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Abstract: This paper is devoted to some counting functions of level one and level three in the case of quotient
space generated by some strictly hyperbolic Fuchsian group and the upper half-plane. Each of the functions is
represented as a sum of some explicit part plus the error term. The explicit part is indexed over singularities of the
corresponding Selberg zeta function. In particular, the obtained error term is not larger than O

(
x

3
4

)
. The method

applied in this paper follows traditional approach for achieving the error terms in the case of locally symmetric
spaces of real rank one. In order to establish an analogy with the classical case, we consider the counting functions
dividedbyxandx

3
,respectively.
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1 Introduction
Our notation will be based od [9] and [15].

Let F be a compact Riemann surface of genus g
≥ 2. We can therefore represent F as a quotient space
Γ\H , where Γ is a strictly hyperbolic Fuchsian group
and H is the upper half-plane.

Thus, Γ ⊆ PSL (2,R).
If I is the fundamental polygon of F , then ∂I =

α+
1 β

+
1 α
−
1 β
−
1 ...α

+
g β

+
g α
−
g β
−
g , where the sides α−k , α+

k

and β−k , β+k are identified in pairs.
We assume that the sides of I are piecewise

smooth.
As it is known, the upper half-plane H comes

with the Poincare metric ds= |dz|
y , whose correspond-

ing area element is dµ (z) = y−2dxdy.
Note that the Poincare metric has Gaussian curva-

ture K = −1 (see, e.g., [18]).
Suppose that π :H → F is the universal covering

map.
By projecting the Poincare metric onto F via π,

F becomes a compact Rirmannian manifold.
Furthermore, by the Gauss-Bonnet theorem (see,

e.g., [17])

A = Area (F ) = µ (I) = 4π (g − 1) .

Note that the automorphic group Γ is determined
up to a conjugation in PSL (2,R). However, the

Poincare metric on F is not affected by such con-
jugations because of the invariance properties of the
Poincare metric on H (we assume through the rest of
the paper that F carries the Poincare metric). Further-
more, the Gaussian curvature is still K = −1.

In [10], the author concluded that the asymptotic
distribution of the closed geodesics is highly influ-
enced by the eigenvalues of the Laplace operator ∆
on F , i.e., by the eigenvalues for the problem ∆f +
λf = 0 on F .

The Selberg zeta function Sel (s) for the group Γ
is an entire function of order 2, having a sequence of
zeros at 0, −1, −2,..., with the zero at s = 1 simple,
and having additional zeros in the critical strip 0 <
Re (s)< 1. The zeros in the critical strip are located at
points which are solutions of the equations s (s− 1)
= λn, where λn ranges through the sequence of eigen-
values, omitting λ0 = 0, for the problem ∆f + λf =
0 on F .

The multiplicity of such a zero is the same as the
multiplicity of the corresponding eigenvalue (see, e.g.,
[13], [16]).

Note that the detailed description of the locations
and the orders of the zeros of Sel (s) will be given in
the sequel.

In [15, p. 245, Th. 2] (see also, [11]), the author
derived the following length spectrum.

If Sel (s) has zeros α1, α2,..., αn in
(
3
4 , 1
)
, then,

there exist constants c1, c2,..., cn, such that
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ϕ0 (x) = x+ c1x
α1 + ...+ cnx

αn +O
(
x

3
4

)

as x → +∞ (the functions ϕn (x), n ∈ N ∪ {0} are
introduced below).

If, however, Sel (s) has no zeros in
(
3
4 , 1
)
, then

ϕ0 (x) = x+O
(
x

3
4

)
as x→ +∞.

The main goal of this research is to derive an anal-
ogous result for the function ϕ1(x)

x , i.e., a weighted
form of the corresponding length spectrum.

In our earlier research [1, p. 466, Th. 1],
we derived one such result applying quite complex
mathematical apparatus. The obtained remainder
O
(
x

1
2 log x

)
, however, was much better than the

classical one O
(
x

3
4

)
.

Motivated by this fact, that a ϕ1 analogue of the
classical length spectrum yields a better result, we
give yet another proof of Theorem 1 [1] based on ap-
plication of much simpler mathematical techniques.

2 Preliminaries

We adopt the functions ϕ0 (x) and ϕn (x) from [15,
p. 245].

The first one is given as a sum indexed over
Γhyp with Norm (γ0) ≤ x, where Γhyp denotes the
set of Γ-conjugacy classes of hyperbolic elements in
Γ, Norm (γ0) = exp (len (Geoγ0)), len (Geoγ0) is
the length of the prime geodesic Geoγ0 associated to
the conjugacy class γ0 (it is known fact that prime
geodesics over F correspond to the conjugacy classes
of primitive hyperbolic elements in Γ). More pre-
cisely, if γ ∈ Γhyp, then γ is an exponent of some
primitive γ0, with the degree j (γ) ∈ N.

For such γ, Φ (γ) is defined by Φ (γ) =
len (Geoγ0).

The functions ϕn (x), n ∈ N are defined induc-
tively.

Through the rest of the paper, we shall assume
that l is a number, l ∈N, and that d and T are constants
which will be fixed later.

For a function f (x), we define Dl−1,+ by

Dl−1,+f (x)

=f (x+ (l − 1) d)− (l − 1) f (x+ (l − 2) d)

+
(l − 1) (l − 2)

2
f (x+ (l − 3) d)− ...

+ (−1)l−1 f (x) .

By [3, p. 315, (22)], Dl−1,+f (x) can be repre-
sented as an iterated integral (if f is a differentiable
function of appropriate order).

Thus, for some x ≤ x̃ ≤ x + (l − 1) d, an ana-
logue of the estimate (23) in [3] holds also true.

The number of zeros of Sel (s) on the critical line
will be denoted by n (t).

We shall apply the fact that n (t) can be estimated
as A

4π t
2.

3 Main result
We shall prove the following theorem.

Theorem 1. Let F be a compact Riemann surface of
genus g ≥ 2. Then,

ϕ1 (x)

x

=
1

2
x+

∑
s0∈S0,R
1
2
<s0<1

ord (s0, 0) s−10 (s0 + 1)−1 xs0

+O
(
x

1
2 log x

)
as x→ +∞, where S0,R is the set of zeros of Sel (s)
such that s0 ∈ (0, 1), and ord (s0, 0) is the multiplicity
of s0.

Proof. By [15, p. 245, Th. 1.
′
], ϕl (x) can be repre-

sented as the sum
1∑
p=0

(−1)pWp, whereWp is the sum∑
z∈Ap,l

az,p,l.

Here, Ap,l denotes the set of poles of the cor-
responding function, and az,p,l’s are the attached
residues.

In general, we may point out that the Selberg zeta
function Sel (s+ p) has a zero at 1 − p of order 1, a
zero at 0 − p of order 2g − 1, zeros at −k − p, k ∈
{1, 2, ...}, whose orders are (2g − 2) (2k + 1).
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The non-trivial zeros of Sel (s+ p) are all con-
tained in the union of the interval (0− p, 1− p) with
the vertical line 1

2 − p + iR, i.e., in (−p, 1− p) ∪(
1
2 − p+ iR

)
.

As we already noted, the values 0, −1,..., −l are
zeros of Sel (s+ p). Hence, these values are poles of
order two of the corresponding function.

The values − (l + 1), − (l + 2),... are then the
simple poles of the same function.

Finally, the value 1 is a simple pole if p = 0.
The set of zeros sp of Sel (s+ p) such that sp /∈

Z will be denoted by Sp.
In other words, Sp ⊆ (−p, 1− p) ∪(

1
2 − p+ iR

)
.

Note that the values sp, where sp ∈ Sp are also
simple poles of the function in the case at hand.

Now, we determine the residues az,p,l’s for z ∈
Ap,l.

Let z be a zero of Sel (s+ p) of multiplicity
ord (z, p).

Furthermore, let qi (z, p)’s be the corresponding
coefficients in the expansion of the logarithmic deriva-
tive of Sel (s+ p) near z.

If z ∈ Ap,l, and z = sp ∈ Sp, then asp,p,l’s are
calculated in the same way as in [3, p. 314, (13)].

Suppose that z ∈ Ap,l, and z = −j ∈
{0,−1, ...,−l}.

For the final form of the corresponding residue
a−j,p,l in this case, we refer to [3, (14)].

Now, suppose that z ∈ Ap,l, z = −j ∈
{− (l + 1) ,− (l + 2) , ...}.

In this case, a−j,p,l is given by

ord (−j, p)
l∏

q=0
(−j + q)−1 x−j+l.

Furthermore, if z ∈ A0,l, z = 1, then a1,0,l =
x1+l

(l+1)! .
We shall consider the following subsets of the set

Sp: Sp,R = Sp ∩ R, and Sp, 1
2
−p = Sp \ Sp,R for p ∈

{0, 1}.
Thus, Sp,R ⊆ (−p, 1− p) and Sp, 1

2
−p ⊆

1
2 − p +

iR.
Assume that z ∈ Ap,l, and z ∈ Sp, 1

2
−p.

By the very definition of the operator Dl−1,+, it
immediately follows that d−(l−1)Dl−1,+az,p,l can be

estimated by O
(
d−(l−1) |z|−l−1 x

1
2
+l
)

On the other side, an application of the mean
value theorem, yields that

|ord (z, p)| |z|−1 |z + 1|−1
(
x+

l∑
i=2

qi

) 1
2
−p+1

dom-

inates
∣∣d−(l−1)Dl−1,+az,p,l∣∣ for some 0 ≤ qi ≤ d, i

∈ {2, 3, ..., l}.

Thus, O
(
|z|−2 x

3
2

)
is the second estimate for

d−(l−1)Dl−1,+az,p,l.
Having in mind these two

estimates, one easily concludes that the sum∑
z∈S

p, 12−p

d−(l−1)Dl−1,+az,p,l, and hence the

sum
1∑
p=0

(−1)p
∑

z∈S
p, 12−p

d−(l−1)Dl−1,+az,p,l are

O
(
x

3
2 log T

)
+ O

(
d−(l−1)x

1
2
+lT−l+1

)
.

Furthermore, 1
2x

2 + O (dx) + O
(
d2
)

dominates
d−(l−1)Dl−1,+a1,0,l.

Suppose that d = xα (log x)β and T =

xγ (log x)δ.
Then,

d2 =x2α (log x)2β ,

x
3
2 log T

=γx
3
2 log x+ δx

3
2 log log x,

d−l+1x
1
2
+lT−l+1

=x(−l+1)α+ 1
2
+l+(−l+1)γ (log x)(−l+1)β+(−l+1)δ .

Since log log x is dominated by log x, we want
that

2α =
3

2
= (−l + 1)α+

1

2
+ l + (−l + 1) γ,

2β =1 = (−l + 1)β + (−l + 1) δ.

It is not so hard to conclude that α = 3
4 , β = 1

2 ,

γ = 1
4 and δ = 1+l

2(1−l) , i.e., d = x
3
4 (log x)

1
2 and T =

x
1
4 (log x)

1+l
2(1−l) .

Since, in this case, O (dx) = O
(
x

7
4 (log x)

1
2

)
,

it follows that the aforementioned remainders are all
O
(
x

7
4 (log x)

1
2

)
.

Next, we consider

dx =xα+1 (log x)β ,

x
3
2 log T

=γx
3
2 log x+ δx

3
2 log log x,

d−l+1x
1
2
+lT−l+1

=x(−l+1)α+ 1
2
+l+(−l+1)γ (log x)(−l+1)β+(−l+1)δ .
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Reasoning in the same way as in the previous
case, we are interested in

α+ 1 =
3

2
= (−l + 1)α+

1

2
+ l + (−l + 1) γ,

β =1 = (−l + 1)β + (−l + 1) δ.

Thus, α = 1
2 , β = 1, γ = 1

2 and δ = l
1−l , that is,

d = x
1
2 log x and T = x

1
2 (log x)

l
(1−l) .

Also, in this case, the error term O
(
d2
)

is

O
(
x (log x)2

)
.

Consequently, the error terms given above are all
O
(
x

3
2 log x

)
.

Since the equalityO (dx) =O
(
d2
)

yields at least
the error termO

(
x2
)
, the remaining two cases are not

interesting for our research.
The discussion conducted above, yields that

O
(
x

3
2 log x

)
is the remainder we are looking for, and

is established for d = x
1
2 log x and T =

x
1
2 (log x)

l
(1−l) .

The sum over sp ∈ Sp,R, 1
2 < sp < 1, p ∈ {0, 1},

is obviously equal to the sum over s0 ∈ S0,R, 1
2 < s0

< 1.
Thus, for d = x

1
2 log x, the sum is equal to

∑
s0∈S0,R
1
2
<s0<1

ord (s0, 0) (s0)
−1 (s0 + 1)−1 xs0+1

+O
(
x

3
2 log x

)
.

A we noted earlier, Sel (s+ p) has zeros at−k −
p, k ∈ {1, 2, ...} of orders (2g − 2) (2k + 1).

In particular, Sel (s) has zeros at −k,
k ∈ {1, 2, ...} of orders (2g − 2) (2k + 1), while
Sel (s+ 1) has zeros at −k − 1, k ∈ {1, 2, ...} of or-
ders (2g − 2) (2k + 1).

Moreover, we denoted by ord (z, 0) the multiplic-
ity of the zero z of Sel (s).

In particular, ord (z, 1) is the multiplicity of the
zero z of Sel (s+ 1).

Thus, ord (−k, 0) = (2g − 2) (2k + 1), k ∈
{1, 2, ...}, and ord (−k − 1, 1) = ord (− (k + 1) , 1)
= (2g − 2) (2k + 1), k ∈ {1, 2, ...}.

Hence, ord (−j, 0) = (2g − 2) (2j + 1),
ord (−j, 1) = ord (− (j − 1)− 1, 1) =
(2g − 2) (2 (j − 1) + 1) = (2g − 2) (2j − 1).

It follows that,

1∑
p=0

(−1)p
+∞∑
j=l+1

a−j,p,l

= (2g − 2)
+∞∑
j=l+1

2j + 1

(−j) (−j + 1) ... (−j + l)
x−j+l−

(2g − 2)

+∞∑
j=l+1

2j − 1

(−j) (−j + 1) ... (−j + l)
x−j+l

= (−1)l+1 (4g − 4)
+∞∑
j=l+1

1

j (j − 1) ... (j − l)
x−j+l.

Thus,

∣∣∣∣∣∣
1∑
p=0

(−1)p
+∞∑
j=l+1

a−j,p,l

∣∣∣∣∣∣
= (4g − 4)

+∞∑
j=l+1

1

j (j − 1) ... (j − l)
x−j+l

≤ (4g − 4)x−1
+∞∑
j=l+1

1

j (j − 1) ... (j − l)
.

Since the last series converges, we conclude that
the sum of a−j,p,l’s over j ∈ {l + 1, l + 2, ...}, p ∈
{0, 1} is O

(
x−1

)
.

If we apply Dl−1,+ to this sum, the remainder
O
(
x−1

)
will not be changed.

Consequently, for d = x
1
2 log x, the error term

O
(
x−1

)
multiplied by d−(l−1) gives us

O

((
x

1
2 log x

)−l+1
x−1

)
=O

(
x−

1
2
− l

2 (log x)−l+1
)

=O
(
x−

3
2 (log x)−1

)
.

(1)

Since∣∣∣∣∣∣
1∑
p=0

(−1)p
l∑

j=2

d−(l−1)Dl−1,+a−j,p,l

∣∣∣∣∣∣
≤x−1

1∑
p=0

l∑
j=2

|o (−j, p, l)| ,

where the constant o (−j, p, l) is given by
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o (−j, p, l)
= (−1)j−2 ord (−j, p) (l − j)! (j − 2)!×

×
l∏

q=0
q 6=j

(−j + q)−1 ,

it follows that the corresponding sum is estimated by
O
(
x−1

)
.

Reasoning in the same way as above (applying the
main properties of Dl−1,+), we obtain that the sum
corresponding to a−1,p,l, p ∈ {0, 1} resp. the sum
corresponding to a0,p,l, p ∈ {0, 1}, is O (log x) resp.
O (x log x).

Note that the sum over sp ∈ Sp,R, −1 < sp < 0, p
∈ {0, 1} resp. the sum over sp ∈ Sp,R, 0 < sp ≤ 1

2 , p
∈ {0, 1}, is actually the sum over s1 ∈ S1,R, −1 < s1
< 0 resp. the sum over s0 ∈ S0,R, 0 < s0 ≤ 1

2 .

These two sums, however, areO (x) andO
(
x

3
2

)
,

respectively.
Having in mind the subsets of Ap,l we have con-

sidered above, we may write

d−(l−1)Dl−1,+ϕl (x)

=d−(l−1)Dl−1,+a1,0,l+
1∑
p=0

(−1)p
∑

z∈S
p, 12−p

d−(l−1)Dl−1,+az,p,l+

1∑
p=0

(−1)p
∑

sp∈Sp,R
1
2
<sp<1

d−(l−1)Dl−1,+asp,p,l+

d−(l−1)Dl−1,+
1∑
p=0

(−1)p
+∞∑
j=l+1

a−j,p,l+

1∑
p=0

(−1)p
l∑

j=2

d−(l−1)Dl−1,+a−j,p,l+

1∑
p=0

(−1)p d−(l−1)Dl−1,+a−1,p,l+

1∑
p=0

(−1)p d−(l−1)Dl−1,+a0,p,l+

1∑
p=0

(−1)p
∑

sp∈Sp,R
−1<sp<0

d−(l−1)Dl−1,+asp,p,l+

1∑
p=0

(−1)p
∑

sp∈Sp,R
0<sp≤ 1

2

d−(l−1)Dl−1,+asp,p,l.

Taking into account that d−(l−1)Dl−1,−ϕl (x) is
not larger than ϕ1 (x), and the fact that ϕ1 (x) is not
larger than d−(l−1)Dl−1,+ϕl (x) (Dl−1,− is defined in
[14] in a similar way), it follows that for d = x

1
2 log x

and T = x
1
2 (log x)

l
1−l

ϕ1 (x)

=
1

2
x2 +

∑
s0∈S0,R
1
2
<s0<1

ord (s0, 0) s−10 (s0 + 1)−1 xs0+1

+O
(
x

3
2 log x

)
.

Thus,

ϕ1 (x)

x

=
1

2
x+

∑
s0∈S0,R
1
2
<s0<1

ord (s0, 0) s−10 (s0 + 1)−1 xs0

+O
(
x

1
2 log x

)
.

This completes the proof.

4 Case ϕ3 (x)

In this section we shall consider the function ϕ3 (x).
We shall apply the main properties of the operator
Dl−3,+f (x), where f (x) is some function.

In particular, if z ∈ Ap,l, and z ∈ Sp, 1
2
−p,

then, by the definition of Dl−3,+, it follows that

d−l+3Dl−3,+az,p,l is O
(
d−l+3 |z|−l−1 x

1
2
+l
)

.
Furthermore, if we apply the fact that

d−l+3Dl−3,+az,p,l can be represented as an iterated
integral of some differentiable function of appropri-
ate order, then, we obtain that d−l+3Dl−3,+az,p,l is

bounded by O
(
|z|−4 x

7
2

)
.

Thus, combining these two estimates, we con-
clude that the sum of the elements d−l+3Dl−3,+az,p,l
(over p ∈ {0, 1} and z ∈ Sp, 1

2
−p) is determined by the

sumO
(
x

7
2T−2

)
+O

(
d−l+3 |z|−l−1 T−l+1

)
, where
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T is a constant that will be fixed later (the constant d
will also be fixed later, but, for now, it is assumed that
d is dominated by O (x)).

Now we apply the operator d−l+3Dl−3,+ to the
residue a1,0,l whose position is on the right.

If we use the fact that d−l+3Dl−3,+ applied to
some differentiable function f (x) (of appropriate or-
der) is f (l−3) (x̃) for some x ≤ x̃ ≤ x + (l − 3) d,
then, we obtain that d−l+3Dl−3,+a1,0,l is given by
1
4!x

4 + O
(
x3d
)

+ O
(
x2d2

)
+ O

(
xd3
)

+ O
(
d4
)
.

One should be interested to determine d and T
such that the error term O

(
x3d
)
, and the error terms

O
(
x

7
2T−2

)
, O
(
d−l+3 |z|−l−1 T−l+1

)
be the same.

As it is usual, denoting d and T by some xα and
xβ , respectively, we easily conclude that 3 + α, 7

2

− 2β and −α (l − 3) + 1
2 + l +

(
1
4 −

1
2α
)

(−l + 1)
must be the same.

Solving this system, we obtain thatα= 3
2 and β =

−1
2 . In other words d is not bounded by O (x), which

means that the calculations obtained previously could
not be valid in this case. Hence, we don’t consider this
case anymore.

For our needs, it will be sufficient to deter-
mine d and T such that O

(
d4
)
, and the error terms

O
(
x

7
2T−2

)
, O
(
d−l+3 |z|−l−1 T−l+1

)
be the same.

Proceeding in the same way as in the previous
case, we obtain that 4α, and 7

2 − 2β, −α (l − 3) +
1
2 + l +

(
7
4 − 2α

)
(−l + 1) must be the same. It fol-

low that α = 3
4 and β = 1

4 . Hence, the condition that
d is dominated by O (x) is provided. Thus, the O−
terms: O

(
x3d
)
, O

(
x2d2

)
, O

(
xd3
)
, O

(
d4
)

are all
dominated by O

(
x3d
)
. This error term, however, is

given now by O
(
x

15
4

)
.

We may say now that we are interested in achiev-
ing the error term O

(
x

15
4

)
in the final form of the

corresponding weighted prime geodesic theorem.
Now, we consider the sum of the elements

d−l+3Dl−3,+asp,p,l along p ∈ {0, 1} and sp ∈ Sp,R, 0
< sp < 1. It is not so hard to conclude that this sum is
given by

∑
s0∈S0,R
0<s0<1

ord (s0, 0) s−10 (s0 + 1)−1×

× (s0 + 2)−2 (s0 + 3)−1 xs0+3 +O
(
x3d
)
.

Next, we consider the corresponding sum over p
∈ {0, 1} and j ∈ {l + 1, l + 2, ...}.

We shall apply a modified method of the method
given in the previous sections. Thus, we obtain that
the sum in the case at hand is actually

(2g − 2)
+∞∑
j=l+1

2j + 1

j (j − 1) ... (j − 3) x̃j−3−j,0,l
−

(2g − 2)

+∞∑
j=l+1

2j − 1

j (j − 1) ... (j − 3) x̃j−3−j,1,l

for some x ≤ x̃−j,p,l ≤ x + (l − 3) d.
Now, it follows that∣∣∣∣∣ 1∑

p=0
(−1)p

+∞∑
j=l+1

d−l+3Dl−3,+a−j,p,l

∣∣∣∣∣ is bounded

by

4 (g − 1)

(l − 1) (l − 2)xl−2
.

Thus, the corresponding sum is O
(

1
xl−2

)
.

The next sum is the sum over p ∈ {0, 1} and j ∈
{4, 5, ..., l}.

The constant o (−j, p, l) from above is modified
accordingly, and is

o (−j, p, l)
= (−1)j−4 ord (−j, p) (l − j)! (j − 4)!×

×
l∏

q=0
q 6=j

(−j + q)−1 .

Thus, the sum

1∑
p=0

l∑
j=4

|o (−j, p, l)| 1

xj−3

is O
(
x−1

)
.

Furthermore, the sum over p ∈ {0, 1} of
d−l+3Dl−3,+a−3,p,l is O (log x).

The sum of the elements d−l+3Dl−3,+a−2,p,l
along p ∈ {0, 1} is O (x log x).

Finally, the corresponding sum of
d−l+3Dl−3,+a−1,p,l is O

(
x2 log x

)
.

Reasoning in the same way as above, we conclude
that

1∑
p=0

(−1)p d−l+3Dl−3,+a0,p,l = O
(
x3 log x

)
.

The last sum we have to consider is the sum of
the elements d−l+3Dl−3,+asp,p,l along p ∈ {0, 1} and
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sp ∈ Sp,R, −1 < sp < 0. Obviously, this sum is the
minus sum of the elements d−l+3Dl−3,+as1,1,l over
s1 ∈ S1,R, −1 < s1 < 0. The last sum, however, is
O
(
x3
)
.

Combining the estimates derived above, we con-
clude that ϕ3 (x) is not larger than

1

4!
x4 +

∑
s0∈S0,R
0<s0<1

ord (s0, 0) s−10 (s0 + 1)−1×

× (s0 + 2)−2 (s0 + 3)−1 xs0+3 +O
(
x3d
)

+

O
(
x

7
2T−2

)
+O

(
d−l+3 |z|−l−1 T−l+1

)
+

O
(
x3 log x

)
.

Hence, putting d and T to be as we derived above
(x

3
4 and x

1
4 ), it follows that ϕ3 (x) is not larger than

1

4!
x4 +

∑
s0∈S0,R
0<s0<1

ord (s0, 0) s−10 (s0 + 1)−1×

× (s0 + 2)−2 (s0 + 3)−1 xs0+3 +O
(
x

15
4

)
.

Similarly, one concludes that the last sum in not
larger than ϕ3 (x).

Thus, we have proved the following theorem.

Theorem 2. Let F be a compact Riemann surface of
genus g ≥ 2. Then, 1

x3
ϕ3 (x) is

1

4!
x+

∑
s0∈S0,R
3
4
<s0<1

ord (s0, 0) s−10 (s0 + 1)−1×

× (s0 + 2)−2 (s0 + 3)−1 xs0 +O
(
x

3
4

)
as x→ +∞.

5 Remarks
In order to derive (1), we first proved that the sum
of a−j,p,l’s over j ∈ {l + 1, l + 2, ...}, p ∈ {0, 1}, is
O
(
x−1

)
.

Note that one could also use the fact that
d−(l−1)Dl−1,+a−j,p,l is
ord (−j, p) (−j)−1 (−j + 1)−1 x̃−j+1

−j,p,l for some x ≤
x̃−j,p,l ≤ x + (l − 1) d, to directly estimate the sum

1∑
p=0

(−1)p
+∞∑
j=l+1

d−(l−1)Dl−1,+a−j,p,l.

In [1], the authors also derived a weighted length
spectrum for real hyperbolic manifolds with cusps.
Such research represents a generalization of the re-
searches conducted in [14], [2].

A weighted form of the result obtained in [3] (see
also, [6]) is derived in [7].

For yet another proof of the main result in [15],
we refer to [8].

Note that the author in [19] also considered a
weighted length spectrum. His object of research
were the automorphic L-functions.

A lot of useful ideas and calculations the author
applied in this research are adopted from [4], [5] and
[12].
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