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José Peres Street, 558, Leopoldina

BRAZIL
murillo.ferreira@cefetmg.br

A. C. SANTIAGO
UFJF

Department of Energy Systems
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Abstract: This work has as main objective to propose the identification of a small scale non-linear system through
the Neural Network AutoRegressive with eXternal input. The use of this network requires an adequate methodol-
ogy for its configuration and, consequently, a good training set. Then, it is proposed that the main definitions of the
network parameters be obtained through the analysis of nonintrusive performance indices. Additionally, using a
database based on the system’s response, excited by the Pseudo-Random Binary Sequence signal. The method-
ology will be applied in two specific open-loop identification situations: numerical simulation of a fourth order
polynomial system (Case 01), and an experimental system that controls a nonlinear water tank level (Case 02). The
results of the identified models were able to represent the system dynamics with high fidelity, presenting an
average identification error of less than 0.14 and 0.34% for Case 1 and 2, respectively. Also, it is observed that the
learning and generalization evidence could represent the process intrinsic nonlinearities satisfactorily. Besides, it
willbepossibletofindthepotentialityandusefulnessofthedevelopednetworkinnonlinearsystemidentification.
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1 Introduction

It is known that system mathematical modelling has
great importance in the treatment of various engineer-
ing problems. With “good mathematical models”, it is
possible to get a reliable system behavior and design
suitable controllers to the issue under study, reduc-
ing the costs through simulation benefits, prototyping,
among other advantages [1].

The search for accurate models implies to con-
sider the system nonlinear characteristics, such as
transport delays, saturation, and parameters varia-
tion/sensitivity. In these situations, it could be said
that the application of linear modelling techniques
may not be adequate, since they can not represent cer-
tain system complexities [1, 2].

For the solution of this challenge, many works
were developed in the system identification area, treat-
ing the problem with neural networks and other ap-
proaches [3, 4].

As recent examples of Neural Network AutoRe-

gressive with eXternal input (NNARX) application,
some related works may be mentioned. The work
[5] shows the application of the NNARX model and
its comparison with traditional models (gray-box and
black-box) to simulate internal temperatures of a com-
mercial building in Montreal (QC, Canada). Results
show that the neural networks mimic more accurately
the thermal behavior of the building, compared to
gray-box and black-box linear models, in some sce-
narios.

In [6], the model of a Direct Current (DC) mo-
tor is identified using an algorithm developed in
MATLAB/SIMULINK platform. The simulation tests
showed good results from the network learning and
good accuracy in the system dynamics description.

Work [7] presents an application in agriculture,
specifically to improve environmental conditions and
increase the fruits and vegetables shelf life. The
NNARX was developed for predicting internal tem-
perature and relative humidity of an evaporation
cooler. The resulting models driven by the Levenberg-
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Marquardt back propagation algorithm showed high
performance for the cooler internal variables predic-
tion, which makes it possible to avoid the loss of the
products a few days after the harvest.

The authors from work [8] use the NNARX to
identify and model a hydro-turbine generating. The
random guide vain signal is used to train NNARX
and an improved Levenberg-Marquardt algorithm is
proposed in this article. Simulation results indicate
that NNARX model with improved L-M algorithm
can reach high recognition accuracy and have good
generalization ability. More important works can be
highlighted, such as [9, 10, 11, 12].

Among several implicit advantages in the men-
tioned works, this approach allows to describe non-
linear systems considering linear difference equations,
taking the current output for previous inputs and out-
puts as parameters. It is suitable for modelling both
stochastic and deterministic system components and
can describe a nonlinear system variety [13].

In this direction, this work presents the identifica-
tion of a small-scale nonlinear system used in the Lab-
oratory of Automatic Control in CEFET-MG (Campus
Leopoldina). The main contribution of this article is
based on the configuration of the NNARX methodol-
ogy, whose number of hidden layers and neurons will
be defined through the analysis of nonintrusive per-
formance indices. Another contribution is the method
application in a typical process control problem using
the Pseudo-Random Binary Sequence (PRBS) signal,
as in the input signal test. This signal type has the
excitation persistent suit to the nonlinear system, as
present the literature [4].

The methodology was applied in two specific
open-loop identifications: numerical simulation of a
fourth order system and the experimental prototype of
a water level tank control with nonlinear characteris-
tics. Then, this work will be also able to observe the
evidence of learning and generalization, allowing to
represent the natural process nonlinearities.

This paper is organized as follows: Section 2
presents the prototype developed to perform the tech-
niques proposed hereafter; Section 3 describes the
NNARX basic concepts; Section 4 deals with the sim-
ulated and experimental results. Finally, Section 5
presents the final considerations and conclusions.

2 Level Tank System Designed

The system designed to apply the methodology con-
sists of a small-scale tank system submitted to level
control. The system in Fig. 1 is currently one of
the prototypes used in the Laboratory of Automatic
Control in CEFET-MG (Campus Leopoldina) by un-

dergraduate students in Control and Automation En-
gineering.

Figure 1: Level control plant used in the experimental
tests

.

The plant, in principle, is composed of four sub-
systems: measurement, actuation, control and phys-
ical structure. The measuring system is composed
of: Ultrasonic sensor, responsible for measuring the
cylindrical reservoir level and sending it to the con-
troller; Actuator, composed of an electro-pump, a
power supply, an electronic circuit of the interface
between the actuator and the controller; Control sys-
tem composed of an Arduino UNO board, responsible
for the intervention in the plant through the message
treatment sent by the measurement system and subse-
quent perform them on the actuators; Physical struc-
ture, consisting of a central (cylindrical) tank and an
auxiliary tank, among other additional components.
The main components used for the system assembly
are shown in Table 1.

Table 1: Main components of level control plant used
in one experiment

.

Component Specification
Measurement HC-SR04 Ultrasonic
Actuator 12 VDC Pump (60W)
Controller Arduino UNO
Power Supply DC Source (12V/10A)

3 NNARX Model Identification

The NNARX consists of a neural network based on a
specific structure of linear identification. Among the
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existing structures, all are structured in the vector of
auto regression, i. e., they use previous values of the
system excitation input signal to estimate the current
system output [14, 15]. In this context, it is possible
to cite: Finite Impulse Response (FIR), AutoRegres-
sive eXogenous input (ARX), AutoRegressive Mov-
ing Average with Xogenous inputs (ARMAX), Output
Error (OE) and State Space Innovations Form (SSIF)
[14].

The NNARX structure arises from the neural
model reconciliation with the ARX regression vec-
tor choice. It should be emphasized that the variables
measured values of the process output are added to the
regression vector. Mathematically the expression of
extended nonlinear model of an NNARX is described
as (1):

y′(k) = f(y(k − 1),..., y(k − n),

u(k − d), ..., u(k − d−m))
(1)

where: y and u are the output and input plant sig-
nals, respectively; y′ is the estimated plant output; k
is the current instant; d is the plant delay time; m is the
number of input delays and n is the number of output
delay; f(·) is the nonlinear function mapped by the
Artificial Neural Network (ANN).

Figure 2: NNARX illustration.

Also, the ANN used to map the function f(·)
is conceptually a multilayer perceptron with the fol-
lowing characteristics: input layer as source nodes;
hidden layer with sigmoid activation function; output
layer with only 1 neuron and linear activation function
[16].

In the following topics, the methodology used for
the network setting will be described. That is, how the
number of hidden layers and their respective number
of neurons and others parameters were chosen.

3.1 NNARX Application Methodology

The procedure below was developed to apply and
identify the system model, comprising:

• Choice of Excitation Signal: a fundamental as-
pect for the system identification involves the
choice of excitation signals. A proper choice
allows static and dynamic characteristics to be
identified [4]. If they are not excited, such in-
formation can not be identified and represented
by the model. Among the excitation signals, the
literature recommends the use of PRBS or even
random signals [17]. In this work, only the PRBS
signals are regarded.

• ANN configuration and training: this important
stage consists of the network structure defini-
tion, that is, the number of network inputs, hid-
den layers and their subsequent training stage.
In this work, the methodology proposes to de-
fine the number of hidden layers and neurons of
each layer by nonintrusive performance indices
analysis, using the Integral of the Absolute Er-
ror (IAE) or Integral of the Squared Error (ISE).
The definition of the number of layers and neu-
rons is done by analyzing the effect of setting the
number of neurons and hidden layers. After ana-
lyzing the tested configurations, the network con-
figuration is defined by the arrangement with the
lowest indices ac iae or ac ise. This process can
be seen in algorithm 1:
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Algorithm 1 Algorithm Proposed:

- Choose the number of hidden layers (NH ) and
neurons (NN ) to analyze;
- Choose the nonintrusive index for evaluation: IAE
or ISE (In this example IAE will be used);
- N = []; . NNARX configuration to define:
rows represent the number of hidden layers and the
elements of the single column the neurons number.
for i = 1 : NH do

for j = 1 : NN do
Get: IAE [i,j]; . Evaluation
if (j > 1) then

if (IAE[i,j] ≥ IAEbest) then
break;

else
IAEbest = IAE [i,j];
N [i,1] = [j];

end if
else

IAEbest = IAE [i,j];
N [i,1] = [j];

end if
end for

end for
-The best configuration of N [i, j] is defined by the
lowest associated IAE.

Since the training process has a random charac-
ter in the network weight initialization, it was de-
cided to analyze 10 events for each distinct net-
work configuration to define the network with
greater reliability.

Additionally, the back-propagation algorithm via
Levenberg-Marquardt was used as an alterna-
tive to perform network parameter adjustments,
based on the Mean Squared Error (MSE) gra-
dient; also, a toolbox of the MATLAB software
was used for the neural network implementation;
it is important to highlight that the training tech-
nique was a parallel architecture, proving to be
more efficient than the serial-parallel one.

• Model Validation: stage responsible for the
learning/generalization analysis of the trained
network. Its behavior is analysed once submit-
ted to different inputs from those presented for
training. Finally, if the model satisfies the iden-
tification purposes, the resulting network is ac-
cepted and ready to be used; otherwise, it returns
to the previous steps until it satisfies the desired
goals.

4 Simulated and Experimental Re-
sults

To identify nonlinear systems through the developed
methodology, two cases were studied: the first case
consists of the numerical simulation of a fourth or-
der polynomial system with complex dynamics, rep-
resented in the following equation:

G(s) =
0.1

(s+ 1)2(s+ 0.4)2
(2)

The second case is a real experimental system of a
level control plant (Fig. 1). The goal here is to model
the water reservoir level with intrinsic nonlinear char-
acteristics (transport delay time, actuator saturation,
gravity, among others). In addition, all networks were
configured with: the plant delay time d = 1; number
of input delays and the output m = 3 e n = 4, respec-
tively; training with 100 epochs and the data divided
into subsets of training, testing, validation with the
percentage of 60%, 30 and 10%, respectively. These
definitions were made after some empirical tests.

The results followed the respective sequence:
Presentation of the excitation signal; Analysis of the
neurons and hidden layer numbers; Definition of the
number of hidden layer neurons.

4.1 Case 01 - 4th Order System

Excitation signal and response system: using the
MATLAB software, the following PRBS signal and
plant response were generated and presented in Fig.
3.

Analysis of the hidden layer and neuron number:
the number of neurons in the hidden layer was eval-
uated incrementally and analyzed through the perfor-
mance of the NNARX during the training phase, once
submitted to the signal presented in Fig. 4. Addition-
ally, it is important to point out that the result of the
second hidden layer onward adds the best result of the
previous layer.

Definition of NNARX setting: from the results ob-
tained in Fig. 4 and Table 2, it can be seen that increas-
ing the number of neurons does not necessarily repre-
sent greater learning ability. Therefore, this method-
ology defines the neural network with: 1 neuron in the
first hidden layer.
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(a) System excitation signal and plant response.

(b) Validation data of Case 01.

Figure 3: System excitation signal and validation data
of Case 01.

Table 2: Main results of Case 01.

Number of layers Best result IAE ISE
1st Hidden Layer 1 Neuron 09.9248 0.2557
2st Hidden Layer 2 Neurons 14.5735 0.3518
3st Hidden Layer 2 Neurons 27.1077 1.3301

4.2 Case 02 - Physical Experimental System

Excitation signal and system response: in this case,
the following PRBS signal was also generated us-
ing the MATLAB software and embedded in Arduino
platform to obtain the plant response presented in Fig.
5.
Analysis of the hidden layer and neuron numbers:
as in Case 01, the number of neurons and hidden lay-
ers will be analyzed through the training and valida-

(a) Results of the network configuration analysis.

(b) Results of Case 01.

Figure 4: Results of NNARX analysis and results of
Case 01.

tion data, presented in Fig. 6. It is worth mentioning
that the system sampling time is 500ms.

From the obtained results, it can be seen in Fig.
6 and Table 3 that increasing the number of neurons
represents a learning ability increased to the first layer.
However, the insertion of the third layer did not per-
form better learning.

Table 3: Main results for Case 02.

Number of layers Best result IAE ISE
1st Hidden Layer 3 Neurons 24.9585 1.9871
2nd Hidden Layer 2 Neurons 24.6481 1.8806
3rd Hidden Layer 1 Neuron 31.2248 2.9493

Definition of NNARX setting: as can be understood
from Table 3, the third hidden layer does not represent
a significant improvement over the established 2 hid-
den layers. Therefore, this methodology defines the
neural network with 2 hidden layers: 3 neurons in the
first and 2 neurons in the second one.
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(a) System excitation signal and plant response.

(b) Validation results of Case 02.

Figure 5: Analysis of the system excitation signal and
validation data of Case 02.

5 Conclusions

Given the presented results, it is possible to observe
the evident learning and generalization capacity of the
developed NNARX. In both cases, the networks were
able to identify the system behavior with mean errors
of less than 0.02 cm, or 0.14% (Case 01), and 0.05
cm, or 0.34% (Case 02), in a scale from 0 to 15 cm.
That is, errors smaller than the accuracy of the 0.4 cm
ultrasonic sensor, which shows that the network was
successful in these studies.

Finally, it is possible to state that the methodol-
ogy for the adjustment and application of NNARX
had interesting results, getting represent satisfactorily
the process intrinsic nonlinearities. Fact that indicates
its potential and possible use of the network devel-
oped in the identification of other similar non-linear
systems.

(a) Results of the network configuration analysis.

(b) Results of Case 02.

Figure 6: Validation data and results of Case 02.

5.1 Future Works

The conclusion of this work opens some future works,
such as test the methodology in different plants,
and verifies its applicability, comparing the proposed
methodology with other traditional identification tech-
niques and neural network topologies.
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