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Abstract: - This paper presents a new technique to adapt the fractional order PID (FOPID) control based on 

optimal Model Reference Adaptive System (MRAS). The proposed control technique has been subjected to 

motion control of one stage servomechanism system. This purpose should be achieved through different 

operating points and external disorders (friction and backlash). The parameters of MRAS have been obtained 

using the harmony search (HS) optimization technique to achieve the optimal performance. Also, the 

performance of proposed control technique has been investigated by comparing it with the PID and FOPID 

controllers. The practical results illustrate that the self-tuning FOPD control based on optimal model reference 

adaptive system can accommodate the tracking error rapidly respect to other control techniques. 
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1 Introduction 
The newest growth of machine tools is to achieve 

high speed spindle and feed drives which improve 

the performance and reduce the machining cycle 

times [1]. Also, the development of feed drives with 

an adequate dynamic response and smooth behavior 

has become essential in many industrial applications 

[2]. The purpose of servo control systems to 

maintain the stage follows a preselected position 

profile along complicated trajectories at high feed 

speeds [3]. The machine tool with traditional feed 

drives use the proportional position control which 

suffer from high fluctuation in the stage and large 

tracking errors at high speeds [4]. The tracking error 

is eliminated using high performance feed drive 

motors with advanced control techniques [5]. 

However, friction between lead screw and guides, 

cutting force disturbance, and changes in the 

workpiece mass in linear drives are obstacles to 

achieve good contouring accuracy at high feeds [6]. 

The requirements for high speed and accurate 

contouring have led to the investigation of efficient 

control algorithms in recent years [7]. The PID 

control has been used to process control in most of 

engineering applications for decades [8]. The PID 

control has simple structure and linear behavior. 

Also, it gives acceptable performance for several 

industrial applications [9]. There are several 

methods to select the proper values for PID 

controller parameters [3]. The traditional methods 

for selecting these parameters such as try and error 

and Ziegler-Nichols which were became 

inappropriate to achieve a good performance [10]. 

So, the researchers have tended to use alternative 

methods such as optimization techniques (Genetic 

Algorithm (GA), Particle Swarm Optimization 

(PSO), Ant Colony Optimization (ACO) and 

Harmony Search (HS)) which are trying to reach the 

optimal solution for controller parameters [11]. Still, 

the behavior of PID control is linear and cannot deal 

with the high disturbance and high nonlinearity of 

complicated systems [12-13]. 

The fractional order PID (FOPID) control has 

been widely used in control engineering in recent 

decades [14]. The FOPID considers the nonlinear 

copy of PID control where two more parameters 

(the fractional integral and derivative) added to the 

PID control parameters [15]. Hence, the task of 

designer selecting the proper values for the five 

parameters of the FOPID control [16]. The FOPID 

control can solve the nonlinearity problem but it 

cannot deal with the sudden disturbance due to its 

parameters which still fixed [17]. A few techniques 

have been proposed to tune the five parameters of 

FOPID control online but all of these techniques are 

based on the fuzzy logic control [18-19]. The fuzzy 

logic control can solve the uncertainty problem and 

sudden disturbance but its design depends on the 

experience which sometimes is not available for 

some systems [5,20,21]. This study presents a novel 
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technique to tune the FOPID control parameters 

online based on optimal model reference adaptive 

control (MRAC). It is known that the MRAC is high 

ranking adaptive control where it forces the overall 

system to follow the behavior of preselected model 

reference [22]. The preselected model can be first or 

second order system according to the point of view 

the designer and complicated degree of the system 

[23].The task of model reference adaptive control is 

adjusting the FOPID control parameters online. The 

model reference contains the desired performance 

which can satisfy the designer. Moreover, to 

guarantee high performance the parameters of 

model reference optimized using the harmony 

search (HS) optimization technique according to a 

certain cost function. 

The paper has organized as follows, firstly, the 

experimental setup is presented. Secondly, the 

proposed control techniques are demonstrated. 

Thirdly, the simulation results are illustrated. 

Finally, the conclusion is discussed.  

 

2 Experimental Setup 
 

This section presents the main components of 

one stage servomechanism system. Also, it shows 

the open loop performance of servomechanism 

system through developing accurate identified 

model for one stage servomechanism system. Fig.1 

illustrates the main components of one stage table 

servomechanism experimental setup which consists 

of seven parts as the following:  

1. One Stage Table: The DC Motor Electro-

Mechanical Module demonstrates closed- and open-

loop positioning control concepts as well as some 

electromechanical principles. The stroke of table 

ranges from 0 to 9 Inch. It consists of a DC motor 

driving a lead screw on which a sliding block is 

installed. The DC motor has nominal speed 1800 

rev/min, and armature voltage 90 V dc motor. 

2. Optical Encoder: An encoder is an electrical 

mechanical device that can monitor motion or 

position. A typical encoder uses optical sensors to 

provide a series of pulses that can be translated into 

motion. The Optical Encoder is an add-on that 

provides position feedback signals (100 pulses per 

revolution). 

3. Limit Switches: Two magnetic limit switches 

detect when the sliding block reaches the start or 

end position. 

 

4. Motor Driver: The DC Motor Drive controls 

the DC Motor Electro-Mechanical Module, Model 

3293. The drive is configured to operate the motor 

at one of two user defined speeds. Input signals are 

used to switch between the two set speeds, to select 

the direction of motion (forward or reverse), and to 

enable the movement. This versatile drive also 

allows an external signal to control the motor speed. 

5. A data acquisition card (DAQ) NI USB-6009. 

6. Push Buttons, Toggle Switches and Lights: 

they use to operate the DC motor driver manually. 

7. Computer used to perform the control 

algorithms and receive and send the signals from the 

NI DAQ Card. 

The designed program will make the NI DAQ 

Card generate random signal ranges from -5V to 

+5V with sample rate 50 milliseconds which will be 

input to the DC motor drive. The speed of DC motor 

will fluctuate with change the generated signal. The 

positive voltage range of output signal will be made 

the DC motor speed fluctuates in the forward 

direction while the DC motor has fluctuated in 

reverse direction through the negative voltage range. 

The shaft of the optical encoder will be coupled 

with lead screw shaft to measure the speed and 

position of the table. The data will be collected and 

stored in excel sheet file and then this data will be 

used to can create identified model for one stage 

servomechanism system. 

 

The general linear transfer function of such a 

system may be written as follows: 
 
𝑦(𝑠)

𝑢(𝑠)
=

𝑘 

𝑏𝑛.𝑆
𝑛+𝑏𝑛−1.𝑆

𝑛−1+⋯+𝑏0
                                    (1) 

 

     Where 𝑦(𝑠) is linear speed of one stage 

table,𝑢(𝑠) is input signal to DC motor driver, n is 

system order and 𝑘, 𝑏𝑛, … , 𝑏0 are the estimated 

parameters of the approximate transfer function. It is 

known that the nonlinear system cannot be 

represented exactly by linear models. The accuracy 

of the model can be increased by increasing the 

order of the linear system. However, often there is a 

limitation that increasing order cannot improve the 

model accuracy sufficiently. Therefore, it is 

necessary to explicitly add the nonlinearities into the 

system. In this paper, the nonlinear ARX model 

structure has been applied to model such systems 

where AR refers to autoregressive part and X to the 

extra input. The set of candidate identified models 

have been implemented.   
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Fig.1 The one Stage Table Servomechanism Experimental 

Setup 

      Fig.2 demonstrates the actual experimental 

setup of one stage table servomechanism and the 

linear speed of candidate identified models. It is 

obvious that identified model based on nonlinear 

least squares can simulate the behavior of actual 

experimental setup compared to the second order 

identified model. So, this model will be used to help 

us to can design and implement advanced control 

techniques. 

 

Fig.2 The linear speed of one stage table servomechanism for 

actual experimental setup and identified models 

      Table 1 demonstrates the mean square error of 
each identified model. It can be noted that identified 
model based on the nonlinear least square method 
has the minimum error compared to the second 
order identified model systems. 

 

TABLE 1  

MEAN SQUARE ERROR OF CANDIDATES IDENTIFIED 

MODEL 

No. System Identification Method        Mean Square Error 

1 Linear Least Square 0.1973 

2 Nonlinear Least Squares  0.05912 

 

3 Control Techniques 
 

This section demonstrates the design steps of 

three different control techniques. The first 

technique is the conventional PID control based on 

Harmony Search (HS). The second technique is the 

FOPID control based on HS. The third technique is 

a novel self-tuning FOPID based on optimal model 

reference adaptive system.  

 

3.1 PID Control 
 

It is well known that the transfer function of the 

linear PID controller is   𝐾(𝑠) = 𝐾𝑃 + 𝐾𝑖/𝑠 + 𝐾𝑑𝑠. 
Where 𝐾𝑝, 𝐾𝑖 and  𝐾𝑑 are fixed gains. These gains 

can be defined as follows. The 𝐾𝑝 is the 

proportional gain which attempt to reduce the error 

responses. The 𝐾𝑖 is the integral gain and its role 

dampen the steady state error. The  𝐾𝑑 is the 

differential gain which decrease the overshoot of 

system also, it ensures the system stability [24-25].  

In spite of linear fixed parameters PID 

controllers are often suitable for controlling a simple 

physical process, the demands for high performance 

control and systems have different operating points 

are often beyond the abilities of simple PID 

controllers [26-27]. In this study, the optimal 

parameters of PID controller have been obtained 

using Harmony Search (HS) technique. Harmony 

search (HS) was suggested by Zong Woo Geem in 

2001 [28]. It is well known that HS is a 

phenomenon-mimicking algorithm inspired by the 

improvisation process of musicians [29]. The offline 

optimization has implemented according to the 

objective function as shown in equation (2) [30]. 

 

  𝑓 =
1

(1−𝑒−𝛽)(𝑀𝑝+𝑒𝑠𝑠)+𝑒
−𝛽(𝑡𝑠−𝑡𝑟)

                               (2) 

     Where 𝑒𝑠𝑠 is the steady state error, 𝑀𝑝 is the 
overshoot of system response, 𝑡𝑠 is the settling time 
and 𝑡𝑟 is the rise time. Also, this objective function 
is able to compromise the designer requirements 
using the weighting parameter value (β). The 
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parameter is set larger than 0.7 to reduce over shoot 
and steady state error. If this parameter is adjusting 
smaller than 0.7 the rise time and settling time will 
be reduced. The initial population of Harmony 
Memory (HM) is chosen randomly. 
 

     Fig.3 shows the overall Harmony Search tuning 
system with PD-PID control. HM consists of 
Harmony Memory Solution (HMS) vectors. The 
HM is filled with HMS vectors as follows: 
 

𝐻𝑀 =

[
 
 
 
 
 
𝐾p (1,1) 𝐾i (1,2) 𝐾d (1,3) 𝐾p (1,4) 𝐾d (1,5)
𝐾p (2,1) 𝐾i (2,2) 𝐾d (2,3) 𝐾p (2,4) 𝐾d (2,5)
. . . . .
. . . . .
. . . . .

𝐾𝑝 (𝐻𝑀𝑆,1)𝐾𝑖 (𝐻𝑀𝑆,2)𝐾𝑑 (𝐻𝑀𝑆,3)𝐾p (HMS,4)𝐾𝑑 (𝐻𝑀𝑆,5)]
 
 
 
 
 

      

                                                                               (3) 

Fig.3 The PD-PID closed loop system with harmony search 

tuning system 

3.2 FOPID Control 
 

The fractional order PID controllers have two 

more parameters (λ and μ) in addition to the three 

known parameters of conventional PID controllers 

proportional (𝑘𝑝), integral (𝑘𝑖) and derivative (𝑘𝑑) 

parameters. The (λ) and (μ) are the power of (s) in 

integral and derivative actions respectively. The 

most common form of a fractional order PID 

controller is the PIλDμ where μ and λ can be any 

real numbers. 

The controller transfer function has the form: 

 

𝐺𝑐 =
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 + 𝑘𝑖

1

𝑠𝜆
+ 𝑘𝑑𝑠

𝜇 , (𝜆 , 𝜇 > 0)          (4) 

 

The initial population of Harmony Memory 

(HM) is selected aimlessly. Fig.4 shows the overall 

Harmony Search tuning system with FOPD-FOPID 

control [29]. The offline optimization has 

implemented based on the objective function as 

shown in equation (2) HM involves Harmony 

Memory Solution (HMS) vectors. The HM is filled 

with HMS vectors as follows: 

  𝐻𝑀 =

[
 
 
 
 
 
𝐾𝑝 (1,1) 𝐾𝑖 (1,2) 𝐾𝑑 (1,3) 𝜆 (1,4) 𝜇 (1,5) 𝐾𝑝 (1,6) 𝐾𝑑 (1,7) 𝜇 (1,8)
𝐾𝑝 (2,1) 𝐾𝑖 (2,2) 𝐾𝑑 (2,3) 𝜆 (2,4) 𝜇 (2,5) 𝐾𝑝 (2,6) 𝐾𝑑 (2,7) 𝜇 (2,8)
. . . . . . . .
. . . . . . . .
. . . . . . . .

𝐾𝑝 (𝐻𝑀𝑆,1)𝐾𝑖 (𝐻𝑀𝑆,2)𝐾𝑑 (𝐻𝑀𝑆,3)𝜆 (𝐻𝑀𝑆,4)𝜇 (𝐻𝑀𝑆,5)𝐾𝑝 (𝐻𝑀𝑆,6)𝐾𝑑 (𝐻𝑀𝑆,7)𝜇 (𝐻𝑀𝑆,8)]
 
 
 
 
 

                                                                                          (5)  

 

Fig.4 The FOPD-FOPID closed loop system with harmony 

search tuning system 

 

3.3 Self-Tuning FOPID Control 

     The Model Reference Adaptive Control (MRAC) 
is high-ranking adaptive controller [31]. It may be 
regarded as an adaptive servo system in which the 
desired performance is expressed in terms of a 
reference model [22,23,7]. In this work the FOPID 
control parameters will be adjusted on-line using the 
model reference technique. Fig.5 presents the 
structure of self-tuning FOPID based on model 
reference technique. 

 
Fig.5 The overall system with self-tuning FOPID based on 

model reference technique 

     The MIT rule is the original approach to model 
reference adaptive control. The name is derived 
from the fact that it was developed at the 
Instrumentation Laboratory (now the Draper 
Laboratory) at MIT. To adjust parameters in such a 
way that the loss function is minimized. 

  𝑗(𝜃) =
1

2
𝑒𝑚
2                                                                   (6) 

To make j small, it is reasonable to change the 
parameters in the direction of the negative gradient 
of j, that is, 

𝑑𝜃

𝑑𝑡
= −𝛾

𝜕𝑗

𝜕𝜃
= −𝛾𝑒𝑚

𝜕𝑒𝑚

𝜕𝜃
                                              (7) 
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Where 𝛾 stand for the adaptation gain while 𝜃 is the 
FOPID controller parameters. The transfer function 
of FOPID control can be described as follows. 

𝑢(𝑠)

𝑒(𝑠)
= 𝑘𝑝 + 𝑘𝑖

1

𝑠𝜆
+ 𝑘𝑑𝑠

𝜇                                               (8) 

𝑒 = 𝑢𝑐 − 𝑦                                                                     (9) 

Assume that the plant can be simplified to a first 
order system as obvious in the following equation. 

𝑦(𝑠)

𝑢(𝑠)
=

𝑘

𝑇𝑠+1
                                                                    (10) 

Where 𝑘 𝑎𝑛𝑑 𝑇 are unknown parameters. Also, 
assume that the model reference takes a form first 
order system as the following relationship. 

 
𝑦𝑚(𝑠)

𝑢𝑐(𝑠)
=

𝑘𝑚

𝑇𝑚𝑠+1
                                                               (11) 

Where 𝑘𝑚 𝑎𝑛𝑑 𝑇𝑚 are selected by designer. 

From equations [8-11] can conclude that  

  𝑦 =
𝑘

𝑇𝑠+1
(𝑘𝑝 + 𝑘𝑖

1

𝑠𝜆
+ 𝑘𝑑𝑠

𝜇)(𝑢𝑐 − 𝑦)                      (12) 

𝑦𝑖𝑒𝑙𝑑𝑠
→                  𝑦 =

𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇

𝑇𝑠+1
𝑢𝑐 −

𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇

𝑇𝑠+1
𝑦           

(1 +
𝑘𝑘𝑝 + 𝑘𝑘𝑖 .

1
𝑠𝜆
+ 𝑘𝑘𝑑𝑠

𝜇

𝑇𝑠 + 1
)𝑦

=
𝑘𝑘𝑝 + 𝑘𝑘𝑖 .

1
𝑠𝜆
+ 𝑘𝑘𝑑𝑠

𝜇

𝑇𝑠 + 1
𝑢𝑐 

(
𝑇𝑠 + 1 + 𝑘𝑘𝑝 + 𝑘𝑘𝑖 .

1
𝑠𝜆
+ 𝑘𝑘𝑑𝑠

𝜇

𝑇𝑠 + 1
)𝑦

=
𝑘𝑘𝑝 + 𝑘𝑘𝑖 .

1
𝑠𝜆
+ 𝑘𝑘𝑑𝑠

𝜇

𝑇𝑠 + 1
𝑢𝑐 

𝑦 =
𝑘𝑘𝑝+𝑘𝑘𝑖.

1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇

𝑇𝑠+1+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇
𝑢𝑐                                       (13) 

 𝑒𝑚 = 𝑦 − 𝑦𝑚                                                               (14)  

𝑒𝑚 = [
𝑘𝑘𝑝+𝑘𝑘𝑖.

1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇

𝑇𝑠+1+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇
−

𝑘𝑚

𝑇𝑚𝑠+1
] 𝑢𝑐                    (15) 

3.3.1 Adaptation Law of 𝒌𝒑 Parameter 

     This sub-section shows the steps of design of the 
adaptation law for proportional gain parameter (𝑘𝑝). 
By deriving the equation (15) respect to the 
proportional gain (𝑘𝑝) to obtain the following 
relationship. 

𝜕𝑒𝑚

𝜕𝑘𝑝
= [

𝑘

𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑑𝑠
𝜇+𝑘𝑘𝑖.

1

𝑠𝜆
+1
−

𝑘(𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑑𝑠
𝜇+𝑘𝑘𝑖.

1

𝑠𝜆
+1)

2] 𝑢𝑐                                            

                                                                                      (16) 

Equation (16) can be rewritten 

𝜕𝑒𝑚

𝜕𝑘𝑝
= [

𝑘(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1−𝑘𝑘𝑝−𝑘𝑘𝑖.
1

𝑠𝜆
−𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2 ] 𝑢𝑐           (17)             

𝜕𝑒𝑚

𝜕𝑘𝑝
= [

𝑘(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2] 𝑢𝑐                            (18)      

𝜕𝑒𝑚

𝜕𝑘𝑝
= [

𝑘(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)(𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)
] 𝑦   (19)                                  

From equation (17) and equation (19) 

𝜕𝑒𝑚

𝜕𝑘𝑝
= [

𝑘2𝑒

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
]                                   (20)         

To achieve the desired performance, the following 

condition must be hold.  

𝑇𝑠 + 𝑘𝑘𝑝 + 𝑘𝑘𝑖 .
1

𝑠𝜆
+ 𝑘𝑘𝑑𝑠

𝜇 + 1 = 𝑇𝑚𝑠 + 1              (21)  

 𝜕𝑒𝑚

𝜕𝑘𝑝
=

𝑘2𝑒

𝑇𝑚𝑠+1
                                                                 (22)  

From the MIT rule can obtain the following 

relationship 

𝑑𝑘𝑝

𝑑𝑡
= −𝛾. 𝑒𝑚.

𝑘2𝑒

𝑇𝑚𝑠+1
                                                     (23) 

𝑑𝑘𝑝

𝑑𝑡
= −𝛾1.

𝑒𝑚.𝑒

𝑇𝑚𝑠+1
                                                          (24) 

 𝛾1 = 𝛾. 𝑘
2                                                                    (25) 

  𝑘𝑝)𝑛𝑒𝑤 = ∫
𝑑𝑘𝑝

𝑑𝑡
 𝑑𝑡 + 𝑘𝑝(0)                                       (26) 

Where 𝑘𝑝(0) is the initial value of proportional gain 
𝑘𝑝. 
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3.3.2 Adaptation Law of 𝒌𝒊 Parameter 

       This sub-section shows the steps of design of 

the adaptation law for integral gain parameter (𝑘𝑖). 
By deriving the equation (14) respect to the integral 

gain (𝑘𝑖) to obtain the following relationship. 

𝜕𝑒𝑚

𝜕𝑘𝑖
=

1

𝑠𝜆
[

𝑘

𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑑𝑠
𝜇+𝑘𝑘𝑖.

1

𝑠𝜆
+1
−

𝑘(𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑑𝑠
𝜇+𝑘𝑘𝑖.

1

𝑠𝜆
+1)

2] 𝑢𝑐  

                                                                                      (27)                                                       

Equation (27) can be rewritten 

  
𝜕𝑒𝑚

𝜕𝑘𝑖
=

1

𝑠𝜆
[
𝑘(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.

1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1−𝑘𝑘𝑝−𝑘𝑘𝑖.
1

𝑠𝜆
−𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2 ] 𝑢𝑐   (28)                                            

  
𝜕𝑒𝑚

𝜕𝑘𝑖
=

1

𝑠𝜆
[

𝑘(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2] 𝑢𝑐                      (29)                                 

  
𝜕𝑒𝑚

𝜕𝑘𝑖
=

1

𝑠𝜆
[

𝑘(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)(𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)
] 𝑦      (30)                    

From equation (28) and equation (30) 

  
𝜕𝑒𝑚

𝜕𝑘𝑖
=

1

𝑠𝜆
[

𝑘2𝑒

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖.
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
]                             (31) 

To achieve the desired performance, the condition 

must be hold in equation (15). 

𝜕𝑒𝑚

𝜕𝑘𝑖
=

1

𝑠𝜆

𝑘2𝑒

𝑇𝑚𝑠+1
                                                              (32)   

From the MIT rule can obtain the following 

relationship 

𝑑𝑘𝑖

𝑑𝑡
= −𝛾. 𝑒𝑚.

1

𝑠𝜆

𝑘2𝑒

𝑇𝑚𝑠+1
                                                  (33) 

 𝑑𝑘𝑖

𝑑𝑡
= −𝛾2.

𝑒𝑚 .𝑒

𝑇𝑚𝑠+1
                                                          (34) 

𝛾2 = 𝛾𝑘
2.

1

𝑠𝜆(0)
= 𝛾1

1

𝑠𝜆(0)
                                              (35) 

𝑘𝑖)𝑛𝑒𝑤 = ∫
𝑑𝑘𝑖

𝑑𝑡
 𝑑𝑡 + 𝑘𝑖(0)                                           (36) 

Where 𝑘𝑖(0) is the initial value of proportional gain 

𝑘𝑖. 

3.3.3 Adaptation Law of 𝒌𝒅 Parameter 

This sub-section illustrates the steps of design of the 
adaptation law for derivative gain parameter (𝑘𝑑). 
By deriving the equation (15) respect to the 
derivative gain (𝑘𝑑) to obtain the following 
relationship. 

𝜕𝑒𝑚

𝜕𝑘𝑑
= [

𝑘𝑠𝜇

𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1
−

𝑘𝑠𝜇(𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2] 𝑢𝑐   

                                                                                     (37) 

𝜕𝑒𝑚

𝜕𝑘𝑑
= [

𝑘𝑠𝜇(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1−𝑘𝑘𝑝−𝑘𝑘𝑖
1

𝑠𝜆
−𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2 ] 𝑢𝑐       

                                                                                      (38)             

𝜕𝑒𝑚

𝜕𝑘𝑑
= [

𝑘𝑠𝜇(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2] 𝑢𝑐                             (39)  

 

𝜕𝑒𝑚

𝜕𝑘𝑑
= [

𝑘𝑠𝜇(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)(𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)
] 𝑦    

                                                                                      (40)                 

Also, from equation (38) and equation (40) 

  𝜕𝑒𝑚

𝜕𝑘𝑑
= [

𝑘2.𝑠𝜇.𝑒

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
]                                  (41)                    

𝜕𝑒𝑚

   𝜕𝑘𝑑
=
𝑘2.𝑠𝜇.𝑒

𝑇𝑚𝑠+1
                                                                (42) 

 𝑑𝑘𝑑

𝑑𝑡
= −𝛾. 𝑒𝑚.

𝑘2.𝑠𝜇.𝑒

𝑇𝑚𝑠+1
                                                    (43) 

𝑑𝑘𝑑

𝑑𝑡
= −𝛾3.

𝑒𝑚 .𝑒

𝑇𝑚𝑠+1
                                                          (44) 

 𝛾3 = 𝛾. 𝑘
2. 𝑠𝜇(0) = 𝛾1. 𝑠

𝜇(0)                                        (45) 

𝑘𝑑)𝑛𝑒𝑤 = ∫
𝑑𝑘𝑑

𝑑𝑡
 𝑑𝑡 + 𝑘𝑑(0)                                        (46) 

Where 𝑘𝑑(0) is the initial value of derivative gain 
𝑘𝑑. 

3.3.4 Adaptation Law of 𝝀 Parameter 

     This sub-section illustrates the steps of design of 

the adaptation law for fractional integral gain 

parameter (𝜆). By deriving the equation (15) respect 

to the fractional integral gain (𝜆) to obtain the 

following relationship. 
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𝜕𝑒𝑚

𝜕𝜆
=
𝑘𝑘𝑖𝑙𝑛 (𝑠)

𝑠𝜆
[

(𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2 −

1

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
] 𝑢𝑐                                           (47)           

𝜕𝑒𝑚

𝜕𝜆
=
𝑘𝑘𝑖𝑙𝑛 (𝑠)

𝑠𝜆
[
𝑘𝑘𝑝+𝑘𝑘𝑖

1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇−𝑇𝑠−𝑘𝑘𝑝−𝑘𝑘𝑖
1

𝑠𝜆
−𝑘𝑘𝑑𝑠

𝜇−1

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2 ] 𝑢𝑐   

                                                                                     (48)                                                                                                                                

𝜕𝑒𝑚

𝜕𝜆
=
𝑘𝑘𝑖𝑙𝑛 (𝑠)

𝑠𝜆
[

−(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2] 𝑢𝑐               (49) 

𝜕𝑒𝑚

𝜕𝜆
=
𝑘𝑘𝑖𝑙𝑛 (𝑠)

𝑠𝜆
[

−(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)(𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)
] 𝑦         

                                                                                      (50)                                                                                           

Also, from equation (48) and equation (50) 

  
𝜕𝑒𝑚

𝜕𝜆
= −

𝑘2𝑘𝑖𝑙𝑛 (𝑠)

𝑠𝜆
[

𝑒

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
]                (51) 

  
𝜕𝑒𝑚

𝜕𝜆
= −

𝑘2𝑘𝑖𝑙𝑛 (𝑠)

𝑠𝜆
.

𝑒

𝑇𝑚𝑠+1
                                             (52) 

   
𝑑𝜆

𝑑𝑡
= 𝛾. 𝑒𝑚.

𝑘2𝑘𝑖𝑙𝑛 (𝑠)

𝑠𝜆
.

𝑒

𝑇𝑚𝑠+1
                                        (53) 

   
𝑑𝜆

𝑑𝑡
= 𝛾4.

𝑒𝑚.𝑒

𝑇𝑚𝑠+1
                                                            (54) 

   𝛾4 = 𝛾.
𝑘2𝑘𝑖(0) 𝑙𝑛 (𝑠)

𝑠𝜆(0)
= 𝛾2. 𝑘𝑖(0). 𝑙𝑛 (𝑠)                     (55) 

   𝜆)𝑛𝑒𝑤 = ∫
𝑑𝜆

𝑑𝑡
 𝑑𝑡 + 𝜆(0)                                           (56) 

Where 𝜆(0) is the initial value of fractional integral 
gain 𝜆. 

3.3.5 Adaptation Law of 𝝁 Parameter 

      This sub-section demonstrates the steps of 
design of the adaptation law for fractional derivative 
gain parameter (𝜇). By deriving the equation (15) 
respect to the fractional derivative gain (𝜇) to obtain 
the following relationship. 

𝜕𝑒𝑚

𝜕𝜇
= [

𝑘𝑘𝑑.𝑠
𝜇.𝑙𝑛 (𝑠)

𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1
−
𝑘𝑘𝑑.𝑠

𝜇.𝑙𝑛 (𝑠)(𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2 ] 𝑢𝑐   

                                                                                      (57) 

𝜕𝑒𝑚

𝜕𝜇
= [

𝑘𝑘𝑑.𝑠
𝜇.𝑙𝑛 (𝑠)(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖

1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1−𝑘𝑘𝑝−𝑘𝑘𝑖
1

𝑠𝜆
−𝑘𝑘𝑑𝑠

𝜇)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2 ] 𝑢𝑐   

                                                                                      (58)                                                                                                   

𝜕𝑒𝑚

𝜕𝜇
= [

𝑘𝑘𝑑.𝑠
𝜇.𝑙𝑛 (𝑠)(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
2] 𝑢𝑐                            (59) 

𝜕𝑒𝑚

𝜕𝜇
= [

𝑘𝑘𝑑.𝑠
𝜇.𝑙𝑛 (𝑠)(𝑇𝑠+1)

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)(𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇)
] 𝑦   (60) 

Also, from equation (58) and equation (60) 

𝜕𝑒𝑚

𝜕𝜇
= [

𝑘2𝑘𝑑.𝑠
𝜇.𝑙𝑛 (𝑠).𝑒

(𝑇𝑠+𝑘𝑘𝑝+𝑘𝑘𝑖
1

𝑠𝜆
+𝑘𝑘𝑑𝑠

𝜇+1)
]                                  (61) 

𝜕𝑒𝑚

𝜕𝜇
=
𝑘2𝑘𝑑.𝑠

𝜇.𝑙𝑛 (𝑠).𝑒

𝑇𝑚𝑠+1
                                                     (62) 

𝑑𝜇

𝑑𝑡
= −𝛾. 𝑒𝑚.

𝑘2𝑘𝑑.𝑠
𝜇.𝑙𝑛 (𝑠).𝑒

𝑇𝑚𝑠+1
                                          (63) 

𝑑𝜇

𝑑𝑡
= −𝛾5.

𝑒𝑚 .𝑒

𝑇𝑚𝑠+1
                                                          (64) 

𝛾5 = 𝛾. 𝑘
2. 𝑘𝑑(0). 𝑠

𝜇(0). 𝑙𝑛(𝑠) = 𝛾3. 𝑘𝑑(0). 𝑙𝑛 (𝑠)     (65)           

𝜇)𝑛𝑒𝑤 = ∫
𝑑𝜇

𝑑𝑡
 𝑑𝑡 + 𝜇(0)                                            (66) 

Where 𝜇(0) is the initial value of fractional integral 
gain 𝜇. 

      The adaptation gains can be obtained using the 
Harmony Search (HS) optimization based on the 
objective function in equation (2). The initial 
population of Harmony Memory (HM) is produced 
randomly. HM contains Harmony Memory Solution 
(HMS) vectors. The HM is filled with HMS vectors 
as follows: 

   𝐻𝑀 =

[
 
 
 
 
 
𝛾1 (1,1) 𝛾2(1,2) 𝛾3 (1,3) 𝛾4 (1,4) 𝛾5(1,5)
𝛾1 (2,1) 𝛾2(2,2) 𝛾3(2,3) 𝛾4 (2,4) 𝛾5(2,5)
. . . . .
. . . . .
. . . . .

𝛾1 (𝐻𝑀𝑆,1)𝛾2 (𝐻𝑀𝑆,2)𝛾3(𝐻𝑀𝑆,3)𝛾4 (HMS,4)𝛾5(𝐻𝑀𝑆,5)]
 
 
 
 
 

    

                                                                                      (67) 

     The self-tuning FOPID control will be applied as 
position control in one stage servomechanism 
system. So, the integral part will be eliminated to 
become self-tuning FOPD control as shown in 
Fig.6.  
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Fig.6 The overall system with self-tuning FOPID based on 

model reference technique 

 

4 Experimental Results 
 

This section demonstrates the experimental 

results of different control techniques which has 

mentioned in the previous section. There are two 

tests will be implemented to investigate each control 

technique. The first test is applied at constant 

position reference while the second test is subjected 

at variable position reference. 

4.1 Constant position reference 

This test considers the position reference at 

constant value (7 inch) and the stage has adjusted at 

zero inch. Fig.7 illustrates the responses of stage 

position using three different control techniques. It 

can be noted that the self-tuning FOPD-PID control 

has minimum rise time and more smoothly behavior 

compared to other control techniques. Also, the self-

tuning FOPD-PID control has a very small 

overshoot in a small time.  

 

 
Fig.7 The actual stage position response of each control 

technique at constant position reference 

 

Fig.8 demonstrates the corresponding stage 

speed responses through the experiment. It can be 

obvious that the self-tuning FOPID-PID control has 

high speed at the rise time period. Also, it has 

undershoot in speed at moment 2 second to can 

compensate the overshoot in stage position. Then, 

the stage speed stables at zero approximately. 

 

 
Fig.8 The corresponding stage speed response of each 

control technique at constant position reference. 

 

Fig.9 displays the corresponding position 

controllers output through the experiment. It is clear 

that controller’s outputs have maximum value at rise 

time period and then they reduce suddenly to zero 

when the stage reach the required position.  

 

 
Fig.9 The position controller output response of each control 

technique at constant position reference  

 

Fig.10 demonstrates the corresponding speed 

controllers output through the experiment. The 

speed controller output of self-tuning FOPD-PID 

control has a maximum value compared to other 

control techniques which makes the stage 

accelerated rapidly to reach the position reference. 
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Fig.10 The speed controller output response of each control 

technique at constant position reference 

 

4.2 Variable Position Reference 

 

The position reference in this test changes 

continuously to measure the control performance 

and its ability to track different types of position 

reference trajectories. Figure 11 shows the stage 

position behaviors using several control techniques 

and at variable position reference. It can be noted 

that the self-tuning FOPD-FOPID control can track 

accurately the complicated trajectory respect to 

other control techniques. Also, the HS Based 

FOPD-FOPID control has acceptable tracking 

accuracy but it has a high error in the beginning of 

tracking while the HS Based PD-PID control has a 

high deviation about the position reference 

trajectory. 

 
Fig.11 The actual stage position response of each control 

technique at variable position reference 

 

Fig.12 demonstrates the corresponding stage 

speed responses for each control technique. It can be 

noted that the stage speed of self-tuning FOPD-

FOPID control is very high through the first seconds 

of experiment and then the stage speed decreases 

gradually to can to can track the position reference 

trajectory. 

 

 
Fig.12 The corresponding speed stage response of each control 

technique at variable position reference 

 

Fig.13 shows the corresponding position 

controllers output through the variable position 

reference experiment. It is clear that in the first 

seconds of experiments the controllers output has a 

high value and then the controller’s outputs decrease 

gradually but at different times for each control 

technique until the signals polarity change to can the 

stage reverses its direction.  

 

 
Fig.13 The position controller output response of each 

control technique at variable position reference. 
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Fig.14 demonstrates the corresponding speed 

controllers output for each control technique 

through the variable position reference experiment. 

It can be noted that the speed control signal of self-

tuning FOPD-FOPID control reach the maximum 

value in the first seconds of experiment respect to 

other control techniques. Then, the value of each 

control technique reduces gradually until the 

polarity of signals change to can the direction of 

stage reverses automatically. 

 

 
Fig.14 The speed controller output response of each control 

technique at variable position reference.  

4 Conclusion 
A new technique has been developed to tune the 

fractional order PID (FOPID) control online based 

on optimal Model Reference Adaptive Control 

(MRAC). This work investigates the robustness of 

the proposed technique by applied it on one stage 

servomechanism system. The purpose of controller 

to track accurately a preselected position reference 

trajectory although the friction and backlash 

problems. Also, the performance of the proposed 

control technique has been compared to the PID and 

the FOPID control to ensure the robustness.  There 

are two tests have been implemented to investigate 

each control technique. The first test adjusts the 

position reference at constant value while the 

second test tunes the position reference to change 

continuously with time. The experimental results 

demonstrate that the self-tuning FOPD control based 

on optimal model reference adaptive system can 

eliminate the tracking error quickly compared to 

other control techniques. 
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