
1. INTRODUCTION 
 

Regarding the formulation, in order to illustrate the proposed 
methodology, the main theoretical aspects of the Method of 
Moments and of the Haar wavelets, are here presented. For 
simplification, the one and two dimension applications are 
taken into consideration. 

 

1.1) Method of Moments 

 
Although the Method of Moments is a known numerical one, 
and the complete description and details of this method have 
already been presented in many papers, in order to guide the 
reader through the overall method explanation, a brief 
summary is here shown. In a simplified way, it can be 
mentioned that the basis of the Method of Moments is the 
application of approximation functions, like the following one 
[1]. 
 

 
 
 

(1) 

 
In the aforementioned expression, αn is the unknown 
coefficients, gn is the expansion function, the pulse or the Haar 
wavelets, and “L” a mathematical operator. When the inner 
product, using a weighed function Wm, is carried out. 
 
 
 

 
 

 (2) 

 
 
The previous expression can be represented in a matrix form 
by [A][α]=[B], where [α] is the unknown approximated 
solution coefficients column vector, and the matrixes [A] and 
[B] are given by: 
 
 

 

 

(3) 

 
As a first application, the potential distribution on a finite and 
straight wire that can be calculated using the next equation is 
taken into consideration [2]: 
 

 
 
 

(4) 

 
Thus making use of the method of moments, knowing the 
approximated solution function f(x), the expansion function 
g(x) and the weighting function W(x), the potential on a finite 
straight wire can be estimated by the inner product of these 
functions: 
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(5) 

 
Consequently, the surface density can be approximated by 
the N term expansion. If the wire is divided into uniform 
segments ∆=L/N, after applying the weight delta function of 
Dirac Wm = δ( xm – x’) = 1, the inner product will become: 
 

 
 
 
 
 

(6) 

 
Assuming the charges placed in the center of each subdivision 
in relation to the axis, substituting the values of x by the 
distance of the charge position to the point P(xm), we will have 
an integral that is only function of the x’. For a fixed potential 
V, the equation can be represented, using matrix notation, by 
[Vm] = [Zmn] [αn], in which Zmn is defined by [3]: 
 
 

 
 
 
 

(7) 

The same approach can be used, if a two-dimensional 
application is considered. If a square plane plate is considered 
as an example, we should remember that the potential in a 
finite and very thin plane plate can be evaluated by [4]: 
 
 

 

 

(8) 

 
Thus, after applying the method of the moments, knowing the 
function of the approximated solution f(x,y), the expansion 
function g(x,y) and the weighed function W(x,y), the potential 
in a square plane plate, will be estimated by the inner product 
of these functions [5]: 
 
 

 

 

(9) 

 
where, 
 
 

 (10) 

 

Dividing the plate in equal segments and applying the weighed 
function as being the delta function of Dirac, we had 
that ( ) ( )mmm yyδxxδW −−= , being the inner product in 
the point given by: 
 
 

 

 

 

 

(11) 

 
Assuming the charges placed in the center of each sub division 
in relation to each axes, substituting the values of x and y by 
the distance of the charge position to the point P( mx , my ), 
we will have an integral that is only function of x' e 'y . For a 
fixed potential V, the equation can be represented, using the 
matrix notation, by [Vm]=[Zmn][αn], in which Zmn is defined 
by: 
 
 

 

 

(12) 

 

1.2) The Wavelets 

 
The analysis through the wavelets has been a good alternative 
in replacement of the classical analyses that utilize the Fourier 
series, chiefly when treating acoustic signals, interpreting 
seismic signals and in the solution of numerical methods 
applied to electromagnetism and electrostatics [6][7][8]. In 
general the wavelets can be defined by: 
 

 
 
 

(13) 

 
Some kinds of wavelets are mentioned in the literature, 
making it possible for new family models to be built from 
them, which adapt more appropriately to each case. Fig. 1 
represents the Morlet or Modulated Gaussian wavelet, which 
is expressed by: 
 

 
 

(14) 
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Fig. 1 - Morlet 

 

The Fig. 2 represents the Mexican hat wavelet, which is 
expressed by: 

 

 
 

(15) 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 2 - Mexican hat 

 

The Fig. 3 represents the Shannon wavelet, which is expressed 
by: 

 

 
 
 
 
 
 
 
 

(16) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - The Shannon wavelet 

 

1.3) The Haar Wavelets 

 
It was previously mentioned that many functions can be used 
as the expansion function: Among them, the pulse function, 
the truncate cosine function and the wavelets can be 
mentioned. Thus, after applying the method of the moments, 
and considering the Haar wavelets, a function f(x,y) can be 
approximated by: 
 
 
 

 
 

(17) 

 
In this equation “j”, and “k” are the resolution and the 
translation levels, respectively. 
Moreover, once the Haar wavelets, and the so-called mother 
function and scale function father are applied, the formulation, 
for two-dimensional applications, will result in a product 
combination, given by [9][10]: 
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2. FORMULATION 
 

2.1) Finite Straight 
 
Thus, making use of the method of moments, and the wavelets 
the Haar the potential on a finite straight wire can be estimated 
by the inner product of these functions. As an illustration, the 
Fig. 4 represents the Haar function regarding one dimensions 
and two level of resolution [11].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 - The Haar wavelet in a finite straight 

 
 
The mathematical solution is: 

 
 
 
 
 
 

(20) 

 
 
 
 
 
 
 

(21) 

 

2.2) The thin plane plate 

 

The same approach can be used, if a two-dimensional 
application is considered. 
It was previously mentioned that many functions can be used 
as the expansion function. Among them, the pulse function, 
the truncate cosine function and the wavelets, the general 

aspects of the wavelets are shown.  
As an illustration, the Fig. 5 represents the Haar function 
regarding two dimensions and one level of resolution, for a 
point P(xm, ym).  
On the other hand, if the potential in a finite and very thin 
plane plate is taken into account as an application, it can be 
evaluated by[12]: 
 

 
 
 
 
 
 
 

(22) 

At each point we have: 
 
 

 
 
 

(23) 

 

Fig.5 - Representation of the Haar function for 
two-dimensions and  one level of resolution. 

 

2.3) The Eddy Current problem 
 
Let us consider the conducting wire to be composed of 
filaments, having their length is represented by c and current 
density by J(r’), according to Fig. 6. 
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Fig. 6 - Current in the conductor 
 

The two-dimensional fields can be obtained by using two or 
more current distributions J1, J2... on surface S, which is the 
interface between the conductor and the air.  
By integrating it is possible to simplify the equations the most, 
so that there will not be complex integrals or approximations, 
as follows [13][14]: 

 
 
 
 

(24) 

 
In which r and r´ are respectively the origin and source points. 
The current density can be expressed by: 

 

 
(25) 

 

In which U0 is the applied voltage, c and s are the length and 
the sectional area of the conductor. Considering Fredholm 
integral, a second order equation is obtained: 

 
(26) 

 

In which the math operator in the previous equation is given 
by:  

 
(27) 

 

By dividing the domain into N elements, the current density 
can be approximated by: 

 
(28) 

 

By choosing the pulse as the expansion and weighting 
functions, the coefficients of matrix A can be determined by 
the following expression [15][16]: 
 

 

 

 
(29) 

 
or 
 

 

 

 
(30) 

 
 
Let us consider the sides of the elements resulting of the 
divisions performed in the superficial part of the conductor are 
square and defined as h.  
By eliminating the other ∆Sm terms in the equations amn and 
bm, considering the relative positions of the different charges 
that will form the elements of matrix A, and the relations d/h> 
2 and d/h=1, the following will be obtained: 
 

 
 
 
 

(31) 

 
 

 
 
 
 
 

(32) 

 
if m=n 
 

 
 
 

(33) 

 
By solving matrix A{J}={Js} the current matrix will be  
obtained.  
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3. APPLICATION 
 

3.1) Finite wire 

 
Applying the aforementioned formulation, we got some results 
related to two applications: the first one related to a finite and 
straight wire, and another one regarding a thin plane plate. It is 
assumed in the two applications a constant potential 
distribution equal to1V, conform Fig. 7. 
Table I presents the results regarding the charge surface 
density on a 1.0m straight wire, when it is divided in to 16 
equal segments, as a function of the resolution (j) and the 
translation (k) levels. Those results can be considered as the 
ones suitable to validate this approach [17]. 
 

TABLE I - Charge surface density (pc/m) on straight finite as  
a function of the resolutions levels 

 
 Expansion Function 

Point Haar Wavelet (Level) Pulse 
 2 3 4  

1 8.835 9.376 9.957 9.957 
2 8.835 9.376 8.764 8.764 
3 8.835 8.274 8.411 8.411 
4 8.835 8.274 8.219 8.219 
5 7.970 8.059 8.102 8.102 
… … … … … 
12 7.970 8.059 8.102 8.102 
13 8.835 8.274 8.219 8.219 
14 8.835 8.274 8.411 8.411 
15 8.835 9.376 8.764 8.764 
16 8.835 9.376 9.957 9.957 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7 - The surface charge (pC/m) on a 1.0m  
straight wire for 32 subdivisions  

 

3.2) The thin plane plate  

 
After applying the aforementioned formulation, some results 
were obtained. For example, the Fig. 8 represents the surface 
charge density in a square plate (1.0mx1.0m), submitted to a 
potential of 1.0 V. In this case, it was adopted 16 subdivision 
for each of the axes, and the level 5 of resolution was applied 
to the Wavelets. Concerning the characteristic of the method, 
it should be emphasized that the application of the Haar 
wavelets originates scattered matrixes. Thus, we will have 
nulls coefficients that can result in a computing time 
reduction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 - The surface charge (pC/m) on a 1.0 by 1.0m 
plate for 16 subdivisions  

 
The Table II presents the comparative results, regarding the 
computing time values function of the adopted axe division 
number, with or without applying the null value detection 
routine [18].  
 

TABLE II - Computing time(s) function of the axe subdivisions  
and of the null value detection use 

 
Divisions Computing time (s) Difference 

Plane Plate Without With (%) 
4x4 0.321 0.25 22.12 
8x8 7.931 5.488 30.80 

16x16 451.960 222.60 50.75 
32x32 27,273.738 11,994.487 56.02 

 
In applying for a finite flat plate, we measured the execution 
time of the program, varying the number of divisions in each 
of the axes, measuring both the amount held in floating point 
operations as the runtime. The Table III shows the values
obtained for the total execution time and the amount of 
floating point operations performed, using as expansion 
function the Haar wavelet. 
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TABLE III - Calculation floating point operations and the  

execution time depending on the number of  
divisions of the plate 

 
Divisions Floating point 

operations  
Runtime (s) 

4X4 29.075 0,321 

8X8 1.236.699 7,931 

16X16 70.025.893 451,96 

 
Taking advantage of the fact that the Haar matrix is sparse, we 
reduce the execution time of the program by entering a 
comparison that, when the null value is detected, the 
transaction between the arrays is performed. The Table IV 
presents the results comparing the values of the runtime and 
the number of floating point operations, with and without 
detection of null values. 

 
TABLE IV - A Amount of floating point operations and 

execution time (s), depending on the number of  
divisionsof the plate with and without detection of nulls 

 
 Nulls value Diference  

Div. Without detection With detection (%) 
 
 

Flops 
operation 

Runtime Flops 
operation 

Runtime Runtime 

4X4 29.075 0,321 25.491 0,250 22,12 

8X8 1.236.699 7,931 843.483 5,488 30,80 

16X16 70.025.893 451,96 39.748.26
1 

222,60 50,75 

 

According to the results, reduced on average 40% run time of 
the program. The Fig. 9 (blue color) shows the values obtained 
for the runtime with and without detection of null values, 
depending on the number of divisions of finite flat plate. 

 

 

 

 

 

 

 

 

 

Fig.9 - The computing time (s) as a function  
of the subdivision axe number 

 
 
 

When the plate was divided into 16 equal segments on each 
axis, a total of 256 coefficients were generated with 54% of 
them are zero. Taking advantage of the fact that the Haar 
matrix is sparse, applying the matrix algebra we can write that 
 

 
 (34) 

 
where, Zmn is a square matrix that is not necessarily a scattered 
one, since it depends on the expansion function that was 
chosen. Thus, taking advantages of the fact that the Haar 
matrix is a scattered matrix, applying the matrix algebra, it 
will result [19]: 
 

 (35) 
 
else, 

 
(36) 

 

 

 (37) 

 

 

 (38) 

 
As estimation, when the null value detection routine is carried 
using the null value detection routine. The Fig. 10 represents  
the Haar matrix and Fig. 11 and 12 presents the Z’

mn matrix 
configuration for the threshold equal to 0.01%, and 0.05%, 
respectively. The dark part is the no null values. 

 

 
 

Fig.10 - The Haar matrix 
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Fig.11 - Value of the threshold of 0.01% 
(23528 non-zero elements) 

 
 

 

Fig. 12 - Value of a threshold of 0.05% 
(12232 non-zero elements) 

 

The Table V, shows the computing time, when the threshold 
level and the axe subdivision number are taken into account. 

 

TABLE V - Computing time(s) as a function of the axe 
subdivisions and of the adopted threshold level 

 
Subdivision Threshold levels (%) 

0.00001 0.01 0.05 0.1 

16x16 0.27 0.21 0.16 0.12 

32x32 25.486 11.49 4.516 2.073 

 

The Fig. 13 represents the error variation for the charge 
surface density, considering a square plane plate, and 16 axe 
subdivisions, as a function of the selected threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13 - Variation of the charge surface density as  
a function of a selected threshold 

 
Therefore, the variation of the threshold allowed a significant 
reduction in execution time without significantly changing the 
value of the surface charge density. 
Moreover, it should be mentioned that the Cholesky 
decomposition method were also implemented [8]. The Fig.14 
represents the matrix configuration after applying it, assuming 
a threshold level equal to 0.01%. In this case, approximate 
increase of 64% was obtained in the null value element of the 
matrix. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 14 - Matrix configuration after applying the Cholesky 
decomposition for the threshold equal to 0.01% 

 

Regarding the computational performance, the average 
computing time decreased from 0.21 to 0.02 (s), for 16 axe 
subdivision, and a reduction time from 11.49 to 0.351(s). 

 

3.3) Eddy current problem 
 
In the application here presented, a copper conductor with the 
conductivity of 1.72 (µΩcm) and resistivity of 100% as shown 
on Table VI [20]. 
The Fig. 15 shows the reactions of the electromagnetic field 
and the involved energy considering the influence between the 
charges using the developed program.  
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TABLE VI - Material Characteristics 

 
Material 

Type 
Resistance 

(µΩcm) 
Conductivity 

(%) 
Aluminum (99.9) 2.65 64.84 

Bronze 12 14 
Copper 1.72 100 
Nickel 37 4.5 
Gold 2.36 76 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 - Electric field simulation 

 
Therefore the final equation for each one of the elements that 
compose the current matrix can be expressed by: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(39) 

 
The solution of the previous equation can be obtained by using 
the expression [amn]*[Coef]=[U0] [21][22].  
The Fig. 16 shows the superficial charge distribution on the 
conductor, taking into consideration the effects of losses. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.16 - Superficial charge distribution 
 
 
The Fig. 17 was obtained through the use of the application 
toolbox and shows the results of the coefficients in relation to 
the several resolution levels. The numerical values are 
available in the application as well [23]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17 - Wavelet Coefficients as a 
function of the resolution level 

 
 
The Fig. 18 shows the statistical data for a 0.01% threshold 
with level 5 resolution. 
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Fig. 18 - Statistical data of the usage of the Haar 
wavelet with a level 5 resolution 

 
The Fig. 19 shows several the coefficients in different 
resolution levels from matrix amn 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 19 - Superficial charge distribution 
with different resolution levels 

 

4. CONCLUSION 
 
This article has simply a series of applications of wavelets, 
such as the surface density in a finite straight wire and a flat 
plate, and the determination of eddy currents using the pulse 
and as a expansion function of the Haar wavelet. 
The proposed methodology permits the determination of the 
available numerical coefficients in the application as a 
function of the resolution level, this way avoiding the complex 
solution of the inner product, usually composed of double 
integrals that do not possess a very immediate solution.  
By performing the product of the current matrix by the Haar 
wavelet [amn][Coefficients][Haar]=[U0][Haar] and in some 
cases reductions in execution time of up to 40% has been 
achieved. 

With this reduction in run time no significative variation in the 
amn elements that could compromise the final results has been 
found. 
Although the proposed application is relatively simple, the 
presented methodology is likely to be applied to problems of 
greater complexity, such as a refinement can be achieved in 
energy in locking electric motors, cardiac signals, transmission 
lines, electromagnetic compatibility, financial market, 
corrosion or thermal treatment, neurological treatments and 
etc. 
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