so that we 
could cross check on the count of number of new 
rows refreshed.  
 

5 Prioritize query to reduce execution 

time 
Once it is decided to perform delta updates based on 
threshold value next consideration is how much time 
is given to perform the ETL so the query that is 
waiting for the compensated records is not over 
loaded. Normal ETL is done by round robin or round 
robin by blocks in case of multiple sources. If there is 
a query marked as critical then based on freshness 
cycle the following is done. Critical query are 
checked for refreshment of data. If data is having 
freshness interval of 1 day or more means avoid ETL 
and execute the query. If freshness interval of data 
source for the query is less then put query on hold 
and perform ETL and then later after this answer the 
query that shall have latest information.  

To illustrate the above taking e-commerce as 
example, there could be three possible sources, 
structured, semi-structured and un-structured. The 
structured source could be the sales transaction by a 
customer, semi-structured could be the click stream 
analysis and un-structured could be review comments 
etc. While a ETL system takes three sources like the 
above and refreshment is done in a round robin 
fashion to get updates on each, the refreshment time 
given to each source depend on the freshness criteria 
of the data desired. In case of sales the freshness is 
high and hence the refreshment interval i.e. the time 
given for the structured source to finish is high, then 
the time given for click stream analysis source is 
moderate and the time given for refreshment of 
unstructured source is less. This helps to bring in 
most recent data for analysis in case of critical 
requirement.  

The query is put on hold and ETL is performed to 
make sure the query does not miss any new updates, 
while doing so if the ETL takes a lot of time then the 
query execution that is put on hold shall become 
overwhelmed. To avoid this certain limit has to be set 
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based on the type of query. High priority query is 
given more waiting time to finish the delta updates, 
although this leads to more latency but it gives 
updated records. Low priority query may not need 
updated records but requires to finish with less 
latency hence waiting times is low.  

Priority is decided based on type of analysis. 
Example three types of sources structured, semi-
structures, and unstructured are used for analysis. 
Each contains different information like structured 
could be sales data how many unit of item sold, semi-
structured would be click stream analysis, demo 
graphics of the user, unstructured could be feedback. 
If the analysis query is for sales then structured 
source is given more time to complete delta updates, 
if click stream analysis then semi-structured source is 
given more time, and if feedback analysis is to be 
done then unstructured source is given more time to 
complete. 

In case of multiple queries for the same type of 
analysis are being executed. To decide upon the 
priority of queries the freshness interval is taken as a 
parameter. If the freshness interval of the sources for 
the query is very low then priority of the query is 
high. Low freshness interval is set for the source that  
is being constantly updated and those updates are 
required for critical analysis. If there are n numbers 
of queries the most critical query is the one with less 
freshness interval. The Algorithm makes sure high 
priority query gets the most recent for critical 
analytical requirement. 

The above is the idea of prioritize the query based 
on type of analytics and freshness criteria. Table1 
illustrates the meta-data for the idea presented. In this 
meta-data hypothetical values are used for structured 
data as having less freshness interval with high 
priority and hence given more time for refreshment.  

 
 

Table1: Meta data for refreshment 
Query Source  Freshness interval Priority Refreshment Time 
1 Structured Less High High 
2 Semi –structured Moderate Moderate Moderate 
3 Un-Structured High Low Low 

 
If at a given point in time query analyzing the un-

structured data source is being hit, also no other 
query is being hit at this time, then to put the query in 
hold and perform ETL is decided based on the 
content of the Meta data. Check for freshness interval  
and compare with the last refreshment for example if 
the freshness interval is 1 hour and last refreshment 
was done within 1 hour then the query need not be 
put on hold and directly executed on the available 
data.  Similar rules are applied for other types of 
sources. This mechanism does not put all the queries 
on hold and starts ETL. The queries with less 
freshness interval are only put on hold.  
 

6 Algorithm stalled query update 
Step1: Begin 

 
Step2: Query execution on data warehouse 

received 
 

Step3:  Stall the query 
 

Step4:  Check threshold value at source about 
the number of rows count changed 

 

 

 

Step5:  Count>Threshold? Go-to Step6 else; Go-
to Step11 

 
Step6:  Check Priority and Freshness 

 
 

Step7:  Freshness is high? Go-to Step8 else; Go-
to Step11 

 
Step8:  Update the source 

 
Step9:  Watch update time> set limit? Go-to 

Step10 else; Go-to Step11 
 

Step10:  Stop Update 
 

Step11:  Execute Query 
 

Step12:  End  
 

7 Implementation and Results 
The simulation of different types for sources was 
done using a standard bench mark tool. The 
implementation was done using TPC-DS bench 
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mark[19] data with a scale factor of 1 producing data 
of size 1GB on a machine with core i5 having 4GB 
RAM as configuration. TPC-DS contains various 
types of sources and related ad-hoc analytic queries. 
As shown in the fig1 [19]below we have taken three 
sources such as catalog sales, web sales and store 
sales and executed relevant queries that access these 
sources.  The bench mark for having structured, 
semi-structured and unstructured data at once was not 
found hence TPC-DS having all structured sources is 
taken for demo. The experiments show priority of the 
query based on threshold and freshness criteria as 
explain in the previous sections. 

 
Figure1: Partial TPC-DS sources and queries 
 
The simulation requires meta-data for knowing the 
priority based on freshness. The threshold value of 
available deltas at source in terms of count of rows is 
calculated dynamically upon query execution. The 
TPC-DS bench mark give 99 queries and we have 
taken randomly 3 queries each related to store sales, 
catalog sales and web sales as shown Table2; the 
table shows the hypothetical values of freshness for 
the query number 6 through 82. 
 

Table2: Implementation meta-data 
Sales Type Query 

Number 
Freshness 

Store Sales 6 1 
Store Sales 27 1 
Store Sales 82 1 
Catalog Sales 15 2 
Catalog Sales 18 2 
Catalog Sales 20 2 
Web Sales 12 3 
Web Sales 45 3 
Web Sales 62 3 

 
Freshness is calculated valued based on difference 

between Previous Query Execution Completion Time 
(PQECT) and Current Query Execution Start Time 

(CQEST). If the difference is above a set threshold 
value then the query is stalled delta updates take 
place before the start of execution. In Table2 the 
freshness for web sales is shown as high because 
threshold value of difference between PQECT and 
CQEST is set has low. The reason for a setting a low 
threshold value is that the sources for web sales are 
updated at a rate higher that the update rate of catalog 
sales and store sales. 

Initially every source had data to the tunes of few 
lakh rows on which related queries were executed. 
Later incremental load of 2lakh rows each for catalog 
sales and store sales was done. Web sales had an 
incremental load of 3lakh rows. A delay of 6 seconds 
was uniformly assumed for incremental loads. Web 
sales also had a high freshness value as shown in 
table2. This made the source web sales as candidate 
for stalling the execution as compared to catalog 
sales and store sales. The results show the time in 
milliseconds for execution of queries in the meta-data 
table2. First are the catalog sales we could see there 
is delay when the queries are stalled for delta 
updates, similar results are seen for store sales and 
web sales. Fig2 show catalog sales query execution 
similarly Fig3 and Fig4 show store sales and web 
sales query execution. The overall idea to stall only 
those queries with a less freshness interval which is 
web sales in this case is done by only stalling web 
sales queries and naturally the execution time of 
overall query suit has improved as show in Fig5. 
  

 
Figure2: Catalog Sales Query Execution 
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Figure3: Store Sales Query Execution 

 

 
Figure4: Web Sales Query Execution 
 
8 Discussions 
The proposed approach has reduced the overall query 
execution time from a given suite of queries. As seen 
in the result every query is not stalled and only web 
sales queries are stalled that makes no query waiting 
time for stores sales and catalog sales. Advantage is 
not all the queries are stalled; disadvantage is that we 
need build a meta-data for queries by recording 
previous execution history to use the algorithm. 
Building meta-data dynamically is proposed as a 
future enhancement.   

 
Figure5: Overall Query Suit Execution 
 

9 Conclusion and future enhancement 
The assumption in this work is queries are known in 
advance and their detail such as query number is 
known. If a new query apart from the once stored in 
meta-data arrives then the algorithm does not work 
until the query information is inserted in to the meta-
data table. Also every query execution has to be 
tracked from the meta-data table to know the priority. 
Stalling a query requires it to be present in the meta-
data after which the threshold is calculated and later 
deltas are updated based on priority given by 
freshness attribute. As the result show there is an 
improvement in overall query execution time for the 
entire suit of queries present in the meta-data. To 
overcome the limitation of having to store query 
information in meta-data. In future the enhancement 
is of adding the new queries to meta-data 
dynamically are so that even new queries could be 
handled effectively for refreshment anomalies shall 
be taken up.  
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