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Abstract—The paper is aimed at analyzing of the classical McEliece and Niederreiter cryptosystems as well as the 

Quasi-Cyclic MDPC McEliece cipher in a context of the post-quantum network security. Theoretical foundations of 

the aforesaid cryptographic schemes are considered. The characteristics of the given cryptosystems and other 

asymmetric encryption schemes are analyzed. The cipher metrics, which are considered in the paper, include 

cryptographic strength, performance, public key size and length of ciphertext. The binary Goppa codes are described 

in the context of their role for the cryptanalytic resistance of the classic McEliece and Niederreiter schemes. The 

crucial advantages and drawbacks of the aforementioned cryptosystems are analyzed. The prospects for application 

of these ciphers to the network security protocols are outlined. The investigations, which are aimed at finding ways 

to reduce the public key sizes and improve the energy efficiency of the given ciphers, are briefly described. A new 

educational module “Introduction to Post-Quantum Cryptography” is presented. 
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1. Introduction 
Public key cryptographic algorithms are one of the 

fundamental tools for providing secure data storage 

and communication for users and systems. Their 

principal advantage arises from their ability to 

provide a solution to the problem of sharing 

symmetric keys between distant users communicating 

over insecure channels.   

The current technological advances in the field of 

quantum computers make quantum cryptanalysis 

feasible. This fact in turn, renders most contemporary 

Public Key Cryptosystems such as the RSA and El-

Gamal algorithms susceptible to quantum 

cryptanalysis attacks.  

Post-quantum cryptography therefore, requires the 

development for a variety of innovative cryptographic 

algorithms that are resilient to attacks using quantum 

computers [1, 2]. 

Code based cryptography is a class of Public Key 

Cryptosystems that are viewed by many researchers 

as suitable for achieving good results in the post – 

quantum era. Representative schemes of this class are 

the McEliece and Niederreiter cryptographic 

algorithms that are developed based on the binary 

Goppa codes. The further development of the 

McEliece and Niederreiter algorithms is therefore 

highly relevant in the context of the advancement of 

post – quantum cryptography [1, 2]. 

The aim of this paper is to present an analysis of 

the McEliece and Niederreiter schemes focusing on 

the underlying theory, foundations and a comparative 

study between these two and other asymmetric 

cryptographic algorithms. The comparison is based on 

suitable metrics of cipher quality such as 

cryptographic strength, computational complexity, 

public key size and ciphertext length. 

The given work analyzes both the classical 

versions of the aforementioned code-based 

cryptosystems and the Quasi-Cyclic MDPC McEliece 

cipher developed in order to reduce public key sizes. 

The analysis focuses especially on the operation of 

the binary Goppa codes and their contribution 
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towards the cryptanalytic resilience of the classical 

McEliece and Niederreiter schemes [2]. Besides, an 

educational module “Introduction to Post-Quantum 

Cryptography”, which has been developed by authors 

of paper, is briefly discussed. 

The paper is organized as folows. The features of 

the classical McEliece and Niederreiter schemes are 

analyzed in Sections II and III. In Section IV an 

analysis of the binary Goppa codes. The comparison 

between the features of these two cryptographic 

algorithms is given in Section V. An analysis of the 

the Quasi-Cyclic MDPC McEliece cipher is presented 

in Section VI. The aforementioned educational 

module is presented in Section VII. Section VIII 

includes a summary of the advantages and 

weaknesses of the investigated cryptographic 

algorithms, as well as principles for the utilization of 

these cryptosystems in network security protocols. 

Additionally, a description is given of current 

research efforts aiming at finding ways to reduce the 

public key sizes and improve the energy efficiency of 

these cryptographic schemes. 

2 Features of Cryptosystems 

2.1 The McEliece cipher 
The first probabilistic cipher was developed by 

Robert McEliece in 1978 [3]. The algorithm is based 

on binary linear codes and linear algebra over GF(2).  

The key pair generation includes the following 

actions [3]: 

1) A binary linear (n, k)-code С with k × n 

generator matrix G is chosen at random. The code 

should be suitable for correcting at least t errors and 

the corresponding decoder should be efficient.  

2) An n × n random permutation matrix P and a 

nonsingular k × k matrix S are also randomly 

generated. 

3) The matrix E = S • G • P of size k × n is also 

generated. 

4) The tuples (E, t) and (S, G, P), corresponding to 

the public and private respectively are hence created.  

Consequently, the encryption algorithm is 

completed as follows [4]: 

1) The message is represented as a k-dimensional 

vector m. 

2) The vector v = m • E is calculated. 

3) A random vector z of weight t and dimension n 

is chosen at random. 

4) The ciphertext c is calculated as c=v+z. 

The corresponding decryption algorithm consists 

of the following steps [4]: 

1) The vector u = c•P 
-1

 of lentgh n is first 

computed.  

2) The vector d which is the result of decoding the 

vector u with the code C is hence obtained. 

3) The vector m′ = d • S
-1

 of the decrypted 

message is formulated. 

The proof of the correctness of this cipher is given 

below: 

1) The value of the vector u is calculated as u = c • 

P
-1

 = (m • E + z) • P
-1

 = m • S • G + z • P
-1

. Given that 

G is a generator matrix of the linear code C, the 

vector m • S • G is a valid word of the code С. 

Because of the fact that P is a permutation matrix, it 

follows that z • P
-1

 is of weight t. It may therefore be 

deduced that the vector u, that is the result of the 

encoding of the message m • S, is a is essence a 

distortion of t symbols in a word of code С,  

2)  Accordingly, d, the decoded version of the 

vector u with the code С, is equal to m • S because of 

the fact that code С is capable of correcting at least t 

errors. 

3)  The decryption process d • S
-1

 = m • S • S
-1

 = m 

hence recovers the decrypted message vector m′. 

 

2.2 The Niederreiter cipher 
Contrary to the McEliece algorithm, the 

cryptographic algorithm proposed by Harald 

Niederreiter is deterministic, with the corresponding 

encryption process being faster. The algorithm is 

suitable for digital signature applications [5], but the 

computational effort required for signature generation 

is larger compared to other quantum safe algorithms 

[1]. Similarly to the McEliece cipher, this cipher also 

employs linear algebra over GF(2) and binary linear 

codes. 

The key pairs are obtained using the following 

algorithm [4]: 

1) A binary linear (n, k)-code С is randomly 

chosen, together with a parity check matrix H of size 

(n – k) × n. The code should be such that it has an 

efficient decoding algorithm and should be capable of 

correcting at least t errors. 
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2) A random nonsingular (n – k) × (n – k) matrix S 

and a random n × n permutation matrix P are also 

generated. 

3) The (n – k) × n matrix E = S • H • P is hence 

calculated. 

4) The public and respective private keys are 

hence obtained as (E, t) and (S, H, P). 

For encryption of a message, the algorithm has as 

follows [4]: 

1) The initial message is represented as an n-

dimensional vector m with a maximum weight of t. 

2) The ciphertext is obtained using the equation  

   с = E • m
T
. 

The corresponding decryption algorithm has as 

follows [3]: 

1) The (n – k)-dimensional vector u is calculated: 

   u = S
-1

 • c. 

2) The variable d is obtained as the transpose of 

the error vector corresponding to the syndrome u by 

applying the error correction of the code C. 

3) The message vector is recovered by equation 

  m′ = (P
-1

 • d)
T
. 

The proof of correctness of the cipher is hence 

derived: 

1. Vector u is equal to:  

S
-1

•c=S
-1

•E•m
T
=H • P • m

T
.  

Given that P is a permutation matrix, the column 

vector P • mT has a weight less than or equal to t. It is 

shown that u is the syndrome of the error vector (P • 

m
T
)

T
 with maximum weight t, given that H is a parity 

check matrix of the linear code C 

2) Since the code С is capable of correcting at 

least t errors, then vector d, the transposed error 

vector corresponding to the syndrome u in the error 

correction procedure of the code C, is equal to P • m
T
. 

3) The recovered message m′ is derived using 

equation:  

  (P
-1

•d)
T
= (P

-1
 • P • m

T
)

T
 = m.  

2.3 Binary Goppa codes 

Valery Goppa proposed a class of linear block error 

correction codes in 1969. Each code is specified by a 

separable polynomial g(x) of degree t over GF(2
m
) 

and a sequence L of n distinct elements of this field, 

which are not the roots of g(x). Properties of the codes 

include [5]: 

• Length of codeword n ≤ 2
m
. 

• Distance of code d ≥ 2t + 1. 

• k ≥ n – mt information symbols. 

Vector representation over GF(2) is used for the 

codewords:      

      c = (c1, ..., cn)  

satisfying the condition [6]: 
n

i

ii=1

c
0 mod g(x)

x - L
≡∑  

Binary Goppa codes possess a series of properties 

rendering them particularly relevant in the context of 

error correcting coding: 

• The decoding algorithms corresponding to 

these codes are efficient with complexity 

O(n
2
) [7]. 

• Members of this class of codes possess 

properties considered highly advantageous 

compared to other linear codes [8]. 

• The class of codes is a generalized version of 

the BCH codes [4]. 

Binary Goppa codes provide an important element 

in strengthening the cryptographic resilience of the 

McEliece and Niederreiter ciphers.  

Cryptanalysis of the above ciphers involves 

decoding an arbitrary public linear code obtained by a 

random transformation of a rapidly decodable private 

one, a problem which is shown to be an NP-complete 

problem [4]. 

There do not exist efficient algorithms allowing a 

distinction between binary Goppa codes and binary 

random codes [9]. The number of non – equivalent 

binary Goppa codes increases exponentially as their 

length and dimension becomes larger [10].  

Consequently, it can be deduced that the recovery 

of a hidden code and a reduction of the subsequent 

stage in the cryptanalysis of the McEliece and 

Niederreiter ciphers for effective decoding of the 

restored code cannot be achieved in polynomial time 

[4].  

2.4 Comparison between the McEliece and 

Niederreiter cryptographic algorithms 

The ciphers under study possess the following 

properties: 

• Quantum resistance, a feature that does not 

exist in widely used asymmetric algorithms, 

such as RSA and ElGamal schemes [1, 2]. 

• Smaller encryption and decryption 

computational complexity compared with 

RSA. The quantum safe schemes under study 
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have a computational complexity of O(n
2
), 

while RSA has correspondingly O(n
3
) [3]. 

• The computational complexity of the key 

generation for the quantum safe, code-based 

ciphers under study is O(n3) [11]. The 

corresponding complexity for the generation 

of the RSA key pair is of O(n
4
) [12]. 

• Increases in the size of the cryptographic 

scheme result in significantly smaller 

increases in the computational complexity in 

comparison with RSA. The complexity for n-

bit encryption and decryption schemes are of 

orders O(n
2
) for the considered quantum safe 

ciphers and O(n6) for RSA [1]. 

• The key size required to achieve n-bit 

cryptographic strength is O(n2 log2 n) for the 

quantum-resistant ciphers and O(n
3
 / log

2
 n) 

for RSA [13]. 

The McEliece and Niederreiter cryptographic 

algorithms have the following disadvantages: 

• The public keys of the McEliece and 

Niederreiter ciphers must be of sizes of 429.5 

KB and 69.2 KB respectively, so as to be 

equally secure to the RSA-2048 with 0.5 KB 

public keys [14]. 

• The RSA present no ciphertext expansion. The 

ciphertext produced is on average expanded by 

1.6 times longer compared to the plain text for 

the McEliece scheme [3]. For the case of the 

Niederreiter cipher, this figure is different than 

in case of the McEliece cryptosystem, 

depending on the parameters of the underlying 

code, but still greater than one [14].  

3 The Quasi-Cyclic MDPC McEliece 

cryptosystem 

The problem of large public keys is the most 

significant one for code-based cryptographic schemes. 

Several proposals have been made to overcome this 

drawback, among which the most notable one is the 

McEliece cryptosystem based on the quasi-cyclic 

moderate-density parity-check codes [15]. This 

encryption scheme was proposed in [16]. 

According to the most widespread definition, the 

code is quasi-cyclic if there is such integer s that a 

cyclic shift of any codeword by s positions produces 

another word of this code. A generator matrix of this 

code can be represented as array of circulants, which 

has been multiplied from the right by a suitable 

column permutation matrix [17]. 

However, another definition of quasi-cyclic codes 

was given, where they were described as codes, 

whose words consist of s successive blocks of the 

same length in a way that application of simultaneous 

circular shift to each of this blocks results in another 

codeword. The codes, which are used in the 

aforementioned cryptosystem, are quasi-cyclic 

according to this definition [18]. In the rest of this 

paper the term “quasi-cyclic codes” is used in this 

sense. 

There are several advantages of quasi-cyclic codes 

which determine their usage in the given 

cryptographic scheme. Both generator and parity-

check matrices of these codes can be represented as 

arrays of circulants, and a circulant can be completely 

described by its first row. The given properties make 

possible a storage of the aforementioned matrices in a 

compact representation. There is an isomorphism 

between the ring of polynomials modulo x
n
 - 1 and the 

ring of n × n circulants over GF(2), in which every 

element of the first algebraic structure corresponds to 

the circulant, whose first row is represented by a 

sequence of coefficients of the preimage polynomial. 

These circumstances make possible efficient 

computations, where polynomials are used in 

operations instead of matrices [16]. 

Low-density parity-check (LDPC) codes are the 

class of linear block codes, whose rows have constant 

small Hamming weight, which is usually less than 10. 

These codes have been proposed by Robert Gallager 

in [19]. Moderate-density parity-check (MDPC) codes 

differ from LDPC ones only in a larger weight of 

rows, which is O(n
0.5

 log
0.5 

n), where n is length of a 

codeword [16]. 

The procedure of construction of a binary quasi-

cyclic (n, n - r)-MDPC code, where rows of a parity-

check matrix H have weight w and n = rc, consists of 

the following steps [16]: 

1) Random generation of n-dimensional binary 

vector h of weight w. This vector defines H and can 

be represented as the sequence of r-dimensional 

binary vectors d0, d1, ..., dc-1 of weights w0, w1, ..., wc-1. 

2) Forming of H as [H0|H1|... |Hc-1], where Hi is 

  r × r circulant, whose first row is equal to di. Each 

circulant Hi has row weight wi and j-th row of H is a 

sequence of j-th rows of circulants H0, H1, ..., Hc-1, 

thus all rows of H are of weight w. 
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3) Assuming Hc-1 is non-singular, a generator 

matrix G in row reduced echelon form is obtained as 

[I|Q], where I is (n - r) × (n - r) identity matrix and Q 

is a column of   r × r matrices Q0, Q1,..., Qc-2, where 

Qi=((Hc-1)
-1

•Hi)
T
. 

The results of inversion, product and transposition 

of circulants are also circulants [19]. Thus, Q is a 

column vector of circulants, and G can be compactly 

stored in memory, being represented by array of c - 2 

binary vectors, which are used for description of 

corresponding circulants in Q. 

Encoding of (n - r)-dimensional binary vector can 

be implemented as its multiplication from the right by 

G, and the result of this operation is n-dimensional 

binary vector, whose first n - r elements constitute an 

input sequence. These properties are determined by 

G, which is a generator matrix of a systematic linear 

block code [16]. 

Decoding of MDPC codes can be performed with 

a variant of Gallager's bit flipping algorithm, which is 

proposed in [16]. Initial version of Gallager's 

algorithm, which was intended for decoding of LDPC 

codes, can be described in the following way [19]: 

1. Computation of a syndrome column vector   

 y =  H • m
T
, were H is a parity-check matrix of the 

given (n, n - r)-LDPC code and m is a binary vector of 

received message. 

2. If each element of y is equal to 0, algorithm has 

succeeded and the plaintext vector, which consists of 

the first n - r elements of m, is returned as a result. 

3. If maximum permissible number of iteration is 

reached, algorithm has failed to decode m and error 

notification is returned. 
4. Forming of an integer vector e, whose every 

element ei is equal to amount of such integers    
 j ∈ [0, r - 1] that j-th row of y and i-th element of 
j-th row of H and are nonzero.  

5. Inversion of elements of m, for which the 

element of e with the same index is greater than some 

constant b, and return to the first step. 

The number of nonzero elements in rows of parity-

check matrix for LDPC codes is small. Therefore, in a 

case of moderate number of errors in a received 

message most of syndrome elements will be either 1 

due to impact of only one erroneous digit or 0 owing 

to absence of corrupted digits influence. Thus, if for 

most rows of parity-check matrix with nonzero i-th 

element the same row of syndrome is 1, it is likely, 

that i-th digit of received message is corrupted [19]. 

Specificity of the aforementioned MDPC-oriented 

variant of this algorithm lies in the approach for 

choice of b, where this parameter is recomputed at 

each iteration between forming of e and bits inverting 

in m. A new value of b is defined as the largest 

element of e decreased by a small integer δ. In case of 

decoding unsuccess, a value of δ is decremented by 1. 

If updated δ is non-negative, another attempt is made, 

otherwise, failure notification is returned. The 

purpose of the given approach for definition of a 

parameter b is to achieve maximum error-correcting 

ability for Gallager's bit flipping algorithm, while 

trying to retain a performance as good as possible 

[16]. 

Estimation of the error-correction capability of this 

MDPC-oriented Gallager's algorithm can be 

performed using Gallager's analysis proposed in [19], 

which has been developed to calculate a threshold for 

the amount of errors, that LDPC codes are able to 

correct. Although the given analysis is less precise for 

MDPC codes, it makes possible to compute an upper 

bound for their error-correction capability. Decoding 

failure rate of MDPC codes can be estimated by 

means of simulation [16]. 

Quasi-Cyclic MDPC McEliece cryptosystem can 

be described as follows. The key pair generation is 

the aforementioned construction procedure of quasi-

cyclic (n, n - r)-MDPC code. The public key is 

represented by a pair of systematic generator matrix G 

and error-correction capability t. The private key is 

parity-check matrix H. Thus, both of these keys can 

by compactly stored in memory. Encryption of binary 

message vector m lies in its encoding with error 

injection in the obtained codeword. The ciphertext is 

obtained by the formula u = m • G + z, where z is a 

random error vector of weight up to t. Decryption of u 

is its decoding by the aforesaid MDPC-oriented bit 

flipping algorithm [16]. 

The given cryptosystem has to be used in 

conjunction with CCA-2 security-conversion, for 

example, with the one proposed in [21]. In this case, 

systematicity of generator matrix does not introduce 

any security-flaw [16]. 

Encryption into a ciphertext, which cannot be 

decrypted in a way mentioned above, is not 

impossible due to nonzero probability of a decoding 

failure of the aforementioned MDPC-oriented bit 

flipping algorithm. The given case has to be treated, 

and several solutions has been proposed for this. 

Straightforward approach lies in generation of a 
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random error vector of such weight that is sufficiently 

small to provide a negligible decoding failure rate, 

which is less than machine failure rate. On-the-fly 

solution consists in attempt to decode a ciphertext by 

means of another algorithms with better error-

correction capability, but significantly lower 

performance. Resend approach implies a request for a 

new encryption [16]. 

Permutation and scrambling matrices, which play 

an important role in the classical McEliece cipher, are 

not used in Quasi-Cyclic MDPC McEliece 

cryptosystem, because its public key does not contain 

any information helpful for decoding of the 

underlying code [16]. 

The characteristics of the public keys for the given 

cryptosystem are given in Table 1, which was 

compiled using data from [16]. Public keys for this 

cipher are from 96 to 234 times smaller than for the 

classical McEliece scheme with the same security 

level [16]. 

 

Table 1. Public key sizes in bits for the Quasi-Cyclic  

MDPC McEliece cryptosystem. 

Security level  

80 bits 128 bits 256 bits 

2 times 4801 9857 32771 

1.5 times 7186 14866 45062 
Ciphertext 
expansion 

1⅓ times 9237 20409 61449 

 

Despite the advantages of the aforementioned 

cipher, recent researches have led to discovery of an 

efficient attack on the given cryptosystem. This 

cryptanalytic approach allows to recover a private key 

by means of sending a large amount of random 

ciphertexts and analyzing the probability of decoding 

failure for different types of error vectors. The given 

reaction attack has been proposed in [22]. 

Nevertheless, it is not considered to be devastating 

enough to make the Quasi-Cyclic MDPC McEliece 

cryptosystem useless, and this cipher has a prospect 

of being used securely after slight improvements [23]. 

4 Case study in education: 

Introduction to post-quantum 

cryptography” 

Within the framework of TEMPUS SEREIN project 

an educational module for MSc and PhD students, 

which is called “Introduction to Post Quantum 

Cryptography”, has been developed by authors of the 

paper. Its structure, which is given in Table 2, 

includes both lecture and practical classes with 30 

hours total workload. In particular, it contains the 

sections dedicated to the McEliece and Niederreiter 

cryptosystems. 

Table 2. Structure of the module “Introduction to 

Post-Quantum Cryptography”. 

Contact  

work 

Themes 

L
ec

tu
re

s 

S
em

in
ar

s 
 

P
ra

ct
ic

u
m

s 

T
o

ta
l 

In
d

iv
id

u
al

 w
o

rk
 

1. Introduction to post-quantum cryptography. 

1.1. Quantum computers and their  

impact on cryptography. 

1.2. Post-quantum cryptography concept. 

1.3. Comparison of post-quantum  

and classical cryptosystems. 

2 4  6 2 

2. Code-base cryptography. 

1.1. The McEliece cryptosystem. 

1.2. The Niederreiter cryptosystem. 

2  4 6 4 

3. Multivariate cryptography. 2  4 6 3 

4. Application of  post-quantum cryptography  

in network security protocols. 

2   2 1 

Total 8 4 8 20 10 

 

The given module requires the following 

prerequisites: 

• Applied Cryptology. 

• Linear algebra. 

• Theory of Finite Fields. 

• Basics of Computer Networks. 

• Basics of Number Theory. 

5 Conclusion 

The McEliece and Niederreiter schemes based on the 

binary Goppa codes are among the most promising 

candidates for inclusion into the post-quantum 

standards of asymmetric cryptosystems.  
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Their main advantages besides the quantum 

resistance are high performance and cryptographic 

strength. The biggest drawback of these ciphers is 

large key sizes which are the reason of the less 

prevalence of the given cryptosystems in comparison 

with RSA and ElGamal schemes. 

The aforementioned code-based ciphers can be 

employed in the asymmetric encryption components 

of the majority of network security protocols as 

quantum safe alternative to the currently used 

cryptosystems. These protocols, in particular, include 

TLS, S/MIME and SSH [1]. 

The scientific community is looking for ways to 

eliminate the drawbacks of the given ciphers. A 

variant of the McEliece scheme with the public keys, 

which are from 96 to 234 times smaller than ones for 

the classical version of this cryptosystem, has been 

presented in [16]. In the given approach the McEliece 

cipher is constructed on the basis of quasi-cyclic 

moderate density parity-check codes. Although this 

variant of the McEliece cryptosystem is vulnerable to 

recently discovered new reaction attack on it, there is 

a prospect of secure use of this cipher after slight 

improvements. 

Elliptic shortened codes are used in McEliece 

cryptosystem [24] for increasing encryption and 

decryption procedures by reducing of the key length. 
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