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Abstract: - In this paper, a research on the design of parametric controller has been presented for a brushless 
DC motor system, and the parameters of controller are optimized. Compared with PID, the overshoot of state 
curve is smaller, and the settling time is shorter. The symbolic computation and the cylindrical algebraic 
decomposition (CAD) are used in controller design and controller parameters calculation. Symbolic 
computation is applied to obtain the stable constraints for the controlled system. And the region of controller 
parameters can be solved by CAD, according to the constraints. The parameters of controller selected in the 
region will stabilize the brushless DC motor system. And then, the system dynamic performance can be 
optimized by a variable parameter control of designed controller. The simulation results indicate that the 
proposed method is highly effective in controlling the brushless DC motor system. 
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1 Introduction 

With the development of permanent magnetic 
materials and control technology, brushless DC 
motor has been widely applied because of its power 
density, simple structure, easy control, robustness, 
and convenient maintenance [1, 2]. Therefore, the 
brushless DC motor control technology has a 
significant theoretical and practical importance. In 
recent years, a large number of researchers have 
studied the brushless DC motor system control [3, 4, 
14]. Samitha et al. [3] presents a torque ripple 
compensation technique for a brushless DC motor 
torque control that is operated without a DC link 
capacitor. Nian et al. [4] studied the regenerative 
braking system of brushless DC motor, using PID 
control. 

The parametric control system has shown many 
advantages, and has been applied to a wide range in 
engineering [11-13, 15-18]. However, there are only 
a few studies on the application of parametric 
controller to brushless DC motor control system. In 
this paper, a parametric controller is designed by 
symbolic computation and cylindrical algebraic 
decomposition.  

The symbolic computation, also known as 
computer algebra, is a powerful approach in solving 
the tough and intricate problems in applied 
mathematics. In the last two decades, symbolic 
computation has made a significant impact in many 
fields of science and engineering [5-7, 10]. The 

symbolic method can be effectively used to handle 
the nonlinear optimization. In fact, symbolic 
computation and its methods have been extensively 
used in nonlinear system control. Since a lot of 
analysis and design problems of the multi-agent 
dynamic systems are reduced to nonlinear feasibility 
or optimization problems, symbolic computation 
may effectively work to derive the exact solutions. 
Hara et al. [5] used the symbolic computation in 
analysis and synthesis for multi-agent dynamical 
systems, where all the agents share a common 
Linear Time Invariant (LTI) system. Zhang et al. [6] 
discussed the symbolic computation of normal form 
for Hopf bifurcation in a neutral delay differential 
equation. In [7], Freitas et al. applying symbolic 
computation and numerical calculations, describes a 
symbolic–numerical integration method for a class 
of differential algebraic equations (DAEs) known as 
semi-explicit systems. 

The constraints of the parametric controller can 
be obtained using the symbolic computation. These 
constraints are usually composed of inequalities, 
and it is difficult to solve for the parameters from 
the inequalities. There are very few methods that 
can be applied to this problem, including CAD. In 
this paper, the CAD method [8, 9] is used to convert 
inequalities into the segmentation of parameters 
space. 

In design of control system, when the range of 
available controller parameters is large, the 
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performance of the control system more easy to 
achieve and optimize. The proposed method uses 
symbolic computation and CAD to completely solve 
the controller parameters, and obtain more large 
range of available parameters in comparison to the 
existing studies [3, 14]. And the simulations show 
that the designed controller is much better than PID. 
Then, the rest of this paper is organized as follows. 
The brushless DC motor system and the parametric 
controller design method are presented in Section II. 
In Sections III, symbolic computation is applied to 
obtain the stable constraints of the controller. In 
Section IV, the method to obtain the stable region of 
controller parameters is explained. Simulations and 
parameters optimization are discussed in Section V. 
And the conclusions are given in Section VI. 

 
2 The Brushless DC System 
Description and Parametric 
Controller Design 

Before discussing the parametric controller, the 
brushless DC motor system [19] is described as: 
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where, x , y  and z  are the states of the system, qv
is equivalent driving potential, and LT  is the 
equivalent load of the motor. In the system (1) 

1qv = , and [0,0.2]LT ∈ . LT  is uncertainty and it is 

considered as a disturbance here. LT  is defined as a 
sin function of time in the simulations, and it is 
taken as 0LT =  for the calculation of controller 
parameters. The equilibrium of system (1) is 

0 0 0 0( , , )E x y z= , which can be solved out from the 
follows: 

0 0 0y x z=                                       (2) 

0 0x z=                                           (3) 
3

0 0 0( ) 16 1 0G z z z= − + + =                      (4) 

so  
01 3.9684z ≈ − , 02 0.062515z ≈ − , 03 4.0309z ≈   (5) 

Then the equilibria of the system (1) are: 
01 ( 3.9684,15.748, 3.9684)E = − − , 

02 ( 0.062515,0.003908, 0.062515)E = − − , 

03 (4.0309,16.248,4.0309)E = . 
The system trajectory is chaotic at equilibrium in the 
system (1) without controller.  

Theorem 1：For system (1), the controller is 
designed as: 

01 02( , , ) ( , , )u x y z g x y z x c y c z= + +             (6) 
where, 1 2 3 4( , , )g x y z c c x c y c z= + + + , 
{ }, 1,2,3,4ic R i∈ = , 01c R∈ , 02c R∈ . The 
controlled blushless DC motor system can be 
written as: 

17 1 ( , , )

4( ) L

x x yz z u x y z
y y xz
z x z T

= − − + + +
 = − +
 = − −







        (7) 

Then choose the appropriate values of 1c , 2c , 

3c , 4c , 01c  and 02c  the system (7) will be 
controlled. 

Proof: 
In order to simplify the calculation, the 

coefficients values of 01 0c c=  and 02 0c =  are 
considered. Using symbolic computation, the 
Jacobian of system (7) at equilibrium is given as:  

11 12 13

0 01
4 0 4

j j j
J z z

 
 = − 
 − 

                      (8) 

where,  
3 2

11 2 0 3 0 2 0 4 0

0 1 2

15
4 1

j c z c z c z c z
c c c

= − − + −
+ − + −

                         (9) 

3 2
12 3 0 2 4 0 1 3 0 32 ( ) ( 16 1)j c z c c z c c z c= − − + − − + +  (10) 

4 3 2
12 3 0 2 4 0 1 3 0

2 4 0 0 1 4

( 2 ) ( 17 1)
(17 33 ) 4 17 17

j c z c c z c c z
c c z c c c

= − − + − − +
+ + − + + +

     (11) 

According to (2), (3), and (8), the system 
characteristic equation at the equilibrium is derived 
as: 

3 2
0 1 2 3( )D a a a aλ λ λ λ= + + +           (12) 

where,

 

 

0 1a =                                            (13) 
2

1 3 0 4 0 2 0 0 14 6a c z c z c z c c= + + − + +          (14) 
2 2 2

2 1 0 3 0 0 2 0 3 0

4 0 0 1 2 4

5 17 5 17 5
17 4 63 5 5 59

a c z c z z c z c z
c z c c c c

= + + + +
+ − − + + −

    (15) 

2 2 2
3 1 0 3 0 0 2 0 3 0

4 0 1 2 4

12 128 12 128 12
128 64 12 12 64

a c z c z z c z c z
c z c c c

= + + + +
+ − + + −

 (16) 

In order to control the system at equilibrium, from 
the Hurwitz criterion, the system parameters need to 
satisfy the following conditions. 

1 2 0 3

0, 0,1,2,3
0

ia i
g a a a a
> =

 = − ≥
                        (17) 
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Then choose the appropriate values of parameters 
0c , 1c , 2c , 3c  and 4c  to satisfy conditions (17), and 

the system (7) will be controlled. 
Remark1: In order to simplify the calculation, 

the coefficients of system characteristic equation 
(12) are divided by the polynomial 3

0 016 1z z− + +  of 
equilibrium equation (4), whose value is zero at 
equilibrium, and (14) - (16) are the remainders.  

Remark2: The inequities in (17) are the system 
stability constraints. Here 0ia >  must be satisfied, 
if there is no static bifurcation in system. 0g >  is a 
stability condition and 0g =  is the supercritical 
Hopf bifurcation condition. Since the motor control 
is a real problem, only the stable state is considered 
in this paper. Practically, the formula (17) is 
composed of many inequalities. It is very difficult to 
completely solve these inequalities. In this paper the 
problem of solving inequalities can be transformed 
into a number of parameter space partition problems 
in a multidimensional space. 
 
3 Constraints Computation 

To be more simplify, 2 0c = , 4 0c =  are 
chosen. Based on the equation (5), the system 
stable constraints at 01z , 02z , 03z  can be written 
as following. 

At 01 3.9684z ≈ − , 
101 0 1 34 15.748 6a c c c= − + + +                    (18) 
201 0 1 34 15.741 247.88 19.741a c c c= − + + +   (19) 
301 1 3124.98 1968.15 124.98a c c= + +           (20) 

2 2 2
01 0 1 3 0 1

0 3 1 3 0

1 3

16 15.741 3903.6 66.964
1054.5 495.75 102.96
10.791 170.01 6.5324

g c c c c c
c c c c c
c c

= + + −
− + −
− − −

 (21) 

At 02 0.062515z ≈ − , 
102 0 1 34 0.0039081 6a c c c= − + + +             (22) 
202 0 1 34 62.98 0.24614 58.98a c c c= − − − −  (23) 
302 1 363.953 0.24994 63.953a c c= − − −       (24) 

2 2 2
02 0 1 3

0 1 0 3

1 3 0 1

3

16 62.98 0.00094494
247.92 0.96891
0.49227 211.92 372.91
1.4574 289.93

g c c c
c c c c
c c c c

c

= − −
+ +
− + −
− −

 (25) 

At 03 4.0309z ≈  
103 0 1 34 16.248 6a c c c= − + + +                    (26) 
203 0 1 34 18.241 296.37 22.241a c c c= − + + +  (27) 
303 1 3130.98 2128.13 130.98a c c= + +           (28) 

2 2 2
03 0 1 3 0 1

0 3 1 3 0

1 3

16 18.241 4815.5 76.963
1250.5 592.75 112.96
0.70756 11.47 2.4668

g c c c c c
c c c c c

c c

= + + −
− + −
+ + +

 (29) 

From 301a , 302a , 303a , following can be 
obtained: 

3 1

1 3

3 1

1 15.748
1 0.0039082

1 16.248

c c
c c

c c

− − <
 < − −
− − <

                (30) 

when 3 0c ≤  in the inequities (30), 1c  does not 
exist to satisfy the inequalities. So 3 0c > , and 

3 1c =  is selected. The equations (18)-(29) can 
be rewritten as: 

101 0 14 21.748a c c= − + +                                (31) 
201 0 14 15.741 267.62a c c= − + +                       (32) 
301 1 1124.98 2093.1 124.98( 16.748)a c c= + ≈ +  (33) 

2 2
01 0 1 0 1 0

1

16 15.741 66.964 1157.5
484.96 3727

g c c c c c
c

= + − −
+ +

 (34) 

102 0 14 6.0039a c c= − + +                               (35) 
202 0 14 62.98 59.227a c c= − − −                       (36) 
302 1

1

63.953 64.203
63.953( 1.0039)

a c
c

= − −
≈ − +

                         (37) 

2 2
02 0 1 0 1 0

1

16 62.98 247.92 212.89
373.4 291.39

g c c c c c
c

= − + +
− −

 (38) 

103 0 14 22.248a c c= − + +                               (39) 
203 0 14 18.241 318.61a c c= − + +                      (40) 
303 1

1

130.98 2259.1
130.98( 17.248)

a c
c

= +
≈ +

                            (41) 

2 2
03 0 1 0 1 0

1

16 18.241 76.963 1363.4
593.45 4829.4

g c c c c c
c

= + − −
+ +

(42) 

 
4 Using CAD to Solve the Range of 
Controller Parameters 

The stability constraints of the system (7) are 
composed of the equations (31)-(42), and the 
curves of equalities (31) to (42) have been 
drawn on 0 1c c−  plane. The plane is divided into 
63 regions, as shown in Fig. 1. The parameters 

0c  and 1c  in each region are tested to find the 
one in which the values can satisfy the stability 
constraints. Finally, region 30 is obtained, 
where the parameters 0c and 1c  of controller can 
provide a stable control of the brushless DC 
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motor system. Region 30 is contained with the 
lines 301 0a = , 302 0a = , and 02 0g = . 
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Fig. 1 The partition of the system stability 
constraints in the 0 1c c−  plane 

 

5 Simulations and Parameters 
Optimization 

Through the above calculation, the range in 
which the controller parameters can satisfy the 
stability requirements is obtained. The 
trajectory of system (1) is chaotic without the 
controller (see Fig. 2).  

 
Fig. 2 The system trajectory without control  

 
Fig. 3 The system trajectory at 01E  

 
Fig. 4 the system trajectory at 02E  

 
Fig. 5 the system trajectory at 03E  

The controller parameters { }0 10, 2c c= = −  are 
chosen to verify the effectiveness of parameters. 
The initial values of the states for system (1) are 
( 4,17, 5)− −  (for 01E ), (0,1, 1)−  (for 02E ), (4,17,5)  
(For 03E ). 0.1sin(20 ) 0.1LT tπ= +  is chosen for 
the verification. The system trajectories at 
equilibria are shown in Fig. 3 to Fig. 5. It can be 
seen from the figures that the trajectories of the 
controlled system are convergent, resulting in a 
stable system. 

In order to further illustrate the benefits of 
using CAD to solve the controller parameters, 
the controller parameters are optimized. The 
variable parameter control is tried at 
equilibrium 02E . The control parameters are 
switched between { }0 10, 2c c= = −  and 
{ }0 15, 10c c= − = −  during different time periods. 
The switching condition is given as: 
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0 1

0 1

0 1

0, 2 0 0.148
5, 10 0.148 0.78

0, 2 0.78 5

c c while t
c c while t
c c while t

= = − ≤ <
 = − = − ≤ ≤
 = = − < ≤

    (43) 

It is easy to see from Fig.6 that curve 1 and 
curve 3 intersect at 0.148t =  and 0.78t = . When 
0 0.148t≤ < , we select { }0 10, 2c c= = −  to reduce 
the overshoot, and select { }0 15, 10c c= − = −  
when 0.148 0.78t≤ ≤ , select { }0 10, 2c c= = −  
when 0.78 5t< ≤  to shorten settling time. 

 
Fig. 6 State x  adjustment curves under different 

parameters 
The initial value of system states at 02E  is 

(0,1, 1)− . The simulation of state x  is shown in 
Fig. 6. There are three curves in the figure. 
Curve 2 is the state x  curve with the variable 
parameter control in equation (43). Curve 1 is 
the response of state x  when { }0 10, 2c c= = −  
and Curve 3 is the response when 
{ }0 15, 10c c= − = − . The overshoot of curve 1 is 
maximum ( 2.9x = , at 0.058t s= ) and settling 
time is shortest ( 0.7t s= ). Curve 3 has the 
minimum overshoot ( 0.31x = , at 0.47t s= ) and 
the longest settling time ( 1.73t s= ). Due to the 
use of variable parameter control, the overshoot 
of curve 2 is smaller ( 1.5x = , at 0.2t s= ) and 
settling time is shorter ( 0.78t s= ). Compared to 
the curve 1, the overshoot is reduced by 48% 
and settling time is increased by only 11%. 
Similarly in comparison to the curve 3, the 
settling time is reduced by 55%. The figure 
illustrates that the state performance of the 
system is optimized, when the controller 
parameters 0c  and 1c  vary according to the 
equation (43). The curve of state x  under the 

PID control is shown in Fig. 7. And it is can be 
seen that both overshoot and settling time of the 
designed controller in Fig. 6 are obviously 
much better than that of PID in Fig. 7. 

 
Fig. 7 State x  curve under PID control 

The simulation results in the Fig. 3 to Fig. 6 
show that the symbolic computation and CAD 
in parametric controller design can be 
successfully applied to a practical system, and 
the control performance optimization is feasible 
by changing the controller parameters in the 
stable range (Region 30 in Fig. 1). 
 
6 Conclusion 

The symbolic computation and CAD are 
applied to a parametric controller design for a 
brushless DC motor. The range of parameters to 
control the system is obtained. The simulation 
results show that the system can be stabilized at 
equilibrium with the proposed controller, even 
in the presence of a disturbance (as 

0.1sin(20 ) 0.1LT tπ= + ), and the effects of the 
controller are much better than PID. To further 
study the impact of control parameters on the 
system performance, the parameter optimization 
is discussed. The numerical results illustrate the 
effectiveness of the optimization. 
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