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Abstract: - This paper investigates the problem of adaptive stabilization of nonholonomic mobile robots with 
nonholonomic constraints under the condition that the kinematic parameters are unknown and no known 
constants can (lower and upper) bound them. By defining a new unknown parameter which need dynamic 
updating, and also by using input-state-scaling transformation and backstepping technique, an adaptive state-
feedback stabilizing controller is designed. The asymptotical stability of the control system is proved with 
Lyapunov stability theory. A simulation example is provided to show the effectiveness of the proposed method. 
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1 Introduction 
In recent years, nonholonomic systems, which can 
be modeled with constraints concerning velocity or 
acceleration as well as coordinates and position 
angle, have become a hot research topic of the 
mechanical systems. As a class of typical 
nonholonomic systems, the mobile robots have 
caused the extensive concern. Nonholonomic 
mobile robots have good flexibility, since they could 
realize autonomous movement in the case of nobody 
involving. However, due to the limitations imposed 
by Brockett's condition[1], this class of nonlinear 
systems cannot be stabilized  by stationary 
continuous state-feedback, although it is 
controllable. There are currently several effective 
control methodologies that overcome the 
topological obstruction. The idea of using time-
varying smooth controllers was first proposed in [2], 
in order to stabilize a mobile robot. For driftless 
systems in chained form, several novel approaches 
have been proposed for the design of periodic, 
smooth, or continuous stabilizing controllers [3] [4]. 
Most of the time-varying control scheme suffer 
from a slow convergence rate and oscillation. 
However, it has been observed that a discontinuous 
feedback control schemes usually results in a fast 
convergence rate. An elegant approach to 
constructing discontinuous feedback controllers was 
developed in [5]. The drawback is that there is a 
restriction on the initial conditions of the controlled 
system. This limitation has been overcome by a 

switching state or output control scheme [6]. 
Subsequently, [7-9]further developed the 
discontinuous feedback control strategy based on 
different control targets, respectively. 

However, those aforementioned constructive 
methods are considered in ideal cases.  Because of  
the possible modeling errors and external 
disturbance,  uncertainties do exist in any real world 
systems, which can  degrade a system’s 
performance and even cause system instability. 
Therefore, from a practical point of view, when 
designing controller for a system, uncertainties 
should be taken into account. As is known, adaptive 
control is one of the effective ways to deal with 
control systems with parametric uncertainty. 
Although it is not easy to propose adaptive control 
strategies for general nonlinear systems, a great deal 
of efforts have been made in this area and some 
well-known adaptive design methods are proposed 
for nonlinear systems with uncertain parameters 
(referring to [10] and the other references therein). 
Particularly, when the bounedness of unknown 
kinematic parameters are known,  adaptive  control 
technique was successfully applied to nonholonomic 
mobile robots in [11].  As its natural extension, the 
adaptive control for nonholonomic mobile robots 
with more uncertainties, i.e., the bounedness of 
unknown kinematic parameters are unknown,  
should be attention to. However,  to the authors' 
knowledge, there is no result for such the problem. 

In the paper, by flexibly combining input-state-
scaling transformation and switching control 
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strategy [6, 11], motivated by the adaptive control 
technique in [12], we successively overcome the 
technical obstacle caused by the  unknown 
kinematic parameters, and furthermore, a new 
adaptive controller is explicitly developed such that 
the closed-loop system is globally asymptotically 
regulated at origin. 

The rest of this paper is organized as follows. In 
Section 2, the problem formulation and 
preliminaries are given.  Section 3 presents the 
input-state-scaling transformation and the 
backstepping design procedure, while Section 4 
provides the switching control strategy and the main 
result. Section 5 gives simulation result to illustrate 
the theoretical finding of this paper. Finally, 
concluding remarks are proposed in Section 6. 
 
 
2 Problem Formulation 
The model of a mobile robot with two 
independently drivable wheels considered in this 
paper is shown in Fig.1, where XOY is the world 
coordinate system, a a aX O Y  is the coordinate system 
fixed the mobile robot body, aO  is the center of the 
axle of two driving wheels, ( , )x y  indicates the 
coordinate of the robot in world coordinate system, 
θ  is the angle of moving direction (right angle to 
the wheel axis), ν is the linear velocity of the robot 
and ω  is its angular velocity.  

 

Fig. 1. The planar graph of a mobile robot  

Although the model is the simplest one which 
has constrained by velocity, it has inherent difficulty 
of the nonholonomic system. Suppose that the 
wheels of the robot rotate without slipping. Thus, 
the constraint of the mobile robot motion is denoted 
by 

sin cos 0x yθ θ− =                           (1) 

And the model of a nonholonomic mobile robot can 
be obtained 
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As stated in [6],  the presupposition of the 
modeling (2) is based on the commonly admitted 
pure rolling without slipping condition and the 
assumption that the masses and inertias of the 
wheels are negligible. In other words, (2) only 
represents the modeling of the robot in the ideal 
case. A realistic description of the robot motion in 
the presence of uncertainties will give rise to far 
more complex equations. J.Hespanha et al.[13] 
introduced the mobile robot with parametric 
uncertainties 
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where 1p and 2p are unknown positive parameters 
determined by the radius of the rear wheels and the 
distance between them. 

For system (3), by taking the following state and 
input transformation 
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we obtain  

0 2 0
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                           (5) 

which belongs to the class of nonholonomic chain 
systems  introduced in [6]. 

Remark 1. Though 1p and 2p  taking values in a 
known interval min max[ , ]p p , the asymptotically 
stabilization  of (3) or (5) was solved in [11], when 
the boundeness of 1p and 2p  are unknown, the 
controller design for such system will be more 
difficult and cannot be solved by simply by general 
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existing methods.  It is precisely our intention of this 
paper.For details, in this paper, the main objective is, 
under the condition that the boundeness of 
kinematic parameters are unknown, to design an 
adaptive state-feedback controller 0 0 0( )u u x= , 

1 0 0( , , )u u x x µ= , 0( , , )x xµ µ µ=  such that all signals 
of the closed-loop system are bounded. Furthermore, 
global asymptotic regulation of the states are 
achieved, i.e. 0lim(| | | |) 0

t
x x

→∞
+ = .In order to achieve 

the above control objective, throughout the paper,  
the following assumption regarding system (5) is  
imposed. 

Assumption 1 The signs of ip , i=1,2  are 
known, and there exist unknown positive 
constants a  and b  such that 

ia p b≤ ≤                                  (6) 
 
 
3. Adaptive controller design 
In this section, we proceed to  design a robust 
adaptive controller based on backstepping technique 
for the case 0 (0) 0x ≠ . While the case that the 
initial 0 (0) 0x =  is dealt in next section. The 
inherently triangular structure of system (5) suggests 
that we should design the control inputs 0u and 1u  in 
two separate stages.  

For 0x − subsystem, we take the following control 
law 

0 0u x= −                                      (7) 

. Take Lyapunov function 2
0 0 / 2V x=  and then we 

have 

2
0 0 02V x V= − = −                                (8) 

As a result,  the first result of this paper is obtained. 

Lemma 1. For  any initial 
condition 0 0( ) 0x t ≠ ,where 0 0t ≥ , the corresponding 
solution 0 ( )x t  exists 

and globally exponentially converges to zero.  
Furthermore, the control 0 ( )u t  given by (7) also 
exists and does not cross zero. 

From the above analysis, we can see the 0x -state 
in (5) can be globally exponentially regulated to 

zero via 0u  in (7) as t →∞ . However, it is 
troublesome in controlling the x −subsystem via the 
control input 1u , because, in the limit (i.e. 0 0u = ), 
the x −subsystem is uncontrollable. This problem 
can be avoided by utilizing the following 
discontinuous input-state-scaling transformation: 

1
1 2 2

0

,
xz z x
u

= =                               (9) 

According to (5) and (9), we get 

1 2 2 2 1
2

2 1 1 2 1 0
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                         (10) 

In the next, the controller 1u will be recursively 
constructed by applying backstepping technique to 
the system (10). Before the beginning of the 
recursive design steps, we need to define the 
following unknown parameter 

2 2 2(1 )( / , , )b b a a a−Θ = +                        (11) 

Step 1: Begin with 1z -subsystem of (10), where 2z  
is regarded as a virtual control. Introducing the 
transformation 

*
1 1 2 2 2,e z e z z= = −                             (12) 

and choosing Lyapunov function 

                        2 2
1 1

1
2 2

aV z= + Θ                             (13) 

where ˆΘ = Θ−Θ  and Θ̂   is an estimate of Θ , it 
comes from (10), (12) and (13) that 
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≤ − + + + Θ − Θ Θ−


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











 

(14) 

Obviously, the first virtual controller 

*
2 1

ˆ3z e= − Θ                             (15) 

leads to 
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2 2
1 1 2 1 2 1

2 ˆ( 3 )V e p e e a e
a

≤ − + − Θ Θ−           16) 

Step 2: Consider the candidate Lyapunov 
function 

2
2 1 2

1
2

V V e= +                           (17) 

In view of (10), (14), (16) and (17), we have 

2 2
2 1 2 1 2 1 2 2

2 2
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2
2 1 1 2 1 0 2 2 2 2 1 1 2

2 ˆ( 3 )

2 ˆ( 3 )

ˆˆ( ) 3 ( ) 3

V e p e e a e e e
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 (18) 

Using (11) and the Young’s Inequality, we have 
following estimations: 

2 2
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where 21 3γ = , 4
22 03xγ = , 4

23
ˆ3 243γ = + Θ and 2

24
ˆ27γ = Θ . 

   Substituting (19) into (18) yields 
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To finally get the explicit expression of 1u , 
furthermore treatment should be taken for the last 
term on the right hand side of the second inequality 
in (20). By the Young’s Inequality, we have 

4
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Putting (20) and (21) together, we obtain 
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                               (22) 
Clearly, the smooth actual control 1u and update 

law for Θ̂ can be easily chosen as 
4

1 2 2 25
1

ˆ( (1 ) )j
j

u e γ γ
=

= − Θ + +∑                (23) 

4
2 2
1 2 2

1

ˆ 3 (1 )j
j

e e γ
=
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from which and (22) , it follows that 
2 2

2 1 2
1 1V e e
a a

≤ − −                        (25) 

We have thus far completed the controller design 
procedure for 0 0( ) 0x t ≠ . Without loss of generality, 
we can assume that 0 0t = .. 
 
 
4. Switching controller and main 

result 
In the preceding section, we have given controller 
design for 0 (0) 0x ≠ . Now, we discuss how to select 
the control laws 0u and 1u when 0 (0) 0x = . 

 In the absence of the disturbances, most of the 
commonly used control strategies use constant 
control *

0 0 0u u= ≠ in time interval [0, )st . In this 
paper, we also use this method when 0 (0) 0x = , with 

0u  chosen as follows: 
* *

0 0 0, 0u u u= >                             (26) 

During the time period [0, )st , using 0u  defined in 
(26), new control law *

1 1 0( , )u u x x=  can be obtained 
by the control procedure described above to the 
original x-subsystem in (5). Then we can conclude 
that the x-state of (5) cannot blow up during the 
time period [0, )st . Since  0 ( ) 0sx t ≠ at st t= , we can 
switch the control input 0u  and 1u  to (7) and (23), 
respectively. 

We are now ready to state the main theorem of 
this paper. 

Theorem 1.  Under Assumption 1 , if the 
proposed control design procedure together with the 
above switching control strategy is applied to 
system (5), then, for any initial conditions in the 
state space 3

0( , )x x R∈ , the states of the original 
system converge to the origin, and the other signals 
of the closed-loop system are bounded.. 
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Proof. According to the above analysis, it 
suffices to prove the statement in the case where 

0 (0) 0x ≠  . 
From the Section 3, we know that 0x can be 

globally regulated to zero as t →∞ . In the z-
coordinates, from the last step in the recursive 
backstepping design, we obtained (25), which 
implies that Θ̂  is bounded and z →∞  as t →∞ . 
From the input-state-scaling transformation (11), we 
conclude that x →∞  as t →∞ ..This completes the 
proof of Theorem 1. 

Remark 2.  As seen from (23) and (7), the 
control law 1u  may exhibit extremely large value 
when 0 (0) 0x ≠  is sufficiently small. This is 
unacceptable from a practical point of view. It is 
therefore recommended to apply (26) in order to 
enlarge the initial value of 0x  before we appeal to 
the finite-time converging controllers (7)and (23). 

 
 

5. Simulation result 

The simulation is implemented for the controllers 
defined in Sections 3-4. T. The simulation results 
for  initial conditions 

0 1 2
ˆ( (0), (0), (0), (0)) (1,1, 1,1)x x x Θ = −  are shown in 

Fig.2, while the results for 
0 1 2

ˆ( (0), (0), (0), (0)) (0,1, 1,1)x x x Θ = −  are in Fig.3. 
From the figures, it is clear to see that the global 
asymptotic regulation of closed-loop system states 
are achieved.   

 

Fig.2. State trajectories of the closed-loop system 
with  0 1 2

ˆ( (0), (0), (0), (0)) (1,1, 1,1)x x x Θ = −  

 

Fig.3. State trajectories of the closed-loop system 
with 0 1 2

ˆ( (0), (0), (0), (0)) (0,1, 1,1)x x x Θ = −  
 
 
6. Conclusion 
In this paper, the problem of  adaptive stabilization 
of nonholonomic mobile robots with unknown  
kinematic parameters. By using input-state-scaling 
transformation and backstepping technique, an 
adaptive state-feedback controller is obtained. Based 
on switching strategy to eliminate the phenomenon 
of uncontrollability,  the proposed controller can 
guarantee that  the system states globally 
asymptotically converge to the origin. Simulation 
results demonstrate the effectiveness of the 
proposed control design. 
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