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Abstract: The aim of this paper is to develop a new approach for a solution of the model following control (MFC)
problem with a dynamic compensator by using linear matrix inequalities (LMIs). The 7, mode! following control

problem is derived following LMI formulation. First, the 77 __ optimal control problem is revisited by referring to

Lemmas assuring all admissible controllers minimizing the 77 norm of the transfer function between the

exogenous inputs and the outputs. Then, the solvability condition and a design procedure for a two degrees of
freedom (2 DOF) dynamic feedback control law isintroduced. The existence of a2 DOF dynamic output feedback
controller for the model following control is proven and the stability of the closed-loop system is satisfied by
assuring the Hurwitz condition. The benchmark thermal process (PT-326) asthe first order process with time- delay
is regulated by the presented 2 DOF dynamic output feedback controller. The simulation results illustrate that the
presented controller regulates a system with dead-time as alarge set of generic industrial systemsand the# __ norm

of the closed-loop system is assured less than the 7/ __norm of the desired model system.
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1 Introduction

The model following control problem (MFC) is one
of the most familiar problems in the control theory
[9, 18]. Let G, (s) and G(s) be proper transfer matri-
ces of amodel system and the given system, respec-
tively. The mode following control is to minimize
the error in a certain sense between the outputs of the
given system and amodel system so that the dynami-
cal behavior of the given system approximates one of
the model system in Figure 1.

The main application of the MFC approach isin
the era of flight simulation. The aim of flight smula
tion is to impose the characteristics of aflight vehicle
to be smulated on airborne simulators. Furthermore,
the MFC concepts have been realised in several exper-
imental helicopter simulator programs [9].

Recently, many problems in the control theory
have been examined and parameterized via LMIs
[1,2,3,4,5,6, 7,8, 10, 12, 14, 15]. In this study,
we first show that the MFC problem can be consid-
ered as a specia case of the standard H.. optimal
control problem (OCP). Then, the solvability condi-
tions of the problem which are based on the solutions
of three LMIsin [12], are reduced to the solution of
only one LMI. Finally, the ., MFC approach is used
to control a system with dead-time.
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The Model
System ym(k) +
wk) —— —> e(k)
The Given v, (k) —
System
The
Compensator

Figure 1. Themodel following control block diagram.

In this paper, we will mainly follow the terminol-
ogy of [16]. There feedback structures are categorized
depending on the degree of the freedom in the struc-
ture. And for ahigh performance, we choose the two
degrees of freedom (2 DOF) structure. Although there
are some papers on the H., design of 2 DOF con-
troller [8, 15], to the best of our knowledge, the MFC
problem has not been treated in a H .-settings in the
literature.

The following notation will be used throught the
paper: dim(S) denotes the dimension of the linear
space S. Ker(M) and Im(M) are the null space and
the range of the linear operator M, respectively. The
rank of amatrix A is defined by
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rank(A) = dim(ImA). 1)
N* is the complex-conjugate transpose of the com-
plex matrix N. The H,, norm of a continuous-time
transfer matrixG(s) is defined by:
1G(3)]l oo = Sggamaz(G(jw))- )
The H, norm of a discrete-time transfer matrix
G(z) is defined by

1G(2)loo = SUD  Tmaz(G(’)). (€)
we(0,27]
Hereo,,... is the largest singular value, i.e.
Umax(A) = )\max(A*A) (4)

where the matrixAcC"*". A, IS also the largest
eigenvalue. MoreoveP > 0 denotes that the matrix
P is positive definite.

2 Preiminaries

Consider a causal discrete linear time-invariant (LTI)
generalized plan?(z) described by the state-space
equations:

z(k+1) = Azx(k)+ Biw(k) + Bau(k) (5)
Z(]C) = Clz(k?) + an(k) + Dlzu(k:) (6)

y(k) = Cax(k) + Daw(k) + Dagu(k)(7)
wherez(k)eR" is the state vectow(k)eR™2 is the

vector of control inputsw(k)eR™ is the vector of

exogenous inputs, i.e. reference signals, disturbance

signals, sensor noise, etg(k)cRP? is the vector of
measurements ang(k)cRP! is the vector of output
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— Z(k)

y(k)

w(k) ———

P(z)

u(k)

K(2)

Figure 2: The closed-loop system with the controller
K(z).

4+ Pia(2)K(2)(I — Paz(2)K(2)) ™" Pa1(2)(10)

The discrete-timeH ., OCP is to find all admis-
sible controllersK (z) such that||7,,(z)|| ., is min-
imized. The following lemma is well known as the
synthesis theorem for the discrete-tifie, OCP in
LMI formulation:

Lemmal A controller of ordern g >n, which holds

| T.0(2)]|, < v exists and the closed-loop system in
Figure 2 is internally stable if and only if there exist
the matricesX > 0 andY > 0 such that,

L[ ATXA - X cr
] BiXA i,

1 —v1py

A" X B
—vIm, + B X By
Dy
N, 0

{ o Iy ]<0 (11)

o 1+ Ava* —Y AYCT By
[ R ] CLY A* —yIp, + C1YCF D11
mi BY Dy —vImy
Ne 0
. g 12
[ &y <0 w2
{ Xl ]zo (13)

signals, whose are used to illustrate the performance whereN, and V. are full rank matrices with,

of the control system. The closed-loop system with
the controllerK (z) is shown in Figure 2:

It is obvious that the planP(z) shown in Figure
2 is given by,

P(z) (8)

_|_

And the closed-loop transfer matrix from(k) to
z(k) is derived by,

E-ISSN: 2224-2856 12

ImN,
ImN,

KGT[ CQ D21 ]
Ker [ B D, |

(14)
(15)

and (A, By, Cs) is stabilizable and detectable, the
matrix Doy = 0.

Proof: See [12].1

In order to present the synthesis theorems of the
H~ MFC problem, let us give the following lemmas.
They will be used to prove the theorems, which will
be presented later. The first lemma is well known as
The Bounded Real Lemma and can be used to turn
the H,, OCP into an LMI:
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Lemma?2 Consider a discrete-time transfer matrix
T'(z) of (not necessarily minimal) realizatidfi(z) =

D + C(zI — A)~'B. The following statements are
equivalent:

i) D+ C(1 — A)7' Bl
Hurwitz,

ii) there exists a solutiotX > 0 to the LMI:

X1 A B 0
A* =X 0 C*

< ~ and the matrixA is

0 C D —AI
iii) there exists a solutiol” > 0 to the LMI:
AY A* —-Y AY C* B
CY A* —~I[+CYC* D <0. (17)
B* D* —~I

Proof: See [12].1

It is Dual Bounded Real Lemma in the part iii
of above Theorems.

Lemma 3 The block matrix

P M
AR as
if and only if
N <0 and P—MN'M* <.

(19)
In the sequel,P — M N—1M* will be referred to as
the Schur complement of V.

Proof: See [4].0

Lemma4 In a continuous-time systertd, C) is de-
tectable if and only if there exists a mattk > 0 such
that,

N*(A*X + XA)N <0 (20)
whereN is a full column rank matrix with
ImN = KerC. (21)

Proof: See [10].0

Lemmab5 In a discrete-time systen{,A,C) is de-
tectable if and only if there exists a matriX > 0
such that,

N (A*XA-X)N <0 (22)
whereN is a full column rank matrix with
ImN = KerC. (23)
Proof: This one is the discrete-time form of the
Lemma 4.1
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3 The H, Mode Following Control
Problem with The Two Degrees of
Freedom Dynamic Output Feed-
back in LMI Formulation

In order to solve thé{.,, MFC problem via LMI ap-
proach, the problem should be formulated as a stan-
dard#., OCP in the state-space equations. For this
aim, we will take any realizations of the given system
G(z) and the model systei,, (z) as follows:

G(z): xz(k+1) = Ax(k)+ Bu(k) (24)
ys(k) = Cua(k) (25)

Gn(k): qlk+1) = Fq(k)+ Gw(k)(26)
ym(k) = Hq(k) + Juw(k) (27)

wherex(k)eR™s, q(k)eR™, u(k)eR™, w(k)eR™,
ys(k)eRP and y,,,(k)eRP. We take that the given
system is strictly proper because of the assumption
Dy, = 0in Lemma 1. But there is no loss of gen-
erality, [12]. The control input.(k) can be generated
by a two degrees of freedom dynamic output feedback
controller:

U(z) = L(2)Z(z) + M(2)W (2). (28)

And the plantP(z) shown in Figure 3 can be
given as follows:

] = Lo Rl ]
+ {8} 0+ | ueo
w - e[
+ Jw(k) (30)
0 = [0 ]
N :_OC gHEEZ”
+ :‘”w(k). (31)

The 2 DOF dynamic feedback controller transfer
matrix

(32)
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Figure 3: A two degrees of freedom dynamic output
feedback controller for the model following control

can be determined from thé., OCP explained in the
previous section, then the controller minimizes the
"H o norm of the closed-loop transfer matfix,, (z).

As a result, the following Remark can be given:

Remark: The H,, MFC problem with the two
degrees of freedom dynamic output compensator is
equivalent to thé{., OCP in Figure 3 and 41

—— z(k)

y(k)

w(k) ——

P(z)

uk)

7(k)

K{z)={L(z) M(z)]

w(k)

Figure 4. The closed-loop system with the two de-
grees of freedom dynamic output feedback

However, since Lemma 1 will be usefl4, Bs, Co)
must be stabilizable and detectable. Therefore, the
following lemma is given for the internal stability of
the closed-loop system in thié., MFC problem:

Lemma6 There exists a solution of th.,, MFC
problem in Figure 3 if and only ifA, B, C) is sta-
bilizable and detectable, the matriX is Hurwitz.

Proof: (A, B») is stabilizable if and only if there ex-
ists a matrixV’ such thatd + B,V is Hurwitz, [17].
When the equations (29), (30) and (31) are used,

e = [3 ]3] w
A+ BV; BV
- [ 0 1 F2] (33)

is written. So(A, B) is stabilizable and the matrik
is Hurwitz.

E-ISSN: 2224-2856 14
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On the other hand(A, Cs) is detectable if and
only if there exists a matri¥y such thatd + W,
is Hurwitz, [17]. When the equations (29), (30) and
(31) are used,

B A 0 Wii  Wis ¢ H
A+WC = {o F]+[W21 Wosn 0o o
_ A— Wi, C Wi H (34)
—Wa1C F+ Wa1 H

is obtained. Since, the matriX was taken as Hurwitz
above,IW5; = 0 can be written. Therefore,

A— WiC Wi H

A+WCy = 0 r

(35)

is found. So,(A4,C) is detectable and the matrix
is Hurwitz. Finally, (4, By, C>) is stabilizable and
detectable if and only ifA, B, C) is stabilizable and
detectable and the matrix is Hurwitz. i

In order to guarantee the existence of a 2 DOF
dynamic feedback controller, i.e. the closed-loop
system in Figure 3 is internally stable, throughout the
paper, we assume thatl, B, C') of the given system

is stabilizable and detectable, the matiix of the
model system is Hurwitz.

4 Main Results

We want to give two lemmas to simplify the synthesis
theorems:

Lemma7 Suppos€A, C) is detectable in a discrete-
time system. For every the matiix> 0, there always
exists a matrixX > 0 such that,

N*(A*XA—-X)N <0 (36)
x>y (37)

whereN is a full column rank matrix with
ImN = KerC. (38)

Proof: From Lemma 5(A,C) is detectable if and
only if there exists a matriXy > 0 such that,

N*(A*XpA — Xg)N <0 (39)
whereImN = KerC. The matrix
X=eXy>0 (40)

also satisfies to the LMI (36) for an arbitrary num-
berecR™. Since, the matrixXy is positive definite,
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Xy = P*P can be written such that the matriX is
nonsingular. When

eXo>Y 1 —

e Amaz[(P) Y TIPTY = Mo [(PY P*)™Y] (42)

is written, the proof is completed

We can now present the synthesis theorems on
the LMI-based solution of the problem:

Theorem 8 A two degrees of freedom dynamic feed-
back controllerK (z) = [ L(z) M(z) | exists for

the H ., MFC problem if and only if there exists a ma-
trix Y > 0 such that,

A 0 A 0 \*
(o #)v(5 &) -
Ne 0 A 0 \*
{o 1,,] ( —c H)Y(OF>
(0 G*)
A 0 —c* 0
(o 2 )v(% ) (o)
A+ (—c H)Y( 5 J
J* —vIm
[Aéc I?n]<o (42)

whereN,. is a full rank matrix with

ImN. = Ker [ B* Omxn, Omxp |- (43)
Proof: Let use the equations (29), (30) and (31) in

Lemmal,

ImN, = Ker| Cy Dy |
-C H J

= Ker [ T R ] (44)

Thus
Nf:[N } (45)

OmX’I“
is written where

ImN:Ker[ -C H ] (46)

and
r:dim(Ker[ -C H]) 47

So, the LMI (11) can be derived as follows:

N 0 1*[ A*XA- X A h
O 1 0 BIXA —vIm + BIXBI DIl
0 Ip D11 —vIp

Q

A*X B, cF }
1

N 0
Omxr O <0 (48)
0 Ip
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A 0
0 F

A 0

or
0 F}—X>N<O.

w([2 8]

From the Schur complement argument, the inequality
(13) is reduced to

x>y L (51)
Because of Lemma 40 [ -C H]]is
il 0 F b

easily seen as detectable. Thus, there exists a matrix
X > 0 such that the inequalities (50) and (51) are
both satisfied according to Lemma 7. The LMI (42) is
also obtained when the equations (29), (30) and (31)
are used in (12)l

On the other hand, if the given system is stable, a
theorem can be obtained about the beginning value of
~y iteration.

Theorem 9 In the discrete-tim&H ., MFC problem,
if the given system is stable, we haVE. ,(2)||., <

1Gm (2)]] oo

Proof: From Dual Bounded Real Lemma, a matrix
Y > 0 exists such that,

(o #)v(o &) v
( —c H)Y(g‘ g)
(0 G¢*)
(o ¢ )r(% ) (&)
—~Ip+ ( —C H)Y(}fjf) J <0 (52)
J* —vIm

if and only if the matrix[ A0 } is Hurwitz and

) (&) ]

~ (53)

zI — A 0
H‘]J’(’C H)( 0  z2-F

(53) is equivalent to

1T+ H(zl = F)' Gl = IGm(2) | < - (54)

[
Therefore, fory which is greater thaf., norm of
the model systent,,,(z), (52) and so (42) is satisfied.
Thatis|| 75w (2) |l < |Gm(2)|| - W

oo

4.1 Controller Construction

When the controller design procedure in [12] and the
Theorem 8 are used, a construction procedure of the
H~ MFEC problem with the 2 DOF dynamic feedback
are obtained as follows. Furthermore, some opti-
mization softwares [13] should be used to solve LMIs:
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Step 1@ Find a solution matrixY” > 0 of the
LMI (42) for the minimum of~. (If the given system
is stable, calculate|G,,(2)||,, for the beginning
value of~ iteration because of Theorem 9.)

Step 2: Obtain a matrixXy > 0 such that,

(3 203 ] on )
(55)
where
ImN = Ker [-—(7 H ]. (56)
Step 3 Find a nonsingular matrixP from
Xy = P*P.

Step 4. Choose a number=R ™ such that,

€Az [(PY P*) 7. (57)
Then we haveX = eX.
Step 5. We can construct the matriX,, > 0
by finding a matrixX, e R"*"¥ such that,
XoX; =X -Y~1>0 (58)
whereng>n = ns + n,,. Then
X Xy
X, = [ X; I } (59)
Step 6: Obtain the following matrices,
Fo= [ OB* 8mxnm (I)nK 8m><(n+nK+m+P) ] (60
0 0 0 I"K 0 0
Q = 0 -C H o0 J 0p (61)
I: 07n><(n+nK) 0 0 0 Im 0 :|
(i) (6
,chll 0o F 0 G
Hxg = | e N0 LT Prag
(..)* 0 —¥Im
0 (.0)* J
0
()
OnLI](*XP ©2
—~Ip
Step 7: Find a solution
o AK BK
a-[dB] e
to the LMI
Hx,+ Q" QP+ P*QQ < 0. (64)

Step 8: Obtain the 2 DOF dynamic feedback control

law as
K(z) [ L(z) M(2) ]

Ck(zI — Ag) !Bk + Di. (65)
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5 Design Example

The benchmark thermal process (PT-326) [11] has a
dynamic behavior. It is the first order process with
time-delay that is similar to many industrials plant,
such as steamboilers, furnaces and HVAC (Heating,
Ventilating and Air-Conditioning) systems:

Ke—sTd

= 66
s+ 1 (66)

G(s)

where K is the static gaint is the time constant and
T, is the time-delay. We take that

K = 0.734 (67)
T; = 200 ms (68)
T 600 ms. (69)

If the Z transformation of (66) is found with the
sampling period’; = 66 ms, the following relation is

obtained:
0.076

~ 23(z — 0.896)
Moreover, we take the model system which is really

faster and has no error in the unit step response, as
follows,

G(z) (70)

0.168
Gm(2) = 30 " 0830)

The state-space equations(@fz) are obtained as

(71)

01 0 0
0 01 0
z(k+1) = 000 1 x(k)
L 0 0 0 0.896
[0
0
+ 0 u(k) (72)

| 1

ye(k) = [0076 0 0 0]x(k). (73)

The state-space equations(@f, (=) are obtained as

0100
0010
| 0 0 0 0.832
[0
0
+ 0 w(k) (74)
1
Ym(k) = [0.168 0 0 0 ]q(k). (75)
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Since (70) is stable, we can staytiteration from

|Gm(2)]l = 1. When we search for a controller in

the discrete-timé{., MFC problemy,,.;,, and the dy-

namic output feedback controller are obtained as fol-

lows:

R

0.00008
3.24782% — 2.854627 — 0.0043z% + 0.00012° — 0.00092*
28 — 0.252727 — 0.071426 — 0.076725 — 0.22052%
2.19732% — 0.695427 — 0.23812% — 0.22612° — 0.52162*
28 — 0.252727 — 0.071426 — 0.076725 — 0.220524

TYmin

L(z)

M(z)

R

-+ ym(K) = ys(k)

Figure 5. The response of the benchmark thermal pro-
cess with the 2 DOF dynamic compensator is com-
pared with the response of the model system output.

12

10

Figure 6: The responses of the error and control sig-
nals.

Figure 5 illustrates the unit step responses of the
transfer matrix of the given system with the 2 DOF
dynamic compensator and the transfer mat¥jx(z)
of the model system and Figure 6 shows the error sig-
nal e(k) and the control signak(k). They are well
matched ovety,,;,. Since there is a limitationl (1)
on the control input, the unit step responses has some

E-ISSN: 2224-2856 17
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error. However a system which have a dead time, is
controlled by using{., MFC.

6 Conclusions

In this paper, a LMI-based solution of thé,, MFC
problem is presented. The solvability conditions of
the problem are derived. It is observed that only one
linear matrix inequality determines the solution for the
H~ MFC problem. Moreover, if the given system is
stable, a theorem for the beginning value~oitera-

tion is found by using the synthesis theorem. Fhe
norm of the closed-loop system is assured less than
the? ., norm of the desired model system. The effec-
tiveness of the presented methodology is validated by
a simulation study. A generic industrial system being
the first order process with a dead-time is modeled and
the presented 2 DOF dynamic feedback controller is
applied. The internal stability of the closed-loop sys-
tem in the?{ ., MFC approach is satisfied assuring the
error convergence to zero with a limited control input.
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