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Abstract: - The paper concentrates on a problem of distributing control effort among multiple, redundant 
actuators in a propulsion system of a small torpedo-shaped unmanned underwater vehicle. The vehicle has no 
other actuators except thrusters so motion and positioning is realised only by change of their developed thrusts.  
The control allocation strategy used to map desired forces and torques to thrusts on all actuators is defined as an 
unconstrained model based optimisation problem. Such a solution is computationally efficiently but, in real 
conditions, when physical limitations are not taken into account it may be unrealized and cause temporarily loss 
of vehicle’s controllability. To avoid a such situation a procedure of checking of capability of the propulsion 
system to produce demanded generalized forces is proposed to be introduced to the process of power 
distribution. The procedure, taking into account actuators constraints, allows to find such values of the 
generalized forces for which the distribution can be done correctly. To illustrate the proposed method a 
numerical example is given in the work. 
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1 Introduction 
Unmanned underwater vehicles (UUV) have 

been a growing research area with strong support 
from both civilian and military applications. Main 
benefits of usage of them is to reduce risk to human 
life under dangerous environment and cost of 
exploration of deep seas. 

A regarded vehicle is a small torpedo-shaped 
slowly swimming apparatus of four degrees of 
freedom DOF, being 1.4 m length, 0.36 m breadth, 
0.36 m height and having a mass  45 kg or more 
(depending on configuration). It is controlled only 
by thrusters and supplied from an own source of 
energy. The vehicle is able to be equipped with 
sensors suitable for planned missions such as 
inspection of coastal and off-shore structures or 
hydrographical and biological surveys. Its main 
technical parameters are given in the Appendix 1. 

The UUV is controlled both by a pilot located 
on a board of the floating or fixed platform and an 
onboard computerized control system, which 
allows to execute complex manoeuvres without 
constant human interventions. Basic modules of the 
control system are depicted in Fig. 1. The autopilot 
computes command signals (generalized forces) dτ  

comparing desired vehicle’s position and 
orientation ηd and linear and angular velocities vd 

with their current estimates   ,,,,, zyxη  and 

 rqpwvu ,,,,,v . The thrust distribution module 
realizes a control allocation task distributing these 
commands into individual actuators in the 
propulsion system. An efficient control allocation 
generates control input f assuring that the vehicle’s 
propulsion system develops the forces and torques 
determined by the autopilot. 

Computation of a thrust vector f from the 
generalized forces dτ  is commonly treated as a 

model based optimisation problem that in the 
simplest form is unconstrained [1, 3, 4] and 
constraints put on maximum and minimum values 
of thrusts developed by the actuators are not taken 
into account. It may cause that required forces and 
torques acting on the vehicle’s body will not be 
developed by the propulsion system due to a work 
of one or even more thrusters in saturation. Such a 
situation can make a contribution to deterioration of 
control and behaviour of the vehicle may differ 
from a required one significantly.  

To cope with those difficulties a procedure of 
checking demanded generalized forces and if 
necessary decreasing their values is proposed to 
such values which the propulsion system can 
produce and unconstrained optimisation methods 
can be applied without any limitations. 
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Fig. 1. General overview of UUV’s control system. 

 
The paper consists of the following five 

sections. In Section 2 a brief description of the 
problem of thrust allocation in a vehicle’s 
propulsion system is presented. An algorithm of 
determination of feasible generalized forces is 
written in Section 3. In Section 4 a numerical 
example is provided. Conclusions are given in 
Section 5. 

 
 

2 Description of Propulsion System  
A propulsion system of the regarded UUV consists 
of five thrusters. Four of them, called roll axis 
thrusters, installed in the stern assure surge, pitch 
and yaw motions. The fifth one, called vertical axes 
thruster, located in a middle of the vehicle’s body is 
responsible for heave motion. A general structure 
of the propulsion system shows Fig. 2. 
 

 

Fig. 2. Structure of the UUV propulsion system, 
 

The vertical axis thruster produces propelling 
force Z in the normal axis which is equal to  
a developed thrust force. 

All roll axis thrusters are the same type and 
mounted in a vertical plane, symmetrically in 
relation to a symmetry center of the transverse 
section. If all of them give the same thrusts then 
produced moments compensate and resultant 
propelling force X causes movement along the 

longitudinal axis. In contrary apart of translation 
also rotations about transversal and vertical axes, 
caused by not equal zero resultant propelling 
moments (torques) M and N, are realized. The 
produced force X and torques M and N are a linear 
combination of thrusts developed by the roll axis 
thrusters. Hence, from an operating point of view, 
the control system should have a procedure of 
power distribution among the roll axis thrusters and 
it is done in the trust distribution module (see  
Fig. 1). 
Lets denote: 

   Tddd
T

dddd NMX ,,,, 321  τ  - a vector  of 

demanded generalized forces (force in the 
longitudinal axis and torques about the transversal 
and vertical axes consequently), 

 Tfff 421 ,...,,f  - a thrust vector produced by the 
roll axis thrusters, 
 fi– thrust of the ith  thruster, 
and assume that components of the both vectors are 
bounded: 

  3,10 for    2max2  iidi   (1) 

  4,10 for   2max2  jff jj  (2) 

Values of max
i  and max

jf  depend on the actuator’s 

construction and their configuration in the 
propulsion system.  

The relationship between the forces and torques 
acting on the vehicle’s body, and thrusts developed 
by the thrusters is a complicated function which 
depends on density of water, vehicle’s velocity, 
actuators’ diameters and revolutions, etc. A 
detailed analysis of thruster dynamics can be found 
e.g. in [8, 9, 10].  

As shown in [2, 5, 6] a dependence between the 
vector of generalized force dτ  and the thrust vector 

f can be expressed by a linear model in a form:  

Tfτ d      (3) 

where T is so called thruster configuration matrix. 
For the regarded roll axis thrusters the matrix T 
takes the following form:  




















4321

4321

0.10.10.10.1

dddd

ddddT   (4) 

where di  is a distance of the ith  thruster from a 
symmetry centre of the transverse section. 
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The thrust allocation problem, i.e. computation f 
from τd, is usually formulated as the least-squares 
optimisation problem and described in the 
following form [3, 4, 5]: 

dτTf *       (5) 

where: 

  1* 
 TT TTTT       (6) 

This method of thrust allocation allows to find a 
minimum-norm solution but it should be noted that 
(5) belongs to unconstrained optimisation 
problems, it means there are no bounds on elements 
of the vector f, so the obtained components if  may 

not satisfy (2) and then generation of the desired 
vector dτ  by the propulsion system is not possible. 

In a such case the new vector of generalized forces 
meeting the condition (2) must be determined.  

It is proposed to be realised in thrust distribution 
module in two stages (see Fig. 3). In the first one a 
capacity of the propulsion system to develop the 
demanded generalized forces dτ  is checked and a 

vector of feasible commands d'τ  determined, (i.e. 

such values of forces and torques which the 
propulsion system can produce). In the second step 
the real allocation of thrusts among the actuators is 
carried out on the basis of d'τ . A method of 

evaluation of the vector of feasible generalized 
forces  Tdddd 321 ',','' τ  is presented in the 

next section. 
 

 
Fig. 3. A block diagram of the thrust distribution. 

 
 

3 Algorithm of Determination of 
Feasible Propelling Force and 
Torques 

Let us denote: 
1. max

1 , max
2  and max

3 - maximum values of 

propelling force X and torques M and N 
developed by the propulsion system: 



















4

1

maxmax
3

4

1

maxmax
2

4

1

maxmax
1

i
ii

i
ii

i
i

df

df

f







, 

2. O - an origin of the Cartesian coordinate 
system, 

3. P - a point in the 3-dimensional space with 
coordinates  321 ,, ddd  , 

4. OP  - a position vector of the point P. 
Evaluation of capacity of the propulsion system 

to generation of the desired propelling forces and 
moment dτ  requires taking into consideration both 

limitations (1) and (2) simultaneously.  
The first one indicates that the vector dτ  is 

produced only if the position vector OP  is entirely 
contained in a cubicoid having vertexes in points: 
 max

3
max
2

max
1 ,,  ,  max

3
max
2

max
1 ,,   ,  max

3
max
2

max
1 ,,   , 

 max
3

max
2

max
1 ,,   ,  max

3
max
2

max
1 ,,  ,  max

3
max
2

max
1 ,,   ,

 max
3

max
2

max
1 ,,   ,  max

3
max
2

max
1 ,,    (see Fig. 4).  

 
 

 
 

Fig. 4. View of the cubicoid and the position  

of vector OP . 
 
Since the components of the vector dτ  are a linear 

combination of thrusts developed by all roll axis 
thrusters propellers then fulfilling only the 
condition (2) is not a guarantee their generation. 
E.g. if any component of the vector dτ  corresponds 

an assignment max
idi   , then entirely power of the 

propulsion system is used to its production and the 
rest of the components must be equal to zero. 
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Therefore evaluation of capacity of the propulsion 
system to generation of the vector dτ  requires 

taking into account also the inequality (1). 
Analysis of values that elements of the vector 

dτ  may take under limitations (1) and (2) leads to 

the following conclusion: 1d , 2d  and 3d  can be 

produced by the propulsion system if and only if 

the position vector OP  is entirely contained in a 
trisoctahedron with vertexes in points:  0,0,max

1 , 

 0,,0 max
2 ,  max

3,0,0  ,  0,0,max
1 ,  0,,0 max

2 , 

 max
3,0,0   (see Fig. 5). This situation proceeds if 

the following inequality holds: 

1
max
3

3

max
2

2

max
1

1 







 ddd     (7) 

 

 
Fig. 5. View of the trisoctahedron and the position of 

vector OP . 

 

If (7) is false then the point  321 ,,P ddd   

lies outside of the octahedron and the vector dτ  

cannot be generated. It means that the vector of 
feasible commands  Tdddd 321 ',','' τ  must be 

determined. Its elements, under assumption that  
a reciprocal ratios of corresponding themselves 
components of the vectors dτ  and d'τ  are 

preserved: 

2

1

2

1

'

'

d

d

d

d







   and  
3

1

3

1

'

'

d

d

d

d







    (8) 

can be calculated by means of the following 
equations: 

 

 

  1
1

3
33

1
1

2
22

1

1

3
max
31

2
max
2

max
1

11

''

''

111
'

d
d

d
dd

d
d

d
dd

d

d

d

d
dd

sign

sign

sign






































(9) 

 
Basis on the above considerations an algorithm 

of evaluation of the vector dτ  and determination of 

d'τ  has been designed (see Fig. 6). Input data to the 

algorithm are quantities max
1 , max

2 , max
3  and the 

vector dτ . The vector of feasible commands d'τ  is 

computed according to (9). 
 
 

 
 

Fig. 6. A block diagram of the algorithm of 
determination of feasible commands. 

 
 
A proof of (8). 

Assume that 0di  for 3,1i . Such approach 

allows the analysis to restrict into a subspace 
limited by positive semi-axes of the coordinate 
system (see Fig. 7). 
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Fig. 7. A view of position vectors OP and OP'  for 
positive semi-axes of the Cartesian coordinate system. 

 
 
Let )0,0,(A max

1 , )0,,0(B max
2 , ),0,0(C max

3 , 

 321 ,,P ddd   and  321 ',','P' ddd   be points 

in the three dimensional space. An equation of a 
plane including the points A, B and C has a form: 

1
max
3

3
max
2

2
max
1

1 









   (10) 

Let us assume that the point  321 ',','P' ddd   

is a common point of a line containing the position 

vector OP  and the plane defined by (10). 
Substituting the coordinates of the point P'  into 
(10) and taking into account the requirements (8) 
the following set of equations is given: 





















3

1

3

1

2

1

2

1

max
3

3
max
2

2
max
1

1

'

'

'

'

1
'''

d

d

d

d

d

d

d

d

ddd






















  (11) 

Hence, solving (11) the following expressions 
for calculation of 321 ' and',' ddd   are obtained: 

1
1

3
3

1
1

2
2

1

1

3
max
31

2
max
2

max
1

1

''

''

111
'

d
d

d
d

d
d

d
d

d

d

d

d
d




































 (12) 

Finally, transformation of the above dependences to 
the entirely Cartesian coordinate system yields: 

 

 

  1
1

3
33

1
1

2
22

1

1

3
max
31

2
max
2

max
1

11

''

''

111
'

d
d

d
dd

d
d

d
dd

d

d

d

d
dd

sign

sign

sign






































(13) 

End of prove. 
 

 

4 Numerical Example 
Computations are done for the following data of the 
propulsion system of the UUV [7]: 

m09.0

N0,75max




i

i

d

f
     for    4,1i , 

hence: 

Nm 0.2709.00.754

Nm 0.2709.00.754

N 0.3000.754

4

1

maxmax
3

4

1

maxmax
2

4

1

maxmax
1



















i
ii

i
ii

j
j

df

df

f







 

Let assume that  

 Td 0.90.180.100 τ . 

 
STEP 1 
 
Check the inequality (7): 

max
13max

3

max
1

2max
2

max
1

1 




  ddd

 

0.3000.9
0.27

0.300
0.18

0.27

0.300
0.100   

0.00.100   

The dependence (6) is false.  
It means  that the point P=(100.0, -18.0, 9.0) lies 

outside of the trioctahedron having the following 
vertexes: (300, 0, 0), (0, 27, 0), (0, 0, 27),  
(-300, 0, 0), (0, -27, 0), (0, 0, -27).  

Go to STEP 2. 
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STEP 2 
 
Calculate the components of the vector d'τ : 

 

0.75

0.100

0.9

0.27

1

0.100

0.18

0.27

1

0.300

1
)0.100(

111
'

1

1

1

3
max
31

2
max
2

max
1

11
































sign

sign
d

d

d

d
dd 









 

  5.130.75
0.100

0.18
0.18

'' 1
1

2
22








sign

sign d
d

d
dd 




 

 

  75.60.75
0.100

0.9
0.9

'' 1
1

3
33





sign

sign d
d

d
dd 




 

 
STEP 3 
 
Substitute the components of d'τ  as new values of 

dτ : 

75.6

5.13
0.75

3

2

1






d

d

d





 

To check the correctness of the calculations the 
ratio of the corresponding components of the 
vectors dτ  and d'τ  is computed according to (8): 

6.5
0.18

0.100

2

1 



d

d


   6.5

5.13

0.75

'

'

2

1 



d

d


  

1.11
0.9

0.100

3

1 
d

d


   1.11

75.6

0.75

'

'

3

1 
d

d


  

Obtained quantities indicate that the ratio is 
preserved. It confirms the correctness of the 
procedure of determination of admissible 
generalized forces. 

 
 

5 Conclusions 
The paper presents a method of determination of 
feasible control commands for the small torpedo-
shaped underwater vehicle. For the UUV moving in 
3 DOF it is necessary to distribute the generalized 
control forces pτ  to 4 propellers in terms of the 

thrust vector nf . A control allocation strategy is 
defined as the unconstrained model based 
optimisation problem. However in real 
applications, physical limitations (e.g.  saturations) 
must be taken into account and hence a constrained 
optimisation problem must be solved. To cope with 
those difficulties a procedure of checking 
demanded control inputs was worked out. It allows  
to decrease and find such values of components of 
the vector generalized forces τ  that the 
unconstrained optimisation methods can be used 
without any restrictions. A main advantage of the 
proposed method is its simplicity  

The developed procedure of determine of 
feasible control inputs is of general character and 
can be successfully applied to all types of the 
underwater vehicles. 
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Appendix 1 
Technical specifications of the UUV.  
 
The regarded unmanned underwater vehicle, called 
“Sea Anemone”, was designed and built for the 
Polish Navy. 
A. External dimensions: 

1. length  – 1.40 m 
2. width  – 0.36  
3. height  – 0.36 m 

B. Mass    – 45.0 kg 
C. Buoyancy   – 1.0 N to 2.0 N 
D. Operating depth  – 200 m 
E. Maximum speed – 3 m/s 
F. Range    – 500 m 
G. Propulsion:    

1. roll axis thrusters – four thrusters, 3 blade 
screw thrusters, electrically driven, each 50 W 
power; 

2. vertical axes thruster – single thruster, 
electrically driven 3 blade screw propeller in 
tunnel, 50 W power 

H. Mission duration time  – 30 minutes 
I. Energy source   – lithium ion   

         accumulator  
         battery 

J. Control     – remote, computer 
         aided, using single 
         optical fibre of  
         2000 m length  
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