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Abstract: - During the recent decades there has been considerable development of sensorless vector controlled 
SPIM drives for high performance industrial applications. Sensorless drives have been successfully applied for 
medium and high speed operation, however, at low and zero speed operation, the instability and the poor 
performance of observers is still always a large challenge. In this paper, a novel Stator Current Based Model 
Reference Adaptive System (SC_MRAS) speed observer is proposed to improve the performance of the MRAS 
speed observer, especially at low speed region. In the new MRAS method, a two-layer linear Neural Network 
(NN), which has been trained online by means of an Ordinary Least quares (OLS)  algorithm, is used as an 
adaptive model to estimate the stator current. The proposed algorithm is less complicated, reduce computational 
effort, the proposed observer are quicker convergence in speed estimation. It can ensure that the whole drive 
system achieves faster satisfactory torque and speed control and strong robustness, especially at low and zero 
speed region. Beside the adaptive model of the proposed scheme is employed in prediction mode also is a new 
point to   make the proposed observer operate better accuracy and stability both in transient and steady-state 
operation, the dynamic performance is significantly improved. In this proposed, the rotor flux, which is needed 
for the stator current estimation of the adaptive model, is identifier by the Voltage Model (VM). Detailed 
simulations and experimental tests are carried out to investigate the performance of the proposed schemes when 
compared to the BPN MRAS. The results presented for the new scheme show the great improvement in the 
performance of the MRAS observer in sensorless modes of operation, especially at low and zero speed. 
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1. Introduction 
 

In recent decades, the multiphase motors have 
been proposed by the authors [1]. The main 
advantages of multiphase motors are higher torque 
density, greater efficiency, reduced torque 
pulsations, fault tolerance, and reduction in the 
required rating per inverter leg [1]. Therefore, 
multiphase motors are often considered in some 
applications such as locomotive traction, electrical 
ship propulsion, in high power applications such 
as automotive, aerospace, military and nuclear [2]. 
With its reliable working characteristics and high 
failure tolerance nowadays, this motors are even 
considered in the small power applications 
requiring high reliability and fault tolerance, 
where are expected that the loss of one or more 
phases the machine still can provide a significant 
electromagnetic torque to continue operating the 
system. Among the many types of multiphase 
motors, SPIM is one of the most widely used 
multiphase motors. 

The high performance SPIM drives require the rotor 
speed information. This can be obtained through a 
speed sensor or be estimated through the values of 
stator voltage and current. The use of speed sensor is 
associated with problems as reduction of reliability 
and mechanical robustness of the drives and cost 
increase, need of shaft extension and injects noise into 
the system. Moreover, in certain applications it is 
difficult to mount sensors. Therefore, different 
techniques for the speed sensorless control of 
induction motors have been proposed. They usually 
are divided into two categories, the fundamental 
model based observers and anisotropies model based 
observers. Model-based estimation strategies include 
open-loop observers [3], sliding-mode observers [4], 
extended and unscented Kalman filters [5], model 
reference adaptive systems (MRAS) [6–7] and 
artificial intelligence (AI) [8]. Recent research also 
used predictive current control for sensorless IM 
drives [9]. The main drawback of these model based 
observers are their insufficient performance at low 
speeds and machine parameter sensitivity. In order to 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Ngoc Thuy Pham, Diep Phu Nguyen, Khuong Huu Nguyen

E-ISSN: 2224-2856 364 Volume 13, 2018

mailto:Ngocpham1020@gmail.com


overcome these problems a high frequency 
voltage or current carrier were injected, needed to 
excite the saliency itself [10]. A different 
approach lies in trying to track the rotor slotting 
effect directly, without any high frequency carrier 
excitation [11]. These methods work well at low 
and near zero speed region. However, their major 
disadvantages are computational complexity, the 
need of external hardware for signal injection and 
the adverse effect of injecting signal on the 
machine performance. Therefore, because of its 
simplicity and ease of implementation the model 
based methods and especially MRAS based 
methods are, until now, the most widely used.   
There are the different techniques to estimating 
the rotor speed for the high performance IM 
drives have been proposed. However, because of 
relatively simpler to implement and often 
requiring lower computational effort the MRAS 
schemes are, until now, the most widely used. The 
MRAS schemes have been proposed in the 
literature based on rotor flux proposed by 
Schauder Rotor-flux (RF-MRAS) [12]. This 
scheme suffers from DC drift problems associated 
with pure integration and sensitivity to stator 
resistance variations, especially in the low speed 
regions. The back-EMF MRAS scheme was 
introduced to overcome the pure integration 
problem [13]. However, this scheme is difficult to 
design its adaptation gain constants and sensitive 
to stator resistance variations. The reactive power 
MRAS (RP-MRAS) scheme is immune to stator 
resistance variations but its disadvantage is 
instability in regenerating mode [14]. Another 
approach, the stator current MRAS scheme has 
been introduced by the authors for the speed 
identification of induction motor (IM) drives [15]. 
Simulation and experimental results have showed 
that the significantly improvement in low speed 
operation performance. In the [16]–[17] present a 
stator current based MRAS speed observer using 
NN, which is an evolution of [15]. As the MRAS 
observer in [15] measured stator current 
components are used as the reference model to 
avoid the use of a pure integrator and reduce 
influence of motor parameter variation. However 
in the adaptive model, by rearranging the rotor 
equations of the machine so that a two-layer NN  
can be employed. A BPN algorithm for the online 
training of the NN to estimate the rotor speed. In 
[17], the observer is verified thought simulation 
and experiment, the lowest speed limit of the 
observer and the zero-speed operation, at no load 
and at load are presented. However, in [17] the 
use of the nonlinear BPN algorithm to training a 
neural network  causes some problem as local 
minima, paralysis of the neural network,  need of 

two heuristically chosen parameters, initialization 
problems, and convergence problems. The adaptive 
model in [17] is used in simulation mode, which 
means that its outputs are fed back recursively, this 
make  reduce the accuracy and stability of the 
responses of observer.  

With the aim to improve the performance of 
the MRAS speed observer based stator current 
presented in [17], a new scheme is proposed in this 
paper. In this proposed speed observer, the reference 
model uses the stator current components to free  of 
pure integration problems and insensitive to motor 
parameter variations. The adaptive model based on the 
modified Euler integration has been used to solve the 
instability problems due to the discretization of the 
rotor equations of the machine. A linear neural 
network is used and trained online by means of an 
OLS algorithm instead of a nonlinear BPN algorithm 
to reduce the computation effort and overcome some 
drawbacks, which cause by its inherent nonlinearity. 
In addition, the adaptive model based on NN is 
implemented in the prediction mode instead of the 
simulation mode as in [17].  This ensures the proposed 
observer operate better accuracy and stability. In the 
proposed scheme, the rotor flux, which is needed for 
the stator current estimation of the adaptive model, is 
identifier by the Voltage Model (VM). The 
comparison between the proposed observer and the 
BPN SC MRAS observer has been implemented 
though simulation. Simulation results are given to 
compare the performance of the proposed BNP MRS 
observer [17]. The comparison data have proven that 
the proposed OLS_SC_MRAS observer are quicker 
convergence in speed estimation, better dynamic 
performances; lower estimation errors both in 
transient and steady-state operation. The terms of 
accuracy and robustness of the OLS_SC_MRAS 
observers is higher.   
The paper is organized into five sections. In Section 2, 
the basic theory of the model of the SPIM and the 
SPIM drive are presented. Section 3 introduces the 
proposed OLS_ SC_ MRAS speed observer. 
Simulation and discuss are presented in Section 4. 
Finally, the concluding is provided in Section 5. 
 
2. Model Vector Control Of Spim 
Drives 
 
2.1 Model vector control of SPIM drives 
 
The system under study consists of an SPIM fed by a 
six-phase VSI (voltage Source Inverter) and a DC 
link. A detailed scheme of the drive is provided in 
Fig.1. This SPIM is a continuous system that can be 
described by a set of differential equations.  The 
model of the system can be simplified by means of the 
vector space decomposition (VSD). By applying this 
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technique, the original six-dimensional space of 
the machine is transformed into three two-
dimensional orthogonal subspaces in the 
stationary reference fame (α-β), (x-y) and (zl -z2). 
This transformation is obtained by means of 6 x 6 
transformation matrix Eq (1). 
 

6

3 1 3 11 0
2 2 2 2
1 3 1 30 1
2 2 2 2

3 1 3 11 0
2 2 2 2

1 3 1 30 1
2 2 2 2

1 0 1 0 1 0
0 1 0 1 0 1

T

 
− − − 

 
 

− − 
 
 

= − − − 
 
 

− − 
 
 
 
 

          (1) 

In that, an amplitude invariant criterion was used. 
From the motor model obtained by using the VSD 
approach, the following conclusions should be 
emphasized: 
1. The electromechanical energy conversion 
variables are mapped to the (α-β) subspace. The 
non-electromechanical energy conversion 
variables can be found in other subspaces. 
2. The current components in the (x-y) subspace 
do not contribute to the air gap flux so they should 
be controlled to be as small as possible. 
3. The voltage vectors in the (zl -z2) are zero due 
to the separated neutrals configuration of the 
machine. 
A VSI has a discrete nature, actually, it has a total 
number of  different switching states defined by 
six switching functions corresponding to the six 
inverter legs [Sa,Sx,Sb,Sy,Sc,Sz], where Si є 
{0,1}.  On the other hand, a transformation matrix 
must be used to represent the stationary reference 
fame (α-β) in the dynamic reference (d - q). This 
matrix is given: 
 

cos( ) sin( )
sin( ) cos( )

r r
dq

r r

T
δ δ
δ δ

− 
=  
 

                              (2) 

The different switching states and the voltage of 
the DC link define the phase voltages which can 
in turn be mapped to the (α-β) - (x-y) space 
according to the Vector space decomposition VSD 
approach. 

 
Fig.1  A general scheme of an SPIM drive 
 

Fig.2  Switching states in (α-β) and (x-y) 
subspaces for a SP VSI 

 
2.2   Model of SPI 
 
In this part a six phase induction motor, which 
contains two sets of three phase winding spatially 
shifed by 30 electrical degrees with isolated neutral 
points (as depicted in Fig. 1), is modeled.  Stator and 
rotor voltage equation for this model is as follows:  

 

[ ] [ ][ ] [ ][ ] [ ][ ](s s s s s rV R I P L I M I= + +        (3) 

[ ] [ ][ ] [ ][ ] [ ][ ](r r r r r sV R I P L I M I= + +        (4) 
 

where: [V], [I], [R], [L] and [M] are voltage, current, 
resistant, self and mutual inductance vectors, 
respectively. P is differential operator. Subscript r and 
s related to the rotor and stator resistance respectively. 
Since the rotor is squirrel cage, [Vr] is equal to zero. 
By this matrix, the six-dimensional system is 
transferred to three orthogonal two dimensional 
subspaces (α-β), (x, y), (z1, z2), Stator and rotor 
equations in these different subspaces can be stated as: 
(α-β), (x, y), (z1, z2) subspaces : 
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where: Ls=Lls+M, Lr= Llr+M, M=3.Lms, p=d/dt.  
As these equations implies, the electromechanical 
conversion, only takes place in the α-β subspace 
(DQ subspace) and the other subspaces just 
produce losses.  
 
 
So the torque equation can be written as follows: 

3 ( i i )e rQ rD rD rQT P ψ ψ= −                                              
(6) 

 j ( )i r i r e L
d B P T T
dt
ω ω+ = −                                   (7)                                 

where: respectively, Ji, ωr, Bi, Tm, TL, P are 
inertia coefficient, angular speed, fiction factor, 
the electromagnetic torque that generated by the 
motor, load torque, number of poles and stator 
flux linkage at the related subspace. 
 
3. OLS NN_SC_MRAS speed observer 

 
3.1  PI_SC_ MRAS observer  

 
In the classical rotor flux MRAS speed observer, 
the reference model, usually expressed as a 
Voltage Model (VM), represents the stator 
equation and can be written as following: 

( )

( )

r
sD s sD n s sD

m

rD

rQ r
sQ s sQ n s sQ

m

d x
v R i T x pi

dt x

d x v R i T x pi
dt x

ψ
σ

ψ
σ

= −−

= − −

                  (6) 

 
where: rs:  stator resistances, xs = xm + xsσ; xr = 
xm + xrσ; xm:   respectively stator, rotor 
reactances and magnetizing, xσs, xσr: stator and 
rotor leakage reactances, p=d/dt; Tn = 1/2πfsn, σ 
= 1- xm2 /xs xr, fsn:  nominal frequency.  
The adaptive model, usually represented by the 
Current Model (CM), describes the rotor equation 
where the rotor flux components are expressed in 
terms of stator current components and the rotor 
speed.  

( ) )

( ) )

rD r
m sD rD rQ n

r

rQ r
m sQ rQ rD n

r

d r x i T
dt x

d r x i T
dt x

ψ ψ ωψ

ψ
ψ ωψ

= − −

= − −

                     (7)  

 
Looking at the formula (6), it is easy to find the 
presence of  rs and rotor flux, These make the 
traditional RF_MRAS observer suffered by pure 
integration problems, which being able to cause dc 
drift and initial condition problems, and insensitive to 
motor parameter variations. In order to overcome 
these problems another approach, the stator current 
MRAS scheme has been proposed, the stator current 
components is used as a reference model.  The stator 
current estimator is adjustable model. The estimated 
stator current components are compared with their 
measured values, and the signal eis is used in the 
adaptation mechanism (9) to generate the rotor speed. 
In this observer, the mathematical model of the stator 
current observer can be calculated from the combined 
voltage- and current  models and is described by the 
following equation: 

^
^

^
^

1 ( )

1 ( )

rr

rr

sD m m r
Qn sD s sD r sD D

s r r r

sQ m m r
Dn sQ s sQ r sQ Q

s r r r

d i x x rT v r i r i
dt x x x x

d i x x rT v r i r i
dt x x x x

ψ ωψ
σ

ψ ωψ
σ

 
= − − − − 

 

 
= − − − − 

 

            (8) 

The adjustable model (8) requires information about 
the rotor flux. This is calculated on the basis of 
voltage model (VM) (6) or current model (CM). In the 
PI_SC_MRAS observer, the used adaptation 
algorithm is based on the error between estimated and 
measured stator current developed in [18] (basing on 
the minimization of the Lyapunov function) 

^
( ) ( )i

r p iD rQ iQ rD iD rQ iQ rD
kk e e e e dt
p

ω ψ ψ ψ ψ= + + +                (9) 

 
where eisD = isD − iesD, eisQ = isQ − iesQ is the error 
between estimated and measured stator current. The 
obtained rotor-speed value is used in the stator-current 
estimators as changeable parameter, as shown in the 
Fig.3 
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Fig.3   PI _SC_ MRAS speed observer 

 
 3.2 OLS NN_SC_ MRAS observer 
 
3.2.1   Structure of the OLS_SC_ MRAS 
Observer 
 
In this scheme, the measured stator current 
components are also used as the reference model 
of the MRAS observer to avoid the use of a pure 
integrator and reduce influence of motor 
parameter variation as in [15-17]. The adaptive 
model is a two-layer linear NN to estimate the 
stator current has been trained online by means of 
an ordinary least-squares (OLS) algorithm. This 
adaptive model is described by the combined 
voltage- and current  models in the stator 
reference frame (8) 
Eq. (8), Then they been divided by Tn, be re 
written in the following as: 

.
X AX Bu= +                                                  (10) 
where:         
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Its corresponding discrete model is, therefore, 
given by: 

(k)

^
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(k 1) (k 1)
x s x sA T A T

x x sX e i e I A B u−
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eA T
s : is generally computed by truncating its 

power series ex pansion, i.e., 
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n
A T x s x s x sA T A T A Te I

n
= + + + +                       (12) 

If n=1, the simple forward Euler method is obtained, 
which gives the following finite difference equation 
[15-17] 
^ ^ ^ ^

(k) (k 1) (k 1) (k 1)1 2 (k 1) 3 4

^ ^ ^ ^
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= + + +

= + + +
                           

(13) 
where marks the variables estimated with the adaptive 
model and is the current time sample. A neural 
network can reproduce these equations, where are the 
weights of the neural networks defined as:  

2

1 1- - ;s s s m

s s r r

T r T Lw
L L L Tσ σ

= 2 ;s

s

Tw
Lσ

=
^

3 4; rs m s m

s r s r

T L T Lw w
L T L L

ω
σ σ

= =   (14) 

where: 
^

(k)si is the current variables estimated with the 
adaptive model and k is the current time sample. An 
artificial neural network (ANN) can reproduce these 
equations, where w1, w2, w3, w4  are the weights of 
the neural networks defined as (14); Ts is the 
sampling time for the stator current observer. The 
ANN has, thus, four inputs and two outputs [16]–[17].  
In the ANN, the weights w1, w2 and w3 are kept 
constant to their values computed offline while only 
w4 is adopted online. These equations are the same as 
those obtained in [17]. In the scheme is presented in 
[17], the adaptive model is characterized by the 
feedback of delayed estimated stator current 
components to the input of the neural network, which 
means that the adaptive model employed is in 
simulation mode. Moreover, the adaptive model is 
tuned online (training) by means of a BPN algorithm, 
however, nonlinear in its nature with the consequent 
drawbacks (local minima, heuristics in the choice of 
the network parameters, paralysis, convergence 
problems).  

In this OLS_SC_MRAS observer proposed, 
the adaptive model based on the ADALINE has been 
improved, A linear least-square algorithm, which is 
more suitable than a nonlinear one, like the BPN, is 
used to reduce the computation effort and overcome 
some drawbacks, which cause by its inherent 
nonlinearity. Furthermore, the employment of the 
adaptive model in prediction mode leads to a quicker 
convergence of the algorithm, a higher bandwidth of 
the speed control loop, a better behavior at zero-speed, 
lower speed estimation errors both in transient and 
steady-state conditions.  
An integration method more efficient than that used in 
(15) is the so-called modified Euler integration, which 
also takes into consideration the values of the 
variables in two previous time steps [19]. From (9), 
the following discrete time equations can be obtained, 
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as shown in (15). Also, in this case, a neural 
network can reproduce these equations, where  
and are the weights of the neural networks defined 
as (16). 
^ ^ ^
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(16) 
Rearranging (15), the matrix equation is 

obtained in prediction mode; see (17). This matrix 
equation can be solved by any least-square technique. 
This is a classical matrix equation of the type, where 
A is called a “data matrix”, b is called an“observation 
vector,” and A is the scalar unknown, In this 
application a classical OLS algorithm in a recursive 
form has been employed; This algorithm is described 
in detail in [19,20]. Fig. 4 shows the block diagram of 
the OLS_SC_ MRAS speed observer. 
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Fig.4   OLS_ SC_ MRAS speed observer  

3.2.2   Rotor Speed Estimation Algorithm:   
Ax ~ b is the linear regression problem under 
hand.  

All LS problems have been generalized by using a 
parameterized formulation (generalized OLS) of an 
error function whose minimization yields the 
corresponding solution. This error is given by : 

( ) ( )T
OLSE Ax b Ax b= − −                                               (18)                                              

where 
^

^

(k) (k)
( )

(k) (k)

sDisD sD

isQ
sQsQ

i i
Ax b

i i

ε
ε

ε

 −   − = = =     −  

 

This error can be minimized with a gradient descent 
method: 

(k 1) (k) (k)a(k)r rω ω ηγ+ = −                           (19) 
Where 

( ) ( ) ( ) ( )Tk a k a k b kγ = −                                    (20) 
where 𝜂𝜂 is the learning rate, a(k) is the row of A fed at 
instant k, and b(k) is the corresponding observation. 
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Fig.5   Sensorless vector control of SPIM drive using NN_SC_MRAS observer 
 

4. Simulink and Discussion 
 
To verify and evaluate the performance of the 
SC_MRAS using NN observer a sensorless vector 
control of SPIM drive system, as shown in Fig. 5 
has been simulated at different speed ranges through 
Matlab simulation software, specially surveyed at 
low speed range. SPIM parameters: 1HP, 220 V, 50 
Hz, 4 pole, 1450 rpm. Rs = 10.1Ω, Rr = 9.8546Ω, 
Ls = 0.833457 H, Lr = 0.830811H, m = 0.783106H, 
Ji = 0.0088 kg.m2. 
4.1  Test 1: Dynamic Performance:  
In this test,  the improvements in terms of dynamic 
performance achieved with the OLS MRAS 
observer have been verified by comparing the speed 
responses of both proposed OLS_SC_MRAS and 
BPN_SC_MRAS observer during second speed 

reversals, respectively, from 100 to 100 rad/s, from 
50 to 50 rad/s.  
Fig. 6(a) (b) and  Fig. 7(a) (b) show the reference, 
estimated, measured speed and the speed error 
during speed reversal. The simulation results show 
that for the OLS_SC_MRAS: The speed estimation 
convergence is faster, the speed estimation error is 
lower than the corresponding one obtained with the 
BPN MRAS.  
 
In during speed transients the dynamic performance 
is better and the  estimation error is lower, the 
maximum overshoot obtained with the OLS MRAS 
is lower than the corresponding one with the BPN 
MRAS  because of the absence offiltering of the 
estimated stator current in the OLS_SC_MRAS 
observer. 
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Fig.6  Estimated and measured speed and speed error and speed error during a speed reversal from 100 to 

-100 rad/s, (a) BPN MRAS observer; (b) OLS MRAS observer. 
  

  

  

  
Fig.7  Estimated and measured speed and speed error and speed error during a speed reversal from 50 to -

50 rad/s, (a) BPN MRAS observer; (b) OLS MRAS observer. 
 
4.2  Test 2: The performance of proposed 
observer in medium and low speed ranges:  
The performance of the proposed speed observer in 
the medium and low speed ranges was verified by 
providing different speed reference rates range from 
100 rad/s to 30  rad/s and working with rated load. 
This simulation was performed with two sets of 
observations using OLS_SC_MRAS and 
BPN_SC_MRAS for comparison, evaluation the 
performance of both. The Fig.8 a,b shows the 
reference speed, estimated speed, actual speed and 

speed error of OLS_SC_MRAS and 
BPN_SC_MRAS observer, respectively.  
The simulation results clearly show that the 
estimation accuracy in the medium and low speed 
range is very good, with negligible estimation errors 
during steady state and very low instantaneous 
estimation errors during the speed transients. 
Similar results have been obtained with the BPN 
MRAS observer: they presented, as a difference, 
only a slightly higher instantaneous estimation error, 
as explained in Test 1. 
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Fig.8  Reference, estimated. measured speed and speed error during a series of speed steps with rated load, 

(a) BPN MRAS observer. (b) OLS MRAS observer 
 
4.3   Test 3: The performance of proposed 
observer in very low speed ranges:  
In this three test, the performance of the speed 
estimation has been verified in the very low and 

zero speed ranges, by providing the sets of diffrrent 
speed reference ranges from 0 to 5 rad/s with each 
step the change is 1 rad/s working with 50% rated 
load.   

  

  
 

Fig.9  The speed of the SPIM in  very low operation speed region using:  
a. the OLS MRAS observer; b. the BPN MRAS observer 

In any case, better results in the estimation accuracy 
at low speeds are to be expected with both OLS 
MRAS and BPN MRAS observers because the 
SPIM itself is used as reference model so the 
SC_MRAS observer free free  from  stator 
resistance dependency and dc drift problems, this is 
help to improve the performance of the observer 
specially at low speeds. The steady-state percent 
speed estimation error obtained with the OLS_ 
SC_MRAS observer is better than that with the RF_ 
MRAS observer, where the reference model uses 

the VM, is dependent on the stator stator and the 
pure integration. The speed estimation error is 
improved slightly than BPN_SC_MRAS, as 
explained in Test 1. These results in Fig. 9 show 
that, with both speed observers,  the steady-state 
speed estimation error obtained with the OLS 
MRAS observer is slightly lower than that with the 
BPN_SC_MRAS. Fig. 10 show that stator current 
and rotor flux responses at low speed (5 rad/s) are 
quite accurate. 

 

  
 

Fig.10  The stator current and rotor flux components when using the OLS MRAS observer at 5rad/s. 
 

 
4.4   Test 4: Load Perturbations.  In this test, the robustness of the speed estimation to 

a sudden torque perturbation has been surveyed. It 
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was carried out to prove the  robustness of  speed 
observer under variable load torque. For this test the 
rotor speed was kept constant at 1.5 rad/s with the 
torque applied +/- 50% rated torque.  
Fig. 11a b show the speed and torque responses of 
the SPIM drive. These results show that the speed 
responses of the drive using the proposed OLS 
SC_MRAS observer occurs immediately when the 

torque steps are applied. Even during the speed 
transient that caused by the torque step, the 
estimated speed follows the real speed is very good.  
The simulation results show that the speed 
estimation convergence of the OLS_SC_MRAS 
observer is faster than that obtained with the BPN 
SC_MRAS observer. 

 

  

  
Fig.11  The speed with +/-50% load disturbance rejection of the drive using: a. the OLS MRAS observer; 

b. the BPN MRAS observer. 
 

5. Conclusion 
 

This paper has presented a OLS_ 
SC_MRAS speed observer for high performance 
SPIM drives using neural networks. It lead 
evoluting and improving the MRAS observer shown 
in [17]. The new SC_MRAS speed observer uses 
the CM discretized with the mopdified Euler 
integration method to solve the instability problems 
due to the discretization of the rotor equations of the 
machine. Then reagraning a linear neural network is 
used and trained online by means of an OLS 
algorithm instead of a nonlinear BPN algorithm, 
which is heavier from the complexity and 
computational burden and its inherent nonlinearity 
also cause some  disadvantages as local minima, 
two heuristically chosen parameters, initialization, 
and convergence problems, paralysis of the neural 
network.  In addition, the adaptive model based on 
NN is implement in prediction mode instead of 
simulation mode as in [17].  This ensures the 
proposed observer operate better accuracy and 
stability. The simulation results shown that the 
proposed observer are quicker convergence in speed 
estimation, better dynamic performances; lower 
estimation errors both in transient and steady state 

operation; better operation zeroand low speed 
region. 
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