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Abstract: - As one of the most important aspects in maintenance, fault prediction has attracted an increasing 
attention for avoiding system catastrophic damage and ensuring reliability. Considering prognosis of 
unmeasured fault parameter in nonlinear system, a novel forecasting algorithm is presented based on the 
combination of ROS-ELM (regularized online sequential extreme learning machine) time series predictor and 
STSCKF (strong tracking square-root cubature Kalman filter). ROS-ELM is utilized to forecast system 
measurements in future time instant, which are used by STSCKF as measurement variables during filter 
process. The fading factor is introduced into the square root of the STSCKF prediction error covariance to tune 
the gain matrix. A state and parameter joint filter based on STSCKF is proposed to solve the problem that 
faulty changing function is unknown in practice. An experiment case is provided to verify the good 
performance of the presented approach. 
 
 
Key-Words: - Strong tracking filter; Square-root cubature Kalman filter (SCKF); State and parameter joint 
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1 Introduction 
Due to increasingly high requirements of system 
safety, it is usually required to predict system 
degradation trend before a fault has developed to 
cause system damage. As a result, fault prediction 
technologies, which provide maximum operational 
availability and usage life for system, attract much 
attention in maintenance and indemnification, 
especially in avionics, machine and manufacture 
industry fields. 

The existing fault prediction methods can be 
classified into two classes: model-based approaches 
and data-driven approaches [1]. In this paper, a 
model-based method is developed. Model-based 
approaches usually tend to be more effective and 
provide good predicting performance, if the fault 
process is well modeled [2]. Sometimes the failure 
can not be observed directly. Kalman filter methods, 
as model-based methods, using system output 
measurements (observable variables) to indirectly 
estimate unmeasured fault parameter (hidden 
variables), have been applied widely in fault 
diagnosis [3, 4] and prediction [5, 6] areas. Ref. [5] 
utilized Kalman filter to forecast motor rotating 

speed after building linear model of DC motor. 
Then it predicted fault progression according to 
deviation of the forecasted rotating speed from the 
standard rotating speed. But Kalman filter is only 
suitable to linear systems. For nonlinear systems, 
extended Kalman filter (EKF), unscented Kalman 
filter (UKF) and particle filter (PF) have been 
proposed sequentially. Ref. [6] employed two 
simulation cases to validate the effectiveness of 
EKF in multiple-steps-ahead fault prediction. 
However, owing to just one order linearization 
approximation precision for EKF, its estimation 
result may introduce large errors and even 
divergence over time in strong nonlinear system. 
Theories [7] and experiments [8] have proved that 
UKF estimating accuracy  is superior to EKF. In 
Ref. [9], UKF was used to forecast power batteries 
voltage of two-well electro-mechanical oscillator. 
Then residual useful life (RUL) was calculated by 
the predicted voltage. Whereas UKF exists ill-
conditioned problem during updating covariance 
matrix, which may lead invalid matrix 
decomposition; In addition, UKF, implementing the 
scaled unscented transformation, has some 
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parameters to be confirmed by experience, and 
therefore, is difficult to insure good estimation 
performance for filtering process [10]. PF based 
approach was adopted by machine fault prediction 
in Ref. [11]. Unfortunately, large computational 
burden, particles degeneration and difficulty in 
selecting important density function are three main 
problems for PF. Recently, Ref. [12] presented 
square-root cubature Kalman filter (SCKF). By 
employing spherical integral criterion and radial 
integral criterion, SCKF directly computes nonlinear 
transform mean and covariance of filter process. 
Compared with EKF and UKF, SCKF outperforms 
in terms of nonlinear approximation capability, 
estimation accuracy and filtering stability [13]. 
SCKF provides a novel method for nonlinear filter 
and has been implemented in fault detection [14] . 

The afore-mentioned linear and nonlinear 
Kalman filters have two weaknesses for fault 
prediction. Firstly, changing function of the 
estimated fault parameter is unknown in practice, 
which may results in slow tracking or even unable 
tracking for fault parameters. Secondly, system 
output measurements in future time are unavailable, 
while filter approaches need measurements to 
compute fault parameters. To solve the first 
problem, state and parameter joint estimation 
algorithm based on strong tracking square-root 
cubature Kalman filter (STSCKF) is presented. The 
proposed STSCKF improves robustness and 
guarantees good tracking ability. Also STSCKF 
overcomes model mismatching due to unknown 
changing function. To the second problem, the 
ROS-ELM (regularized online sequential extreme 
learning machine) [15] is employed to forecast 
measurements at time instant k+1 to k+n, where k is 
the current time instant, n is prediction horizon. 
With the forecasted measurements. Then STSCKF 
can perform fault prediction. 

This paper is organized as follows. We describe 
the problem statement of fault prediction based on 
ROS-ELM and STSCKF in Section 2. The proposed 
strong tracking SCKF is described in Section 3. 
Section 4 introduces ROS-ELM predicting model. 
In Section 5, the presented fault prediction method 
is given. Section 6 shows experimental studies for 
verifying the presented approach. Finally, some 
conclusions are outlined in Section 7. 
 
 
2 Problem statement 
Consider the nonlinear dynamic discrete system U, 

1 1 1( , )k k k kf − − −= +x x wα                  (1) 
( , )k k k kh= +z x vα                          (2) 

where xn
k R∈x  and zm

k R∈z  denote system state 
and measurement vectors respectively; ( )kf ⋅  and 

( )kh ⋅  define state function and measurement 
function respectively; nR α∈α  are system 
parameters, which are constant. state noise kw  and 
measurement noise kv are independent Gaussian 
white noise with kq  and kr  means, symmetric 
positive definiteness covariance kQ  and kR . 

Suppose one of the system parameters θ becomes 
faulty. To estimate θ based on state and parameter 
joint estimation algorithm, system U can be changed 
by extending θ as a state vector,  

1 1 1 1

1 1

( , , )e k k k k k
k

k k k

f
d

θ
θ θ

− − − −

− −

     
= = +     
     

x x w
x

ϕ
       (3) 

( , , )k k k k kh θ= +z x vϕ                                      (4) 
where [  ]θ=α ϕ , θ  is faulty parameter while ϕ  
denotes constant parameters without failure, dk is 
faulty parameter noise. ( )kf ⋅  and ( )kh ⋅  define state 
function and measurement function respectively. 

Future time measurements zk+1, zk+2, … are 
demanded for filter algorithm to estimate future 
time states xk+1, xk+2, … and fault parameter θk+1, 
θk+2, …, therefore zk+1, zk+2, … are forecasted by 
ROS-ELM model to implement fault prediction, 
here k is the current time instant. 

From equation (3) we can see that parameter θ is 
no longer constant when it becomes faulty. Thus 
parameter changing function 1 1( )k k kgθ θ− −=  is 
required to build faulty model. However, faulty 
parameter changing trend is hard to gain in practice, 
i.e., function 1( )kg − ⋅  is unknown. In this case, 
assistant state function 1k kθ θ −=  is introduced as the 
changing function 1( )kg − ⋅  according to Ref. [3]. 

The actual changing function of θ is unknown in 
equation (3), which significantly increases system 
uncertainty. As a result, standard SCKF estimation 
accuracy for faulty parameter θ is low. To improve 
SCKF tracking ability for θ, a strong tracking SCKF 
algorithm, which has good robustness against model 
uncertainty, is proposed to estimate θ in equations 
(3) and (4). The detail of strong tracking SCKF is 
discussed in Section 3. 
 
 
3 Strong tracking SCKF 
In this section, the strong tracking filter theory is 
given firstly. Then fading factor calculation 
procedure is deduced based on theory framework of 
strong tracking filter. Finally, the detail algorithm of 
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STSCKF is given according to fading factor 
calculation procedure and standard SCKF. 
 
 
3.1 Strong tracking filter theory 
Conventional nonlinear filter algorithms (EKF, 
UKF, SCKF, etc) are poor in robustness against 
model uncertainties and this decreases state 
estimation precision. Meanwhile these filter 
algorithms lose state tracking ability with unknown 
state changing function. In addition, gain matrix 
tends to be minimum when system reaches steady 
status. Unlike conventional nonlinear filter 
algorithms, strong tracking filters introduce fading 
factor λk into state priori covariance matrix | 1k k−P  to 
adjust gain matrix. We obtain 

TˆˆE[( )( ) ] mink k k k− − =x x x x                    (5) 
E[ ] 0,   0,1, ,   1,2,T

k j k k j+ = = = ε ε        (6) 
Equation (5) is filter performance indicator, 

while equation (6) forces output residual vector ε  
to be orthogonal at each time instant. Model 
uncertainties may lead residual vector of 
conventional filters to be non-orthogonal. Therefore 
residual vector orthogonality improves its 
robustness against model mismatches and state 
tracking capacity. Ref. [16] presented strong 
tracking filter, here strong tracking theory is 
introduced into SCKF to implement strong tracking 
SCKF. 
 
 
3.2 Fading factor calculation 
For dynamic discrete system composed of equations 
(3) and (4), suboptimal fading factor λk of strong 
tracking filter is calculated by the following 
equations [16]. 

0 0
0

0

     1 tr[ ] ,     
 1      1 tr[ ]

k
k

k

λ λ
λ λ

λ
>

= = ≤

N
M

         (7) 

T
1k k k k k k−= − −N V H Q H R                       (8) 

T T
| 1 1| 1 | 1k k k k k k k k k− − − −=M H F P F H                   (9) 
T

1 1
T

1

                   1

       2 
1

k k k k

k

kρ
ρ

−

 =
=  +

≥ +

V V
ε ε

ε ε               (10) 

| 1ˆk k k k−= −z zε                                        (11) 

| 1
1| 1 | 1

,     
ˆˆ k k k

k k k k

f h
−

− − −

∂ ∂
= =

∂ ∂
F H

x x
            (12) 

The above equations for λk need to compute 
partial derivatives of state function f(·) and 
measurement function h(·) with respect to state x, 

namely Jacobian matrices Fk|k-1 and Hk, as shown in 
equations (8) and (9). However, computing Jacobian 
matrices may be difficult and error-prone in high 
order nonlinear system; In addition, it is contrary to 
the property of a derivative-free nonlinear Kalman 
filter for SCKF [12]. Therefore we deduce a 
derivative-free algorithm to calculate suboptimal 
fading factor λk, which is suitable for strong tracking 
SCKF.  

Before introducing λk, state priori covariance 
( )
| 1
l

k k−P , output priori covariance ( )
, | 1
l

zz k k−P  and cross-

covariance ( )
, | 1
l

xz k k−P  can be expressed by 

{ }( ) T
| 1 | 1 | 1ˆˆ[ ][ ]l

k k k k k k k kE− − −= − −P x x x x       (13) 

{ }( ) T
, | 1 | 1 | 1ˆˆ[ ][ ]l

zz k k k k k k k kE− − −= − −P z z z z       (14) 

{ }( ) T
, | 1 | 1 | 1ˆ ˆ[ ][ ]l

xz k k k k k k k kE− − −= − −P x x z z      (15) 

Since | 1ˆk k k−−x x  is unrelated with measurement 
noise vk, we obtain 

{ }
{ }
{ }

( ) T
, | 1 | 1 | 1

T
| 1 | 1

T T
| 1 | 1

( ) T
| 1

ˆ ˆ[ ][ ]

ˆˆ[ ][ ( ) ]

ˆˆ[ ][ ]

l
xz k k k k k k k k

k k k k k k k k k

k k k k k k k

l
k k k

E

E

E

− − −

− −

− −

−

= − −

= − − + −

= − −

=

P x x z z

x x H x x v r

x x x x H

P H

               

(16) 
Qk is supposed to be a positive definiteness 

covariance matrix, so inverse matrix of ( )
| 1
l

k k−P  exists. 
From equation (16) we obtain 

( ) T ( ) 1
, | 1 | 1[ ] [ ]l l

k xz k k k k
−

− −=H P P               (17) 
We substitute equation (17) into equation (8), 

then 
( ) T ( ) 1 ( ) 1 ( )

, | 1 | 1 1 | 1 , | 1[ ] [ ] [ ]l l l l
k k xz k k k k k k k xz k k k

− −
− − − − −= − −N V P P Q P P R

               (18) 
For T

| 1 1| 1 | 1k k k k k k− − − −
F P F  in equation (9), obviously 

we have 
( ) T
| 1 | 1 1| 1 1| 1

l
k k k k k k kk k− − − − −−

= +P F P F Q              (19) 

Substituting equations (17) and (19) into 
equation (9), we obtain 

T T
| 1 1| 1 | 1

( ) T
| 1 1

( ) T T
| 1 1

( ) T
| 1

( )
, | 1

( )
k k k k k k k k k

l
k k k k k

l
k k k k k k k

l
k k k k k k k

l
zz k k k k

− − − −

− −

− −

−

−

=

= −

= −

= + − +

= − +

M H F P F H

H P Q H

H P H H Q H

H P H R V N

P V N

         (20) 

Finally, we substitute Nk of equation (18) and Mk 
of equation (20) into equation (7) to compute fading 
factor λk. 
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3.3 Strong tracking SCKF 
Under calculation equations of STSCKF suboptimal 
fading factor λk deduced in Section 3.2 and standard 
SCKF flow [12], detailed algorithm steps for 
STSCKF are as follows. 

(1) Initialize state estimation 0|0x̂ , covariance 

square-root 0|0S , where T
0|0 0|0 0|0P = S S . 

(2) Time update 
① Compute the cubature points (i=1,2,…,m) 

, 1| 1 1| 1 1| 1ˆi k k k k i k k− − − − − −= +X S xξ               (21) 
where m=2nx, nx is state dimension, ξi is denoted as 
follow 

1,2, ,                 
2

1, 2, ,2
2 x

i x

i

i n x x x

m i n

m i n n n−


⋅ == 

− ⋅ = + +





e

e
ξ   (22) 

where ei represents a unit vector that the ith element 
is 1 while all the other elements are zero.  

②Compute the propagated cubature points（
i=1,2,…,m） 

, | 1 , 1| 1 1( )i k k i k k kf− − − −= +X qγ                (23) 

③ Compute the priori state estimation 

| 1 , | 1
1

1ˆ
m

k k i k k
im− −
=

= ∑x γ                     (24) 

④ Compute the square-root of priori error 
covariance before introducing fading factor  

( ) *
| 1 | 1 , 1Tria([   ])l

k k k k Q k− − −=S Sχ                          (25) 

*
| 1 1, | 1 | 1 2, | 1 | 1

, | 1 | 1

1 ˆˆ[  

ˆ                     ]

k k k k k k k k k k

m k k k k

m− − − − −

− −

= − −

−

x x

x

χ γ γ

γ
 (26) 

where S=Tria(C) is a triangularization operation to 
M×N matrix C, i.e., CT=QCRC, here QC defines a 
orthogonal matrix, RC denotes an upper triangular 
matrix. The transposed matrix of M×M matrix RC is 
selected, namely T( )M M

C
×=S R . SQ,k represents 

square-root of state noise covariance Qk, i.e., 
T

, ,k Q k Q k=Q S S  
(3) Compute suboptimal fading factor 

( ) ( )
, | 1 | 1 | 1ˆ ,   1,2, ,l l

i k k k k i k k i m− − −= + = X S xξ    (27) 
( ) ( )
, | 1 , | 1( ) ,    1,2, ,l l

i k k i k k kh i m− −= + = X rη     (28) 

( )
| 1 , | 1

1

1ˆ
m

l
k k i k k

im− −
=

= ∑zη                                   (29) 

( ) ( ) ( ) T
| -1 | 1 | 1( )l l l

k k k k k k− −=P χ χ                                (30) 

( ) ( ) ( ) T
, | 1 | 1 | 1( )l l l

xz k k k k k k− − −=P χ Ζ                                   (31) 

( ) ( ) ( ) T T
, | 1 | 1 | 1 | 1 | 1

1

1 ˆˆ( ) ( )
m

l l l
zz k k k k k k k k k k k

im− − − − −
=

= − +∑P z z RΖ Ζ    

(32) 
( ) ( ) ( )
| 1 1, | 1 | 1 2, | 1 | 1

( )
, | 1 | 1

1 ˆˆ[  

ˆ                     ]

l l l
k k k k k k k k k k

l
m k k k k

m− − − − −

− −

= − −

−

X x X x

X x

χ
  (33) 

( ) ( ) ( )
| 1 1, | 1 | 1 2, | 1 | 1

( )
, | 1 | 1

1 ˆˆ[  

ˆ                     ]

l l l
k k k k k k k k k k

l
m k k k k

m− − − − −

− −

= − −

−

z z

z

Ζ η η

η
     (34) 

Substituting ( )
| -1
l

k kP  of equation (30), ( )
, | 1
l

xz k k−P  of 

equation (31) and ( )
, | 1
l

zz k k−P  of equation (32) into 
equations (18) and (20), we can obtain fading factor 
λk from the follow equations. 

0 0
0

0
( ) ( ) 1 ( ) -T ( ) T
| 1 | 1 | 1 | 1

( ) ( ) T
| 1 | 1

     1 tr[ ]  ,                              
 1      1 tr[ ]

( ) ( ) ( )
( ) -                                 

k
k

k
l l l l

k k k k k k k k k k k k
l l

k k k k k k k

λ λ
λ λ

λ
−

− − − −

− −

 >
= = ≤ 


= − −
= +

N
M

N V Q R
M V N

Ζ χ χ Ζ
Ζ Ζ




          

(35) 
where Vk is given in (10). Calculate square-root of 
the priori error covariance after introducing fading 
factor 

*
| 1 | 1 , 1Tria([   ])k k k k k Q kλ− − −= ⋅S Sχ           (36) 

(4) Measurement Update 
① Compute the cubature points(i=1,2,…,m)  

, | 1 | 1 | 1ˆi k k k k i k k− − −= +X S xξ                   (37) 

② Compute the propagated cubature points 
(i=1,2,…,m) 

, | 1 , | 1( )i k k i k k kh− −= +X rη                    (38) 

③ Compute the priori measurement after 
introducing fading factor 

| 1 , | 1
1

1 m

k k i k k
im− −
=

= ∑z η                     (39) 

④ Compute the square-root of the innovation 
covariance 

, | 1 | 1 ,Tria([  ])zz k k k k R k− −=S Z S                          (40) 

| 1 1, | 1 | 1 2, | 1 | 1

, | 1 | 1

1 [  

                     ]

k k k k k k k k k k

m k k k k

m− − − − −

− −

= − −

−

z z

z

Ζ η η

η
  (41) 

where SR,k are square-roots of measurement noise 
covariance Rk, i.e., T

, ,k R k R k=R S S  

⑤ Compute the cross-covariance matrix 
T

, | 1 | 1 | 1xz k k k k k k− − −=P χ Ζ                     (42) 
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| 1 1, | 1 | 1 2, | 1 | 1

, | 1 | 1

1 ˆˆ[  

ˆ                     ]

k k k k k k k k k k

m k k k k

m− − − − −

− −

= − −

−

X x X x

X x

χ
(43) 

⑥ Compute the gain matrix 
T

, | 1 , | 1 , | 1( / ) /k xz k k zz k k zz k k− − −=K P S S          (44) 

⑦ The state posterior estimation is  
| | 1 | 1ˆˆ ˆ( )k k k k k k k k− −= + −x x K z z             (45) 

⑧ Compute square-root of the error covariance 

| | 1 | 1 ,Tria([  ])k k k k k k k k R k− −= −S K K Sχ Ζ       (46) 
 
 
4 ROS-ELM Model 
System measurements in future time instant are 
forecasted by ROS-ELM model. Using the 
prognostic measurements as STSCKF measurement 
vectors, the predicting process is transformed to 
estimate process in filter. 

Extreme learning machine (ELM) with L hidden 
nodes can be expressed by the following equation 

1
( ) ( , , )

L
i

L i i
i

f G b
=

=∑ aµ β µ                  (47) 

where nµ∈µ  is input vector, mi δ∈β  is output 
weight, n

i
µ∈a  and ib ∈  are input weights and 

biases respectively, ( , , )i iG ba µ  is an activation 
function of the ith hidden node with respect to input 
µ . For additive hidden node, ( , , )i iG ba µ  is shown 
by 

( , , ) ( )i i i iG b g b= ⋅ +a aµ µ                 (48) 
Given N training samples 1{( , )}N

i i i=µ δ , here 
n

i
µ∈µ  and m

i
δ∈δ denote input data and the 

corresponding expected output respectively. The 
relationship between μ and δ is 

1
( , , ),  1,2, ,

L
i

j i i j
i

G b j N
=

= =∑ aδ β µ         (49) 

Rewrite equation (49) as matrix form, 
Hβ = Τ                                 (50) 

1 1 1 1 1

1 1

( , , ) ( , , )
,

( , , ) ( , , )

L L

N L L N NN L

G b G b

G b G b
×

   
   =   
      



  



a a h

a a h

µ µ
Η =

µ µ
1

,
L

L m×

 
 
 
  



β
β =

β
   

1

N N m×

 
 
 
  



δ
Τ =

δ
                            (51) 

To overcome the problems of over-fitting and 
singular matrix for ELM, equation (50) can be 

replaced by seeking β through the following 
optimization equation [15] 

2 2min{|| || || || }λ− +H
β

β Τ β             (52) 

where || ||⋅  is 2-norm, λ is an positive constant. 
    β can be computed by [15] 

Τ1Τˆ ( )λ −= + I Tβ Η Η Η                (53) 
Recursive learning algorithm is applied to 

calculate equation (53). ROS-ELM can be described 
as follows. 

Step I. Initialization phase. Given N0 initial 
training samples 0

0 1{( , )}N
i i i=ℵ = µ δ , the number of 

hidden nodes L and activation function ( )g ⋅ , 

0N L≥ . 
    (1) Randomly generate input weights ai and 
biases bi, i=1,2,…,L. 
    (2) Compute output matrix H0 via submitting 

0
0 1{( , )}N

i i i=ℵ = µ δ 、ai and bi into equation (51). 
    (3) Calculate the initial output weights 0β  

Τ1Τ
0 0 0 0 0( )λ −= + I Tβ Η Η Η              (54) 

where 
0

T
0 1 2[    ]N= T δ δ δ . 

    (4) Set k=0. 
    Step II. Online sequential learning phase. 
    (1) Set k=k+1 when there is new data coming. 
Then calculate hk with respect to training data 
( , )k kµ δ  by equation (51). 
    (2) Output weights kβ  is updated recursively at k 
time instant according to the following equations 

1 1
1

11

T
k k k k

k k T
k k k

− −
−

−

= −
+

K h h KK K
h K h

             (55) 

T
1 1( )k k k k k k k− −+ −K h hβ = β δ β         (56) 

(3) Go to (1) of Step II for next time instant 
learning. 
 
 
5  Fault prediction 
Fault prediction flow can be summarized as the 
following steps 

Step 1 Initializing ROS-ELM. Suppose that 
measurement vector z contain mz variables, namely z 
= [z1 z2 … zm]. Each variable zi is predicted by one 
ROS-ELM, thus mz ROS-ELM models are used, i = 
1,2,…, mz. Initialize the ith ROS-ELM with the first 
N0 length measurements 0

, 1{ }N
i t tz = , where 0

, 1{ }N
i t tz =  are 

transformed into 0N ′  pairs of input 

, ( 1) , 1 ,{ , , , }i t p i t i tz z z− − − and corresponding expected 
output  , 1i tz +  respectively as training data. Here zi,t 
represents measurement variable zi at t time instant, 
p is embedding dimension. 
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Step 2 Expand fault parameter θ as a new state 
variable, and then construct system as shown in 
equation (3) and (4), where state vector is 

T[  ]e
k k kθ=x x . Fault prediction process begins at 

N0+1 time instant. Set k = N0+1. 
Step 3 Forecast 1: 1 2[ , , , ]k k n k k k n+ + + + += z z z z  at 

time instant k+1 to k+n by mz ROS-ELM models 
respectively, where k is current time instant, n is 
predicting horizon, 1, 2, ,[ , , , ]

zk j k j k j m k jz z z+ + + += z  
are measurements, j = 1,2,…,n. Multiple-steps-
ahead measurements prediction is processed by 
successively utilizing one-step-ahead prediction. Set 
c = 1. 

Step 4 Time updating. Compute | 1ˆ e
k j k j+ + −x  

according to equation (24) and ( )
| 1( )e l

k j k j+ + −S  

according to equation (25), where ( )
| 1

l
k j k j+ + −S  is 

square-root of priori error covariance before 
introducing fading factor. 

Step 5 Compute the fading factor 1k jλ + −  with 
( )

| 1
l

k j k j+ + −S  by equations (27) to (35). Then | 1
e
k j k j+ + −S  

is calculated by equation (36). 
Step 6 State posterior estimation |ˆ e

k j k j+ +x  and 

square-root of the error covariance |
e
k j k j+ +S  are 

computed according to equations (37) to (46). 
Step 7  if c ≤ n, set j = j + 1, and then go to step 

4; else go to step 8. 
Step 8 Select |k̂ n k nθ + +  from |ˆ e

k j k j+ +x  as predicted 
value of fault parameter. The system is judged to be 
faulty when |k̂ n k nθ + +  exceeds the threshold. 

Step 9 Return to step 3 when there is new 
coming measurements and set k = k +1. 
 
 
6 Case study 
6.1 Simulation Model Description 
Three-tank system (DTS200) [17] is a well studied 
simulation model, which is widely utilized in the 
study area of fault diagnosis and fault prediction 
algorithms. In addition, DTS200 contains state and 
measurement function, and this is convenient for the 
application of the proposed STSCKF. As a result, 
DTS200 is used as a simulation case to verify the 
effectiveness of the proposed fault prediction 
method. 

DTS200 is described as follows 

1 2 3

d
d

[ ]
t

x x x

 = +

 =

Ｔ　　

x Ax Bu       

z
                (57) 

Vectors in (57) are defined as follows 
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1/ 2

13 1 1 3 1 3
1/ 2
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1/ 2

20 2 2

sgn( )(2 | |)  
sgn( )(2 | |)
(2 )                              

n

n

n

Q az S h h g h h
Q az S h h g h h
Q az S gh

 = − −
 = − −
 =

   (58) 

In equation (58), sgn(·) is the sign function. The 
parameters are set as As=0.0154 m2, Sn=5×10-5m2, 
Q1=4.5×10-5m3/s, Q2=4.5×10-5 m3/s, g=9.81m/s, 
az1=0.5, az2=0.6, az3=0.5. 

Differential functions in equation (57) can be 
transformed to a discrete model by Euler algorithm, 
then we obtain 

1, 1

1 2, 1 1

3, 1

1 1 1 1

k

k k k k

k

k k k k

x
f x

x

t t

−

− − −

−

− − − −

  
  = +  
    

= + ∆ ⋅ + ∆ ⋅ ⋅ +

x w

     x Ax B u w

   (59) 

1, 1

2, 2

3, 3

k

k k k k k

k

z x
z x
z x

   
   = + = +   
     

z = x v v                  (60) 

where sampling interval Δt=1s, wk=[w1,k, w2,k, w3,k]T 
and vk=[v1,k, v2,k, v3,k]T are state and measurement 
noise respectively. wk follow normal distribution 
N(0, 0.00012) and vk follow normal distribution N(0, 
0.00022). The whole simulation steps are 200Δt. The 
initial liquid level h1

0=1m, h2
0=0.95m, h3

0=0.9m.  
 
 
6.2 Simulation Results and Discussion 
To validate the effectiveness of the proposed 
method based on STSCKF, standard SCKF [12] and 
STUKF (strong tracking unscented Kalman filter) 
[18] are used as the contrasting methods. 

The first 50 measurements 1z  to 50z  are 
collected as initial training samples for ROS-ELM. 
Thus fault prediction starts at 51Δt. Sigmoid 
additive function is chosen as ROS-ELM activation 
function, i.e. ( , , ) 1/{1 exp[ ( )]}g b b= + − ⋅ +a aµ µ , 
where μ is input vector. The input weights a and 
input biases b are randomly chosen from the range 
[-1 1] and [0 1] separately. We set embedding 
dimension p = 3, the number of ROS-ELM hidden 
nodes L = 50, λ = 10-8. 
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Assume that parameter az2 becomes faulty and it 
increases from k=10 as follows 

2,
2, 1

0.6 10
0.0001 (k-10) 10k

k

k
az

az k−

≤
=  + × >

      (61) 

Expand az2 as a new state variable to construct 
system shown in equations (3) and (4), i.e., change 
the constant parameter az2 to a time varying state 
az2,k. Suppose the fault changing function of az2 
(shown in equation (61)) is unknown in actual. Thus 
assistant state function 2, 2, 1k kaz az −=  is introduced 
as the changing function. Then equations (59) and 
(60) are transformed as, 

1 2, 1 1 1 1

2, 1 1

( )k k k ke k
k

k k

t az t
az d

− − − − −

− −

   + ∆ ⋅ + ∆ ⋅ ⋅
= +   
    

x A x B u w
x

       (62) 
1, 1,

2, 2,

3, 3,

k k
e
k k k k

k k

z x
z x
z x

   
   = = +   
      

z v                                         (63) 

Firstly, three ROS-ELM models are utilized for 
5-steps-ahead forecasting of measurements 1z , 2z  
and 3z  respectively, as shown in Figure 1.  
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Figure 1 5-steps-ahead prediction of measurements  
 
The predicted 1 to 5-steps ahead measurements 

by ROS-ELM are utilized as measurement variables 
for STSCKF. 5-steps-ahead prediction values and 
absolute prediction error based on standard SCKF, 
STUKF and STSCKF are shown in Figure 2. 
STUKF and STSCKF can track az2 changing trend, 
but SCKF fails to forecast az2. Because fault 
changing function of az2 is unknown, the system 
composed of equations (62) and (63) contains high 
uncertainty. Standard SCKF lacks the ability to 
exactly estimate fault parameter in such uncertain 
system. In contrast, STUKF and STSCKF have 
great robustness against model mismatching, since 
strong tracking filter introduces fading factor to tune 
gain matrix, which is used to improve tracking 
ability for fault parameter. Thus the prediction 
accuracy of STUKF and STSCKF is high. STSCKF 
fading factor is shown in figure 3. The MAE (mean 
absolute error), RMSE (root mean square error) and 
time consuming are shown in Table 1 after 50 times 
Monte Carlo simulations. From Table 1 we can see 
that STSCKF prediction accuracy is superior to 
STUKF. Time consuming for all the three methods 
is almost the same. 
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Figure 2 5-steps-ahead prediction results of az2 
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Figure 3 STSCKF fading factor 
 

Table 1 5-steps-ahead prediction error 

 MAE RMSE Time 
consuming/s 

SCKF 0.4402 0.3017 1.3011 
STUKF 0.0930 0.0111 1.2868 

STSCKF 0.0318 0.0015 1.3540 
 
According to the above simulation results, ROS-

ELM can forecast measurements well. Comparing 
with STUKF and SCKF, STSCKF performs better 
than STUKF in predicting accuracy, and predicting 
precision of SCKF is the lowest. 
 
 
7 Conclusion 
This paper has addressed a novel method using 
regularized OS-ELM (ROS-ELM) and strong 
tracking SCKF (STSCKF) for slow varying fault 
prediction. ROS-ELM forecasts future time 
measurements which are employed by STSCKF for 
failure prognosis. The approach is illustrated 
through a simulation case study, which shows that 
the predicting accuracy of STSCKF is higher than 
standard SCKF and STUKF. The reason for the 
good performance achieved by STSCKF is due to 
the introduced fading factor, which improves model 
robustness and overcomes model mismatching due 
to unknown fault changing function. The 

experiment results indicate the superiority of the 
performance capability of the proposed method. In 
the experiment, only single fault parameter is 
considered. The situation that multiple fault 
parameters occur simultaneity will be studied in the 
future work. 
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