
On the controllability problem with pointwise observation for the
parabolic equation with free convection term

IRINA ASTASHOVA
Lomonosov Moscow State University

Department of Mathematics and Mechanics
Leninskie Gory, 1, 119991, Moscow

Plekhanov Russian University of Economics
Stremyanny lane, 36, 117997, Moscow

RUSSIAN FEDERATION
ast.diffiety@gmail.com

ALEXEY FILINOVSKIY
Bauman Moscow State Technical University
2 nd Baumanskaya str., 5, 105005, Moscow

Lomonosov Moscow State University
Department of Mathematics and Mechanics

Leninskie Gory, 1, 119991, Moscow
RUSSIAN FEDERATION

flnv@yandex.ru

Abstract: A mathematical model of the temperature control in industrial greenhouse is based on a one-dimensional
parabolic equation with a free convection term and a quadratic cost functional with the point observation. The
existence and uniqueness of a control function from some convex set of functions are proved and the structure of
the set of accessible temperature functions is studied. We also prove the dense controllability of the problem for
some set of control functions.
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1 Introduction
Many models in physics and technics can be described
by parabolic equations. We pay special attention to
extreme problems related to corresponding bound-
ary value problems. Let us consider in the rectangle
QT = (0, 1) × (0, T ) the mixed problem for the heat
equation with a free convection term

ut = uxx + b(x)ux, (x, t) ∈ QT , (1)
u(0, t) = ϕ(t), ux(1, t) = ψ(t), t > 0, (2)
u(x, 0) = ξ(x), 0 < x < 1, (3)

for a sufficiently smooth coefficient b satisfies
|b(x)| ≤ b1, x ∈ [0, 1], and the functions ϕ ∈
W 1

2 (0, T ), ψ ∈ W 1
2 (0, T ), ξ ∈ L2(0, 1). We mean

that the functions b, ξ, ψ are fixed and ϕ is a control
function to be found. The mixed problem (1) – (3)
arises in the engineering temperature control problem
in an extended industrial greenhouse with lower heat-
ing and upper ventilation (see [3], [4], [5]). The prob-
lem is to find control function ϕ0(t) making the tem-
perature u(x, t) at x = c ∈ (0, 1), maximally close
to the given one z(t) during the whole time interval
(0, T ). The quality of the control is estimated by a
quadratic cost functional.

Let us note that extremum problems for parabolic
equations with integral functionals were considered
by different authors (see [18], [8], [10], [11]). One
of the first studies is the paper [10] where the heat

equation with the third type boundary condition con-
tains the control function is considered. In [10] for
the extremal problem with the final observation func-
tional the existence of minimizer is proved in the
class of measurable control functions not exceeding
to some constant. The existence and uniqueness of
minimizer are also proved (see [10]) in the case of a
functional with an additional quadratic term. Some
of the later results deal with non-homogeneous equa-
tion and right-hand side as a distributed in QT control
function and the distributed or boundary observation
([18], [19]). The other problems of minimization with
final observation and the problem of the control opti-
mal time are considered in [8], [11], [9], [23]. The re-
view of early results is contained in [9], survey of later
works is contained in [23], see also [3], [13]. Note that
our formulation of the extremal problem with point-
wise observation is different from those formulated in
the papers listed. Also the case of the equation with
a free convection term was not previously considered.
Closely relates to our formulation of problem is the
problem with distributed control and pointwise obser-
vation with an additional quadratic control function
term (see [18]). For such problem in [18] the exis-
tence and uniqueness of minimizer are proved.

We prove the existence and uniqueness of the con-
trol function ϕ0(t) from a convex set (the minimizer)
giving the minimum to this functional, and study the
structure of the set of accessible temperature func-
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tions. We also prove the ”dense controllability” of the
problem for some set of control functions. In compar-
ison with our previous results ([3] —[6]) now we con-
sider the parabolic equation with non self-adjoint el-
liptic operator and an arbitrary convex closed bounded
set of control functions. To do this we use methods of
qualitative theory of differential equations and, in par-
ticular, some methods described in [1] and [2].

2 Main Results
Propose a mathematical approach to solve the prob-
lem.

Definition 1 . By V 1,0
2 (QT ) denote the Banach space

of functions u ∈W 1,0
2 (QT ) with the finite norm

‖u‖
V 1,0
2 (QT )

(4)

= sup
0≤t≤T

‖u(x, t)‖L2(0,1) + ‖ux‖L2(QT )

and such that t 7→ u(·, t) is a continuous mapping
[0, T ]→ L2(0, 1).

The formula to the norm in the space V 1,0
2 (QT )

is introduced in [16], p.26. This norm naturally corre-
sponds to the energy balance equation for the mixed
problem to the parabolic equation ([16], ch. 3, for-
mula (2.22)).

Definition 2 . By W̃ 1
2 (QT ) denote the space of all

functions η ∈ W 1
2 (QT ) such that η(x, T ) = 0,

η(0, t) = 0.

The values of the functions η(x, T ) and η(0, t) we
consider in the trace sense (see [16], ch. 1, th. 6.3, p.
71).

Definition 3 . We call the function u ∈ V 1,0
2 (QT )

an energy class weak solution to problem (1)–(3) if it
satisfies the boundary condition u(0, t) = ϕ(t) and
the integral identity∫

QT

(uxηx − buxη − uηt) dx dt

=

∫ 1

0
ξ(x)η(x, 0) dx+

∫ T

0
ψ(t) η(1, t) dt (5)

for any function η(x, t) ∈ W̃ 1
2 (QT ).

Under the conditions ϕ,ψ ∈ W 1
2 (0, T ), and ξ ∈

L2(0, 1) the weak solution from the setW 1,0
2 (QT ) au-

tomatically belongs to V 1,0
2 (QT ) ([16], ch. 3, par. 3).

By standard technique (see [15], [16]) we can obtain
the following estimate for the solution to problem (1)–
(3):

Theorem 4 . There exists a unique weak solution to
problem (1)–(3) belonging to V 1,0

2 (QT ) with the fol-
lowing inequality:

‖uϕ‖V 1,0
2 (QT )

(6)

≤ C1(‖ξ‖L2(0,1) + ‖ϕ‖W 1
2 (0,T ) + ‖ψ‖W 1

2 (0,T )),

where the constant C1 is independent of ϕ, ψ and ξ.

Hereafter denote by uϕ the unique solution to
the problem (1) – (3) with ϕ,ψ ∈ W 1

2 (0, T ), ξ ∈
L2(0, 1), existing according to theorem 4.

Suppose z ∈ L2(0, T ). Let Φ ⊂ W 1
2 (0, T ) be a

bounded closed convex set.
For some c ∈ (0, 1) define the functional

J [z, ϕ] =

∫ T

0
(uϕ(c, t)− z(t))2dt. (7)

The value of the function uϕ(c, t) ∈ L2(0, T ) we
also consider in the trace sense.

Consider the minimization problem for this func-
tional and put

m[z,Φ] = inf
ϕ∈Φ

J [z, ϕ]. (8)

Theorem 5 . There exists a unique function ϕ0(t) ∈
Φ such that m[z,Φ] = J [z, ϕ0].

Definition 6 . We call the problem (1)–(3), (8) exactly
controllable from Φ ⊂ W 1

2 (0, T ) to Z ⊂ L2(0, T ), if
for any z ∈ Z there exists ϕ0 ∈ Φ such that

J [z, ϕ0] = 0. (9)

Definition 7 . By the exact control we denote the
function ϕ0 ∈ Φ making the functional J [z, ϕ] to van-
ish:

J [z, ϕ0] =

∫ T

0
(uϕ0(c, t)− z(t))2 dt = 0.

The next theorem shows that the set Z of func-
tions z ∈ L2(0, T ) admitting exact controllability is
sufficiently ”small” subset of L2(0, T ).

Theorem 8 . The set Z of all functions z ∈ L2(0, T )
admitting exact controllability for Φ = W 1

2 (0, T ) is a
first Baire category subset in L2(0, T ).

Definition 9 . We call the problem (1)–(3), (8)
densely controllable from Φ ⊂ W 1

2 (0, T ) to Z ⊂
L2(0, T ), if for any z ∈ Z we have

inf
ϕ∈Φ

J [z, ϕ]

= inf
ϕ∈Φ

∫ T

0
(uϕ(c, t)− z(t))2dt = 0.
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The following result proves the dense controlla-
bility for Z = L2(0, T ) and Φ = W 1

2 (0, T ).

Theorem 10 . For any z ∈ L2(0, T ) the following
equality holds

inf
ϕ∈W 1

2 (0,T )
J [z, ϕ] = 0. (10)

3 Proofs
Proof of theorem 5. The proofs of results on the exis-
tence and uniqueness are based on the following state-
ment concerning the best approximation in Hilbert
spaces.

Theorem 11 ([4]). Let A be a convex closed set in a
Hilbert space H. Then for any x ∈ H there exists a
unique element y ∈ A such that

‖x− y‖ = inf
z∈A
‖x− z‖.

Let

B = {y = uϕ(c, ·) : ϕ ∈ Φ} ⊂ L2(0, T ).

Use the convexity of Φ we see that B is a convex set.
By theorem 4 we obtain that B is a bounded set in
L2(0, T ). Now we prove that B is a closed subset
of L2(0, T ). Let {yj}∞j=1 ⊂ B be a fundamental se-
quence in L2(0, T ) having the limit y ∈ L2(0, T ),
‖y − yj‖L2(0,T ) → 0, j → ∞. The correspond-
ing sequence {ϕj} ⊂ Φ by the boundedness of Φ is
a weakly precompact set in W 1

2 (0, T ). By the con-
vexity of Φ and Mazur theorem [21] Φ is a weakly
closed subset of W 1

2 (0, T ). Therefore, there exists
a subsequence (we denote it by {ϕj}∞j=1, too) such
that w − lim

j→∞
ϕj = ϕ ∈ Φ. Hence, by Mazur the-

orem there exist the numbers αjl ≥ 0, 1 ≤ j ≤ l,
l = 1, 2, . . . ,

∑l
j=1 αjl = 1, such that for some

ϕ ∈ Φ we have

‖ϕ̃l − ϕ‖W 1
2 (0,T ) → 0, l→∞, (11)

ϕ̃l =
l∑

j=1
αjlϕj .

Therefore, for the corresponding sequence of solu-
tions

uϕ̃l =
l∑

j=1

αjluϕj (12)

we obtain

‖uϕ̃l − uϕ̃p‖V 1,0
2 (QT )

(13)

≤ C1‖ϕ̃l − ϕ̃p‖W 1
2 (0,T ) → 0, l, p→∞.

This means that uϕ̃l(0, t) = ϕ̃l(t), and the integral
identity∫

QT

((uϕ̃l)xηx − b(x)(uϕ̃l)xη − uϕ̃lηt) dx dt

=

∫ 1

0
ξ(x)η(x, 0) dx+

∫ T

0
ψ(t) η(1, t) dt (14)

holds for any function η(x, t) ∈ W̃ 1
2 (QT ). Taking into

account relations (11), (13), and (14), we see that there
exists the limit function u ∈ V 1,0

2 (QT ), which is a
weak solution to problem (1)–(3) with the boundary
function ϕ, and

‖u− uϕ̃l‖V 1,0
2 (QT )

≤ C1‖ϕ− ϕ̃l‖W 1
2 (0,T ).

So, by the embedding estimate (see [16], Ch. 1, sec.
6, form. 6.15) we obtain

‖u(c, ·)− uϕ̃l(c, ·)‖L2(0,T )

≤ C2‖u− uϕ̃l‖V 1,0
2 (QT )

≤ C1C2‖ϕ− ϕ̃l‖W 1
2 (0,T ),

whence y = u(c, ·) ∈ B and B is a closed subset in
L2(0, T ).

Therefore, by theorem 11, there exists a unique
function y = u(c, ·), where u ∈ V 1,0

2 (QT ) is a solu-
tion to problem (1)–(3) with some ϕ0 ∈ Φ such that

inf
ϕ∈Φ

J [z, ϕ] = J [z, ϕ0].

Now we prove that such ϕ0 ∈ Φ is unique. If not,
consider a pair of such functions ϕ1, ϕ2 and the cor-
responding pair of solutions uϕ1 , uϕ2 . The function
ũ = uϕ1 − uϕ2 is a solution to the problem

ũt = ũxx + b(x)ũx, (15)
0 < t < T, 0 < x < 1,

ũ(0, t) = ϕ̃(t), 0 < t < T, (16)
ϕ̃(t) = ϕ1(t)− ϕ2(t),

ũ(c, t) = 0, 0 < t < T, (17)
ũx(1, t) = 0, 0 < t < T, (18)
ũ(x, 0) = 0, 0 < x < 1. (19)

Taking into account integral identity (5) with the
function η(x, t) equal to 0 on [0, c]× [0, T ], we obtain
that the function ũ on the rectangle Q(c)

T = (c, 1) ×
(0, T ) is equal to the solution of the problem

ût = ûxx + b(x)ûx, (20)
0 < t < T, c < x < 1,

û(c, t) = 0, 0 < t < T, (21)
ûx(1, t) = 0, 0 < t < T, (22)
û(x, 0) = 0, c < x < 1. (23)
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But the solution to problem (20)–(23) vanishes on
[c, 1]× [0, T ], whence we have

ũ(x, t) = 0, c < x < 1, 0 < t < T. (24)

Now we prove that

ũ(x, t) = 0, 0 < x < 1, 0 < t < T. (25)

Note that by theorem 2 ([14], Sec. 11), the weak so-
lution ũ is a classical solution to equation (15) in QT .
Now we use theorem 5 ([17], Sec. 3). It establishes
the following.

Consider a function u(x, t) ∈ C2,1(Ω), Ω ⊂ R2

such that ut = uxx + q(x)u in Ω. Suppose G0 is a
connected component of the set Ω ∩ {t = t0}, and G̃
is a connected open subset of G0. If u|

G̃
= 0, then

u|G0 = 0.
Let us consider the function

v(x, t) = ue−
1
2

∫ x
0
b(z)dz (26)

which is a classical solution to equation

vt = vxx −
(
b′(x)

2
+
b2(x)

4

)
v. (27)

By the equalities (24) and (26) we obtain v(x, t) = 0,
c < x < 1, 0 < t < T . Applying this theo-
rem to the solution v of the equation (27) with q =

−
(
b′(x)

2 + b2(x)
4

)
for any t0 ∈ (0, T ) with G0 =

(0, 1) × {t0} and G̃ = (c, 1) × {t0}, we obtain that
v(x, t) = 0, 0 < x < 1, 0 < t < T . So, by (26) we
have (24) which gives the equality (25). Therefore,
ũ(x, t) = 0 for any x ∈ (0, 1) and t ∈ (0, T ). This
means that ϕ̃(t) = ũ(0, t) = 0. The proof of Theorem
5 is complete. ut

Corollary 12 . From the theorem 5 we can obtain the
existence and uniqueness theorems for some practi-
cally important classes of control functions (see [3],
[3]).

Proof of theorem 8. At first we prove the follow-
ing analog to the classical maximum principle.

Theorem 13 . Let u ∈ V 1,0
2 (QT ) be a solution to the

problem

ut = uxx + b(x)ux, (x, t) ∈ QT , (28)
u(0, t) = ϕ(t), ux(1, t) = 0, (29)

0 < x < 1, 0 < t < T,

u(x, 0) = 0, 0 < x < 1. (30)

Then for almost all (x, t) ∈ QT the following inequal-
ities hold:

min{0, ess inf
t∈[0,T ]

ϕ(t)} (31)

≤ u(x, t) ≤ max{0, ess sup
t∈[0,T ]

ϕ(t)}.

Proof of theorem 13. Let k = ess sup
t∈[0,T ]

ϕ(t). We

define the function u(k) = max{u − k, 0}. By the
same way as in the proof ([15], Ch. 3, Sec. 7, th. 7.1)
we can obtain for 0 < t1 < T the following relations∫ 1

0
(u(k)(x, t1))2dx+ 2

∫ 1

0

∫ t1

0
(u(k)
x )2dxdt

= 2

∫ 1

0

∫ t1

0
b(x)u(k)uxdxdt

≤ b21

∫ 1

0

∫ t1

0
(u(k))2dxdt

+

∫ 1

0

∫ t1

0
(u(k)
x )2dxdt. (32)

Let y(t) = sup
0≤τ≤t

‖u(k)(x, τ)‖L2(0,1). It follows from

(32) that

y2(t1) + 2‖u(k)
x ‖2L2(Qt1 )

≤ b21t1y
2(t1) + ‖u(k)

x ‖2L2(Qt1 ). (33)

Taking t1 < (2b21)−1 we obtain by (33) that
‖u(k)‖

V 1,0
2 (Qt1 )

≤ 0. Therefore, for almost all (x, t) ∈
Qt1 we have u(x, t) ≤ max{0, ess sup

t∈[0,t1]
ϕ(t)}.

Repeat this process to (0, 1) × (t1, 2t1), (0, 1) ×
(2t1, 3t1), . . . , we obtain the right inequality from
(31). Similar considerations with the function −u
proves the left inequality from (31). ut

Consider the solutions uϕj (x, t) ∈ V 1,0
2 (QT ),

j = 1, 2. Denote ũ = uϕ1 − uϕ2 . The function ũ
is a solution of equation (1) with the boundary condi-
tions

ũ(0, t) = ϕ̃(t) = ϕ1(t)− ϕ2(t), (34)
ũx(1, t) = 0, (35)

and the initial condition

ũ(x, 0) = 0. (36)

From (31) we obtain

‖ũ‖L∞(QT ) ≤ ‖ϕ1 − ϕ2‖L∞(0,T ), (37)

and, consequently, by the continuity of solution to
equation (28),

sup
t∈[0,T ]

|ũ(c, t)| ≤ ‖ϕ1 − ϕ2‖L∞(0,T ). (38)
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By integrating inequality (38), we obtain

‖ũ(c, t)‖L2(0,T ) ≤
√
T‖ϕ1 − ϕ2‖L∞(0,T ). (39)

Suppose the functions ϕ1 and ϕ2 are the exact control
functions for given z1 and z2. This means that

J [z, ϕj ] =

∫ T

0
(uϕj (c, t)− zj(t))2dt = 0,

j = 1, 2.

In this situation inequality (39) invokes the inequality

‖z1 − z2‖L2(0,T ) ≤
√
T‖ϕ1 − ϕ2‖L∞(0,T ) (40)

for arbitrary functions z1(t) and z2(t) admitting exact
controllability.

Let Z ⊂ L2(0, T ) be a set of exactly controllable
functions. We have Z = ∪∞M=1ZM , where ZM ⊂
L2(0, T ) is the set of functions exactly controllable
with ϕ ∈ ΦM = {ϕ ∈W 1

2 (0, T ), ‖ϕ‖W 1
2 (0,T ) ≤M}.

For any M = 1, 2, . . . consider an arbitrary sequence
of control functions {ϕMj } ⊂ ΦM and the correspond-
ing sequence {zj(t)} = {uϕMj (c, t)} ⊂ ZM . The set

ΦM is a bounded set in W 1
2 (0, T ). By the embedding

theorem for W 1
2 (0, T ), we have

‖ϕMjl − ϕ
M
jp ‖L∞(0,T ) → 0, l, p→∞, (41)

for some subsequence ϕMjl . Therefore, by (40), (41)
we get for the sequence {zjl} ⊂ ZM the relation

‖zjl − zjp‖L2(0,T ) (42)

≤
√
T‖ϕMjl − ϕ

M
jp ‖L∞(0,T ) → 0, l, p→∞.

It follows from (42) that ZM is a pre-compact set
in L2(0, T ). So, ZM is nowhere dense in L2(0, T ).
Thus, since Z = ∪∞M=1ZM , we conclude that Z is
a first Baire category set in L2(0, T ). Theorem 8 is
proved. ut

Proof of theorem 10. Let us represent the solu-
tion of the problem (1) – (3) in the form

uϕ = v + w (43)

where v andw are solutions of the following boundary
value problems

vt − vxx − b(x)vx = 0, (44)
0 < x < 1, 0 < t < T,

v(0, t) = ϕ(t), 0 < t < T, (45)
vx(1, t) = 0, 0 < t < T, (46)
v(x, 0) = 0, 0 < x < 1. (47)

and

wt − wxx − b(x)wx = 0, (48)
0 < x < 1, 0 < t < T,

w(0, t) = 0, 0 < t < T, (49)
wx(1, t) = ψ(t), 0 < t < T, (50)
w(x, 0) = ξ(x), 0 < x < 1. (51)

Therefore, denote v = vϕ we have

J [z, ϕ] =

∫ T

0
(vϕ(c, t)−z1(t))2dt, c ∈ (0, 1), (52)

where z1(t) = z(t) − w(c, t) ∈ L2(0, T ). It follows
from the inequality

inf
ϕ∈W 1

2 (0,T )
J [z, ϕ] ≤ inf

ϕ∈W 1
2 (0,T ),ϕ(0)=0

J [z, ϕ](53)

= inf
ϕ∈W 1

2 (0,T ),ϕ(0)=0

∫ T
0 (vϕ(c, t)− z1(t))2dt

that to establish (10) it is sufficient to prove that

inf
ϕ∈W 1

2 (0,T ),ϕ(0)=0

∫ T

0
(vϕ(c, t)− z1(t))2dt = 0. (54)

Let us construct the weak solution vϕ ∈W 1,0
2 (QT ) of

problem (44) – (47) for ϕ ∈ W 1
2 (0, T ), ϕ(0) = 0. At

first we consider the function P ∈ V 1,0
2 (QT ) which is

a weak solution of the mixed problem

Pt − Pxx − b(x)Px = 0, (55)
0 < x < 1, 0 < t < T,

P (0, t) = 1, 0 < t < T, (56)
Px(1, t) = 0, 0 < t < T, (57)
P (x, 0) = 0, 0 < x < 1. (58)

It means that P satisfies the integral identity∫
QT

(Px(ηx − b(x)η)− Pηt) dx dt = 0 (59)

for any function η ∈ W̃ 1
2 (QT ) and P (0, t) = 1 in the

trace sense. At first we establish the existence to the
function

P̃ = P − 1 (60)

which is a solution of the problem

P̃t − P̃xx − b(x)P̃x = 0, (61)
0 < x < 1, 0 < t < T,

P̃ (0, t) = 0, 0 < t < T, (62)

P̃x(1, t) = 0, 0 < t < T, (63)

P̃ (x, 0) = −1, 0 < x < 1. (64)
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Then we can prove the existence and uniqueness of
such solution by Galerkin method by the same way
as the solution u in theorem 11. Now we prove the
following representation formula:

vϕ(x, t) =

∫ t

0
ϕ′(τ)P (x, t− τ)dτ. (65)

The weak solution v = vϕ satisfies the integral iden-
tity ∫

QT

(vx(ηx − b(x)η)− vηt) dx dt = 0 (66)

for any function η ∈ W̃ 1
2 (QT ) and v(0, t) = ϕ(t) in

the trace sense. It follows from (59), (65) that for any
function η ∈ W̃ 1

2 (QT ) we have the equalities∫
QT

(vx(ηx − b(x)η)− vηt) dx dt (67)

=

∫ 1

0

∫ T

0

((∫ t

0
ϕ′(τ)P (x, t− τ)dτ

)
x
(ηx − b(x)η)

−
∫ t

0
ϕ′(τ)P (x, t− τ)dτηt

)
dx dt

=

∫ 1

0

∫ T

0
ϕ′(τ)

∫ T

τ
(Px(x, t− τ)(ηx − b(x)η)

− P (x, t− τ)ηt)dx dτ dt

=

∫ T

0
ϕ′(τ)

(∫ 1

0

∫ T−τ

0
(Px(x, s)(ηx(x, s+ τ)

− bη(x, s+ τ))

− P (x, s)ηt(x, s+ τ))dx ds
)
dτ = 0.

The last equation is valid because η(x, s+τ)|s=T−τ =
η(x, T ) = 0. Therefore, the integral identity holds
for any function η ∈ W̃ 1

2 (QT ). Moreover, tak-
ing the sequence of smooth functions ϕj(t) vanishes
in the neighborhood of zero and such that ‖ϕ −
ϕj‖W 1

2 (0,T ) → 0, j → ∞, we obtain from (56), (59)
that vj(0, t) = ϕj(t) → ϕ(t), j → ∞ in W 1

2 (0, T ).
It means that v(0, t) = ϕ(t) in the trace sense and the
equality (65) is proved.

We can define the trace P (c, ·) ∈ L2(0, T ), c ∈
(0, 1).

We use the following property of linear manifolds
in Hilbert space ([20], ch. 2, par. 4, lemma 2):

Theorem 14 . The linear manifold G is dense in
Hilbert space H if and only if there are no non-zero
element which is orthogonal to any element of G.

Now we apply these theorem to H = L2(0, T )
and the linear manifold G = {vϕ(c, t), ϕ(t) ∈

D(0, T ) =
0
C∞ (0, T )}. To prove (10) it is sufficient

to prove that if for any ϕ ∈ D(0, T ) we have∫ T

0
z1(t)vϕ(c, t)dt (68)

=

∫ T

0
z1(t)

(∫ t

0
P (c, t− τ)ϕ′(τ)dτ

)
dt = 0,

then z1(t) = 0. We can transform (68) as∫ T

0
z1(t)

∫ t

0
P (c, t− τ)ϕ′(τ)dτdt (69)

=

∫ T

0
ϕ′(τ)

∫ T

τ
z1(t)P (c, t− τ)dtdτ = 0.

By (69)∫ T

τ
z1(t)P (c, t− τ)dt = const, τ ∈ [0, T ], (70)

but ∫ T

T
z1(t)P (c, t− T )dt = 0, (71)

so ∫ T

τ
z1(t)P (c, t− τ)dt = 0, τ ∈ [0, T ]. (72)

After the transformation of variables we have∫ T

τ
z1(t)P (c, t− τ)dt (73)

=

∫ T

t
z1(τ)P (c, τ − t)dτ

=

∫ T−t

0
z1(T − s)P (c, T − s− t)ds

=

∫ q

0
z1(T − s)P (c, q − s)ds

=

∫ q

0
z2(s)P (c, q − s)ds = 0,

for almost all q ∈ (0, T ), here z2(t) = z1(T − t) ∈
L2(0, T ) ⊂ L1(0, T ).

Now we apply Titchmarsh convolution theorem
([22], theorem 7):

Theorem 15 . Let ξ ∈ L1(0, T ), ζ ∈ L1(0, T ) are
functions such that∫ t

0
ξ(τ)ζ(t− τ)dτ = 0 (74)

almost everywhere in the interval 0 < t < T , then
ξ(t) = 0 almost everywhere in (0, α) and ζ(t) = 0
almost everywhere in (0, β), where α ≥ 0, β ≥ 0,
α+ β ≥ T .
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We use Theorem 15 to the functions P (c, ·) and
z2(·). By equality (73) we obtain that there exist α ≥
0, β ≥ 0, α + β ≥ T such that z2(s) = 0 almost
everywhere in (0, α) and

P (c, s) = 0 (75)

almost everywhere in (0, β).
Now we prove that β = 0. In the contrary let

β > 0.
Applying maximum principle (31) from theo-

rem 13 to problem (55) – (58) we obtain that 0 ≤
P (x, t) ≤ 1 almost everywhere in QT . It follows
from equality (64) and regularity theorem ([12], Ch.
7, par. 7.1, theorem 6) that P is a smooth function in
([0, 1]× [ε, T ]) for any ε ∈ (0, T ), and it is a classical
solution of equation (55) in QT . Then

0 ≤ P (x, t) ≤ 1, 0 ≤ x ≤ 1, ε < t ≤ T. (76)

Let us suppose that

P (c, t) = 0, 0 < c < 1, 0 < t < β ≤ T, (77)

and consider the function P (x, t) in the domain
Qβ/2,T = (0, 1)× (β/2, T ). Note that by (76), (77)

P (c, β) = 0 = inf
(x,t)∈Qβ/2,T

P (x, t) (78)

and (c, β) ∈ QT . By the strong maximum principle
([12], Ch. 7, par. 7.1, theorem 11) we obtain that P =
0 in (0, 1)×(β/2, β). It is impossible due to boundary
condition (56). This contradiction means that β = 0.
So, by the inequality α + β ≥ T we have α ≥ T
and z2(t) = 0 almost everywhere in (0, T ). Now,
z1(t) = 0 almost everywhere in (0, T ).

Therefore, by the Lemma 14 we obtain equality
(10). Theorem 10 is proved. ut

4 Conclusion
For the minimization problem for one-dimensional
parabolic equation with free convection term and
pointwise observation the existence and uniqueness of
a control function from a prescribed set are proved,
and the structure of the set of accessible temperature
functions is studied. We also prove the dense control-
lability of the problem for some set of control func-
tions.
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